

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	768
Total RAM Bits	-
Number of I/O	66
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	81-WFBGA, CSBGA
Supplier Device Package	81-CSP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln030v5-zcsg81i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Devices	AGLN010	AGLN015 ¹	AGLN020		AGLN060	AGLN125	AGLN250
IGLOO nano-Z Devices ¹				AGLN030Z ¹	AGLN060Z ¹	AGLN125Z ¹	AGLN250Z ¹
Package Pins UC/CS QFN	UC36 QN48	QN68	UC81, CS81	UC81, CS81 QN48, QN68	CS81	CS81	CS81
VQFP			QN68	VQ100	VQ100	VQ100	VQ100

Notes:

- Not recommended for new designs. Few devices/packages are obsoleted. For more information on obsoleted devices/packages, refer to the PDN 1503 IGLOO nano Z and ProASIC3 nano Z Families.
- AGLN030 and smaller devices do not support this feature.
- AGLN060, AGLN125, and AGLN250 in the CS81 package do not support PLLs.
 For higher densities and support of additional features, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOOe Low-Power Flash FPGAs Datasheet .

I/Os Per Package

IGLOO nano Devices	AGLN010	AGLN015 ¹	AGLN020		AGLN060	AGLN125	AGLN250
IGLOO nano-Z Devices ¹				AGLN030Z ¹	AGLN060Z ¹	AGLN125Z ¹	AGLN250Z ¹
Known Good Die	34	-	52	83	71	71	68
UC36	23	-	_	_	-	-	_
QN48	34	-	_	34	-	-	_
QN68	_	49	49	49	-	-	_
UC81	_	-	52	66	-	-	_
CS81	_	-	52	66	60	60	60
VQ100	-	-	_	77	71	71	68

Notes:

- 1. Not recommended for new designs.
- 2. When considering migrating your design to a lower- or higher-density device, refer to the DS0095: IGLOO Low Power Flash FPGAs Datasheet and IGLOO FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.
- 3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.
- 4. "G" indicates RoHS-compliant packages. Refer to "IGLOO nano Ordering Information" on page IV for the location of the "G" in the part number. For nano devices, the VQ100 package is offered in both leaded and RoHS-compliant versions. All other packages are RoHS-compliant only.

Table 1 • IGLOO nano FPGAs Package Sizes Dimensions

Packages	UC36	UC81	CS81	QN48	QN68	VQ100
Length × Width (mm\mm)	3 x 3	4 x 4	5 x 5	6 x 6	8 x 8	14 x 14
Nominal Area (mm ²)	9	16	25	36	64	196
Pitch (mm)	0.4	0.4	0.5	0.4	0.4	0.5
Height (mm)	0.80	0.80	0.80	0.90	0.90	1.20

Revision 19

Device Marking

Microsemi normally topside marks the full ordering part number on each device. There are some exceptions to this, such as some of the Z feature grade nano devices, the V2 designator for IGLOO devices, and packages where space is physically limited. Packages that have limited characters available are UC36, UC81, CS81, QN48, QN68, and QFN132. On these specific packages, a subset of the device marking will be used that includes the required legal information and as much of the part number as allowed by character limitation of the device. In this case, devices will have a truncated device marking and may exclude the applications markings, such as the I designator for Industrial Devices or the ES designator for Engineering Samples.

Figure 1 shows an example of device marking based on the AGLN250V2-CSG81. The actual mark will vary by the device/package combination ordered.

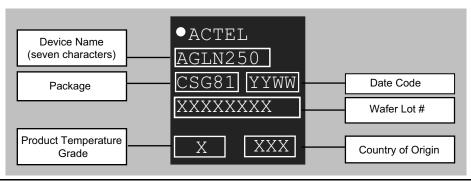


Figure 1 • Example of Device Marking for Small Form Factor Packages

Revision 19 V

Flash Advantages

Low Power

Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO nano devices also have low dynamic power consumption to further maximize power savings; power is reduced even further by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO nano devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

1-2 Revision 19

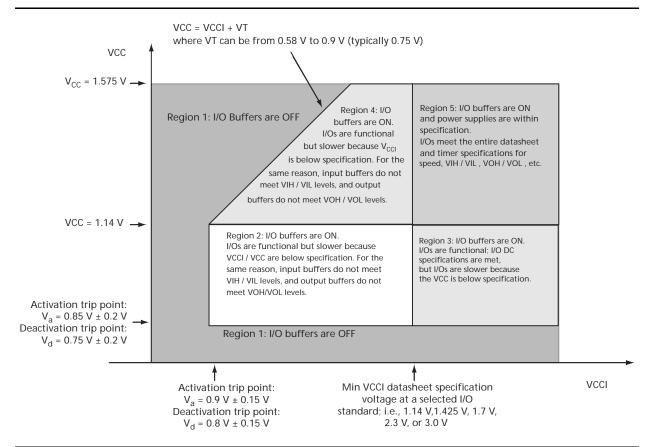


Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Power Consumption of Various Internal Resources

Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device Sp	ecific Dyna	mic Power	(µW/MHz)	
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010
PAC1	Clock contribution of a Global Rib	4.421	4.493	2.700	0	0	0
PAC2	Clock contribution of a Global Spine	2.704	1.976	1.982	4.002	4.002	2.633
PAC3	Clock contribution of a VersaTile row	1.496	1.504	1.511	1.346	1.346	1.340
PAC4	Clock contribution of a VersaTile used as a sequential module	0.152	0.153	0.153	0.148	0.148	0.143
PAC5	First contribution of a VersaTile used as a sequential module			0.0	57		
PAC6	Second contribution of a VersaTile used as a sequential module	0.207					
PAC7	Contribution of a VersaTile used as a combinatorial module			0.	17		
PAC8	Average contribution of a routing net			0.	.7		
PAC9	Contribution of an I/O input pin (standard-dependent)		Se	e Table 2-13	3 on page 2	?-9.	
PAC10	Contribution of an I/O output pin (standard-dependent)			See Tab	le 2-14.		
PAC11	Average contribution of a RAM block during a read operation	25.00 N/A					
PAC12	Average contribution of a RAM block during a write operation	30.00 N/A					
PAC13	Dynamic contribution for PLL		2.70		_	N/A	

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device	-Specific	Static Powe	er (mW)		
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010	
PDC1	Array static power in Active mode		Se	ee Table 2-	12 on page 2	2-8		
	Array static power in Static (Idle) mode		See Table 2-12 on page 2-8					
	Array static power in Flash*Freeze mode		S	ee Table 2-	9 on page 2	2-7		
PDC4 ¹	Static PLL contribution		1.84			N/A		
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8						

Notes:

- 1. Minimum contribution of the PLL when running at lowest frequency.
- 2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

2-10 Revision 19

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-23 • Summary of AC Measuring Points

Standard	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V LVCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
1.2 V LVCMOS	0.60 V
1.2 V LVCMOS Wide Range	0.60 V

Table 2-24 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t_{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t_{ZH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t_{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

2-20 Revision 19

Applies to 1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
4 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
6 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns
8 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
4 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
6 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
8 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-28 Revision 19

IGLOO nano Low Power Flash FPGAs

Fully Registered I/O Buffers with Asynchronous Clear

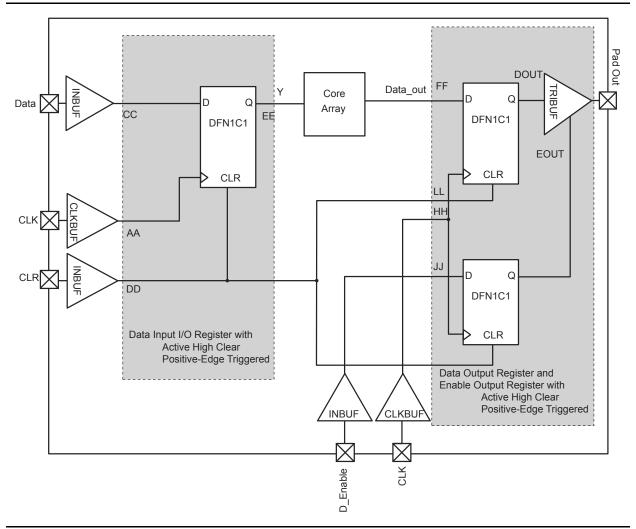


Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

Table 2-71 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
toerecclr	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-13 on page 2-43 for more information.

2-44 Revision 19

1.2 V DC Core Voltage

Table 2-75 • Output Data Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.52	ns
tosup	Data Setup Time for the Output Data Register	1.15	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.96	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.96	ns
tOREMCLR	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
torecclr	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
towclr	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
tockmpwh	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-48 Revision 19

DDR Module Specifications

Note: DDR is not supported for AGLN010, AGLN015, and AGLN020 devices.

Input DDR Module

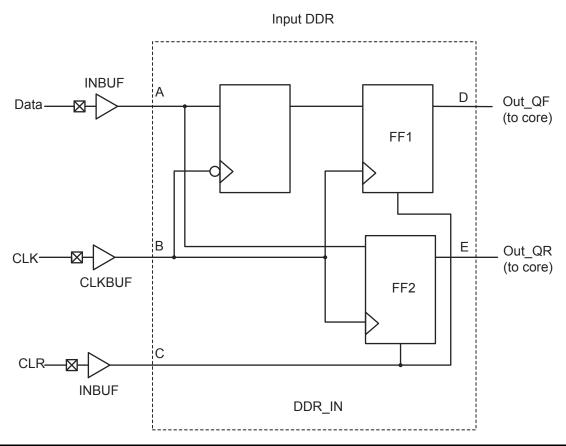


Figure 2-17 • Input DDR Timing Model

Table 2-78 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	C, B
t _{DDRIRECCLR}	Clear Recovery	C, B

IGLOO nano Low Power Flash FPGAs

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.76	ns
AND2	Y = A · B	t _{PD}	0.87	ns
NAND2	Y = !(A · B)	t _{PD}	0.91	ns
OR2	Y = A + B	t _{PD}	0.90	ns
NOR2	Y = !(A + B)	t _{PD}	0.94	ns
XOR2	Y = A ⊕ B	t _{PD}	1.39	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.44	ns
XOR3	Y = A ⊕ B ⊕ C	t _{PD}	1.60	ns
MUX2	Y = A !S + B S	t _{PD}	1.17	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.18	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-85 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.33	ns
AND2	Y = A · B	t _{PD}	1.48	ns
NAND2	Y = !(A · B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	1.53	ns
NOR2	Y = !(A + B)	t _{PD}	1.63	ns
XOR2	Y = A ⊕ B	t _{PD}	2.34	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.59	ns
XOR3	Y = A ⊕ B ⊕ C	t _{PD}	2.74	ns
MUX2	Y = A !S + B S	t _{PD}	2.03	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-87 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t_{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-62 Revision 19

Timing Waveforms

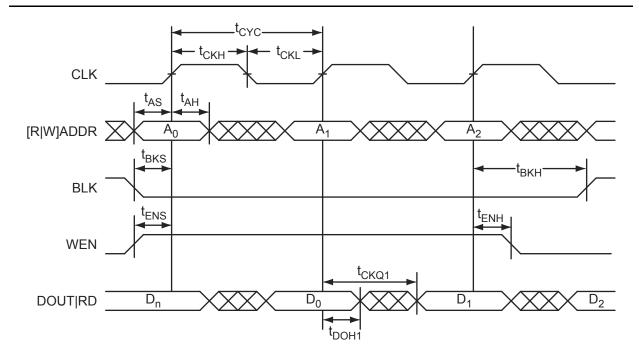


Figure 2-28 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

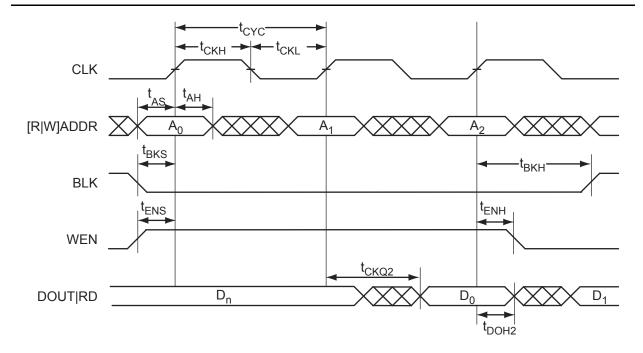


Figure 2-29 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

2-74 Revision 19

IGLOO nano Low Power Flash FPGAs

Timing Characteristics

1.5 V DC Core Voltage

Table 2-102 • RAM4K9

Commercial-Case Conditions: $T_J = 70^{\circ}C$, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.68	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{BKS}	BLK setup time	1.37	ns
t _{BKH}	BLK hold time	0.13	ns
t _{DS}	Input data (DIN) setup time	0.59	ns
t _{DH}	Input data (DIN) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	2.94	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	2.55	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	1.51	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	1.72	ns
	RESET Low to data out Low on DOUT (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

^{1.} For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-107 • FIFO

Worst Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.44	ns
t _{ENH}	REN, WEN Hold Time	0.26	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (DI) Setup Time	1.30	ns
t _{DH}	Input Data (DI) Hold Time	0.41	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	5.67	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.02	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	6.02	ns
t _{WCKFF}	WCLK High to Full Flag Valid	5.71	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	22.17	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	5.93	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	21.94	ns
t _{RSTBQ}	RESET LOW to Data Out Low on RD (flow-through)	3.41	ns
	RESET LOW to Data Out Low on RD (pipelined)	4.09	3.41
t _{REMRSTB}	RESET Removal	1.02	ns
t _{RECRSTB}	RESET Recovery	5.48	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-86 Revision 19

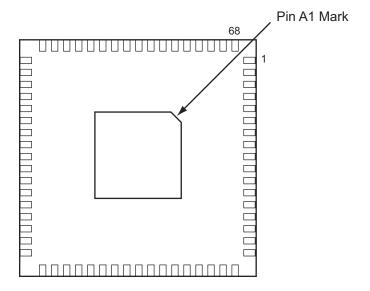
UC36				
Pin Number	AGLN010 Function			
A1	IO21RSB1			
A2	IO18RSB1			
A3	IO13RSB1			
A4	GDC0/IO00RSB0			
A5	IO06RSB0			
A6	GDA0/IO04RSB0			
B1	GEC0/IO37RSB1			
B2	IO20RSB1			
В3	IO15RSB1			
B4	IO09RSB0			
B5	IO08RSB0			
B6	IO07RSB0			
C1	IO22RSB1			
C2	GEA0/IO34RSB1			
C3	GND			
C4	GND			
C5	VCCIB0			
C6	IO02RSB0			
D1	IO33RSB1			
D2	VCCIB1			
D3	VCC			
D4	VCC			
D5	IO10RSB0			
D6	IO11RSB0			
E1	IO32RSB1			
E2	FF/IO31RSB1			
E3	TCK			
E4	VPUMP			
E5	TRST			
E6	VJTAG			
F1	IO29RSB1			
F2	IO25RSB1			
F3	IO23RSB1			
F4	TDI			

UC36		
AGLN010 Pin Number Function		
F5	TMS	
F6	TDO	

4-2 Revision 19

CS81				
Pin Number AGLN060Z Function				
A1	GAA0/IO02RSB0			
A2	GAA1/IO03RSB0			
A3	GAC0/IO06RSB0			
A4	IO09RSB0			
A5	IO13RSB0			
A6	IO18RSB0			
A7	GBB0/IO21RSB0			
A8	GBA1/IO24RSB0			
A9	GBA2/IO25RSB0			
B1	GAA2/IO95RSB1			
B2	GAB0/IO04RSB0			
В3	GAC1/IO07RSB0			
B4	IO08RSB0			
B5	IO15RSB0			
В6	GBC0/IO19RSB0			
В7	GBB1/IO22RSB0			
В8	IO26RSB0			
В9	GBB2/IO27RSB0			
C1	GAB2/IO93RSB1			
C2	IO94RSB1			
C3	GND			
C4	IO10RSB0			
C5	IO17RSB0			
C6	GND			
C7	GBA0/IO23RSB0			
C8	GBC2/IO29RSB0			
C9	IO31RSB0			
D1	GAC2/IO91RSB1			
D2	IO92RSB1			
D3	GFA2/IO80RSB1			
D4	VCC			
D5	VCCIB0			
D6	GND			
D7	GCC2/IO43RSB0			

CS81			
Pin Number	AGLN060Z Function		
D8	GCC1/IO35RSB0		
D9	GCC0/IO36RSB0		
E1	GFB0/IO83RSB1		
E2	GFB1/IO84RSB1		
E3	GFA1/IO81RSB1		
E4	VCCIB1		
E5	VCC		
E6	VCCIB0		
E7	GCA1/IO39RSB0		
E8	GCA0/IO40RSB0		
E9	GCB2/IO42RSB0		
F1 ¹	VCCPLF		
F2 ¹	VCOMPLF		
F3	GND		
F4	GND		
F5	VCCIB1		
F6	GND		
F7	GDA1/IO49RSB0		
F8	GDC1/IO45RSB0		
F9	GDC0/IO46RSB0		
G1	GEA0/IO69RSB1		
G2	GEC1/IO74RSB1		
G3	GEB1/IO72RSB1		
G4	IO63RSB1		
G5	IO60RSB1		
G6	IO54RSB1		
G7	GDB2/IO52RSB1		
G8	VJTAG		
G9	TRST		
H1	GEA1/IO70RSB1		
H2	FF/GEB2/IO67RSB1		
H3	IO65RSB1		
H4	IO62RSB1		
H5	IO59RSB1		


CS81			
Pin Number	AGLN060Z Function		
H6	IO56RSB1		
H7 ²	GDA2/IO51RSB1		
H8	TDI		
H9	TDO		
J1	GEA2/IO68RSB1		
J2	GEC2/IO66RSB1		
J3	IO64RSB1		
J4	IO61RSB1		
J5	IO58RSB1		
J6	IO55RSB1		
J7	TCK		
J8	TMS		
J9	VPUMP		

Notes:

- 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81.
- 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81.

4-10 Revision 19

QN68

Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

4-18 Revision 19

VQ100			VQ100
Pin Number	AGLN060 Function	Pin Number	AGLN060 Function
1	GND	36	IO61RSB1
2	GAA2/IO51RSB1	37	VCC
3	IO52RSB1	38	GND
4	GAB2/IO53RSB1	39	VCCIB1
5	IO95RSB1	40	IO60RSB1
6	GAC2/IO94RSB1	41	IO59RSB1
7	IO93RSB1	42	IO58RSB1
8	IO92RSB1	43	IO57RSB1
9	GND	44	GDC2/IO56RSB1
10	GFB1/IO87RSB1	45*	GDB2/IO55RSB1
11	GFB0/IO86RSB1	46	GDA2/IO54RSB1
12	VCOMPLF	47	TCK
13	GFA0/IO85RSB1	48	TDI
14	VCCPLF	49	TMS
15	GFA1/IO84RSB1	50	VMV1
16	GFA2/IO83RSB1	51	GND
17	VCC	52	VPUMP
18	VCCIB1	53	NC
19	GEC1/IO77RSB1	54	TDO
20	GEB1/IO75RSB1	55	TRST
21	GEB0/IO74RSB1	56	VJTAG
22	GEA1/IO73RSB1	57	GDA1/IO49RSB0
23	GEA0/IO72RSB1	58	GDC0/IO46RSB0
24	VMV1	59	GDC1/IO45RSB0
25	GNDQ	60	GCC2/IO43RSB0
26	GEA2/IO71RSB1	61	GCB2/IO42RSB0
27	FF/GEB2/IO70RSB1	62	GCA0/IO40RSB0
28	GEC2/IO69RSB1	63	GCA1/IO39RSB0
29	IO68RSB1	64	GCC0/IO36RSB0
30	IO67RSB1	65	GCC1/IO35RSB0
31	IO66RSB1	66	VCCIB0
32	IO65RSB1	67	GND
33	IO64RSB1	68	VCC
34	IO63RSB1	69	IO31RSB0
35	IO62RSB1	70	GBC2/IO29RSB0

VQ100	
Pin Number	AGLN060 Function
71	GBB2/IO27RSB0
72	IO26RSB0
73	GBA2/IO25RSB0
74	VMV0
75	GNDQ
76	GBA1/IO24RSB0
77	GBA0/IO23RSB0
78	GBB1/IO22RSB0
79	GBB0/IO21RSB0
80	GBC1/IO20RSB0
81	GBC0/IO19RSB0
82	IO18RSB0
83	IO17RSB0
84	IO15RSB0
85	IO13RSB0
86	IO11RSB0
87	VCCIB0
88	GND
89	VCC
90	IO10RSB0
91	IO09RSB0
92	IO08RSB0
93	GAC1/IO07RSB0
94	GAC0/IO06RSB0
95	GAB1/IO05RSB0
96	GAB0/IO04RSB0
97	GAA1/IO03RSB0
98	GAA0/IO02RSB0
99	IO01RSB0
100	IO00RSB0

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-VQ100.

4-24 Revision 19