Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 768 | | Total RAM Bits | - | | Number of I/O | 77 | | Number of Gates | 30000 | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -20°C ~ 85°C (TJ) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microsemi/agln030v5-zvq100 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **IGLOO** nano Ordering Information #### Notes: - Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming. The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade devices are not recommended for new designs. - AGLN030 is available in the Z feature grade only. - 3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5 designator. # **Devices Not Recommended For New Designs** AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs. For more information on obsoleted devices/packages, refer to the *PDN1503 - IGLOO nano Z and ProASIC3 nano Z Families*. IV Revision 19 # 1 – IGLOO nano Device Overview # **General Description** The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOO nano devices enables entering and exiting an ultra-low power mode that consumes nanoPower while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO nano device is completely functional in the system. This allows the IGLOO nano device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. Nonvolatile flash technology gives IGLOO nano devices the advantage of being a secure, low power, single-chip solution that is Instant On. The IGLOO nano device is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. IGLOO nano devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGLN030 and smaller devices have no PLL or RAM support. IGLOO nano devices have up to 250 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 71 user I/Os. IGLOO nano devices increase the breadth of the IGLOO product line by adding new features and packages for greater customer value in high volume consumer, portable, and battery-backed markets. Features such as smaller footprint packages designed with two-layer PCBs in mind, power consumption measured in nanoPower, Schmitt trigger, and bus hold (hold previous I/O state in Flash*Freeze mode) functionality make these devices ideal for deployment in applications that require high levels of flexibility and low cost. # Flash*Freeze Technology The IGLOO nano device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO nano devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO nano V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power. During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state, tristate, HIGH, or LOW. The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and small-footprint packages make IGLOO nano devices the best fit for portable electronics. The inputs of the six CCC blocks are accessible from the FPGA core or from dedicated connections to the CCC block, which are located near the CCC. The CCC block has these key features: - Wide input frequency range (f_{IN CCC}) = 1.5 MHz up to 250 MHz - Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz - · 2 programmable delay types for clock skew minimization - Clock frequency synthesis (for PLL only) #### Additional CCC specifications: - Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). - Output duty cycle = 50% ± 1.5% or better (for PLL only) - Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) - Maximum acquisition time is 300 µs (for PLL only) - Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only) - Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / f_{OUT_CCC} (for PLL only) ### **Global Clocking** IGLOO nano devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. ## I/Os with Advanced I/O Standards IGLOO nano FPGAs feature a flexible I/O structure, supporting a range of voltages (1.2 V, 1.2 V wide range, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). The I/Os are organized into banks with two, three, or four banks per device. The configuration of these banks determines the I/O standards supported. Each I/O module contains several input, output, and enable registers. These registers allow the implementation of various single-data-rate applications for all versions of nano devices and double-data-rate applications for the AGLN060, AGLN125, and AGLN250 devices. IGLOO nano devices support LVTTL and LVCMOS I/O standards, are hot-swappable, and support cold-sparing and Schmitt trigger. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. # Wide Range I/O Support IGLOO nano devices support JEDEC-defined wide range I/O operation. IGLOO nano devices support both the JESD8-B specification, covering both 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. 1-8 Revision 19 IGLOO nano DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions 1 | Symbol | P | arameter | Extended
Commercial | Industrial | Units | |---------------------|-------------------------|---|-------------------------|--------------------------|-------| | TJ | Junction temperature | | $-20 \text{ to} + 85^2$ | -40 to +100 ² | °C | | VCC | 1.5 V DC core supply vo | oltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.2 V–1.5 V wide range | core voltage ^{4,5} | 1.14 to 1.575 | 1.14 to 1.575 | V | | VJTAG | JTAG DC voltage | | 1.4 to 3.6 | 1.4 to 3.6 | V | | VPUMP ⁶ | Programming voltage | Programming mode | 3.15 to 3.45 | 3.15 to 3.45 | V | | | | Operation | 0 to 3.6 | 0 to 3.6 | V | | VCCPLL ⁷ | 9 1 11 3 | 1.5 V DC core supply voltage ³ | 1.425 to 1.575 | 1.425 to 1.575 | V | | | (PLL) | 1.2 V–1.5 V wide range core supply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | VCCI and | 1.2 V DC supply voltage | , 4 | 1.14 to 1.26 | 1.14 to 1.26 | V | | VMV ^{8,9} | 1.2 V DC wide range su | pply voltage ⁴ | 1.14 to 1.575 | 1.14 to 1.575 | V | | | 1.5 V DC supply voltage | | 1.425 to 1.575 | 1.425 to 1.575 | V | | | 1.8 V DC supply voltage | : | 1.7 to 1.9 | 1.7 to 1.9 | V | | | 2.5 V DC supply voltage | | 2.3 to 2.7 | 2.3 to 2.7 | V | | | 3.3 V DC supply voltage | | 3.0 to 3.6 | 3.0 to 3.6 | V | | | 3.3 V DC wide range su | pply voltage ¹⁰ | 2.7 to 3.6 | 2.7 to 3.6 | V | #### Notes: - 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. - 2. Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero Online Help. - 3. For IGLOO® nano V5 devices - 4. For IGLOO nano V2 devices only, operating at VCCI ≥ VCC - 5. IGLOO nano V5 devices can be programmed with the VCC core voltage at 1.5 V only. IGLOO nano V2 devices can be programmed with the VCC core voltage at 1.2 V (with FlashPro4 only) or 1.5 V. If you are using FlashPro3 and want to do in-system programming using 1.2 V, please contact the factory. - 6. V_{PUMP} can be left floating during operation (not programming mode). - 7. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter for further information. - 8. VMV pins must be connected to the corresponding VCCI pins. See the Pin Descriptions chapter of the IGLOO nano FPGA Fabric User's Guide for further information. - 9. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank. - 10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹ | Product
Grade | | Program Retention (biased/unbiased) | Maximum Storage
Temperature T _{STG} (°C) ² | Maximum Operating Junction Temperature T _J (°C) ² | |------------------|-----|-------------------------------------|---|---| | Commercial | 500 | 20 years | 110 | 100 | | Industrial | 500 | 20 years | 110 | 100 | #### Notes: - 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. - These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits. 2-2 Revision 19 Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $T_J = 70^{\circ}\text{C}$, VCC = 1.14 V) For IGLOO nano V2, 1.2 V DC Core Supply Voltage | Array Voltage | | Junction Temperature (°C) | | | | | | | | | | | | |---------------|-------|---------------------------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | VCC (V) | -40°C | –20°C | 0°C | 25°C | 70°C | 85°C | 100°C | | | | | | | | 1.14 | 0.968 | 0.974 | 0.979 | 0.991 | 1.000 | 1.006 | 1.009 | | | | | | | | 1.2 | 0.863 | 0.868 | 0.873 | 0.884 | 0.892 | 0.898 | 0.901 | | | | | | | | 1.26 | 0.792 | 0.797 | 0.801 | 0.811 | 0.819 | 0.824 | 0.827 | | | | | | | # **Calculating Power Dissipation** # **Quiescent Supply Current** Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature. Table 2-8 • Power Supply State per Mode | | | Power Supply Configurations | | | | | | | | | | | |----------------------|-----|-----------------------------|------|-------|-----------------|--|--|--|--|--|--|--| | Modes/Power Supplies | VCC | VCCPLL | VCCI | VJTAG | VPUMP | | | | | | | | | Flash*Freeze | On | On | On | On | On/off/floating | | | | | | | | | Sleep | Off | Off | On | Off | Off | | | | | | | | | Shutdown | Off | Off | Off | Off | Off | | | | | | | | | No Flash*Freeze | On | On | On | On | On/off/floating | | | | | | | | Note: Off: Power Supply level = 0 V Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode* | | Core
Voltage | AGLN010 | AGLN015 | AGLN020 | AGLN060 | AGLN125 | AGLN250 | Units | |----------------|-----------------|---------|---------|---------|---------|---------|---------|-------| | Typical (25°C) | 1.2 V | 1.9 | 3.3 | 3.3 | 8 | 13 | 20 | μΑ | | | 1.5 V | 5.8 | 6 | 6 | 10 | 18 | 34 | μΑ | Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7). ## Overview of I/O Performance # Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings | | | Equivalent | | | VIL | VIH | | VOL | VOH | IOL ¹ | IOH ¹ | |---|-------------------|---|--------------|-----------|-------------|-------------|-----------|-------------|-------------|------------------|------------------| | I/O Standard | Drive
Strength | Software
Default
Drive
Strength ² | Slew
Rate | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | | 3.3 V LVTTL /
3.3 V LVCMOS | 8 mA | 8 mA | High | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 8 | 8 | | 3.3 V LVCMOS
Wide Range ³ | 100 µA | 8 mA | High | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100
μΑ | 100
μΑ | | 2.5 V LVCMOS | 8 mA | 8 mA | High | -0.3 | 0.7 | 1.7 | 3.6 | 0.7 | 1.7 | 8 | 8 | | 1.8 V LVCMOS | 4 mA | 4 mA | High | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.45 | VCCI - 0.45 | 4 | 4 | | 1.5 V LVCMOS | 2 mA | 2 mA | High | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | | 1.2 V LVCMOS ⁴ | 1 mA | 1 mA | High | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 1 | 1 | | 1.2 V LVCMOS
Wide Range ^{4,5} | 100 μΑ | 1 mA | High | -0.3 | 0.3 * VCCI | 0.7 * VCCI | 3.6 | 0.1 | VCCI - 0.1 | 100
μΑ | 100
μΑ | #### Notes: - 1. Currents are measured at 85°C junction temperature. - 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification. - 4. Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC. - 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range, as specified in the JESD8-12 specification. Table 2-22 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions | | Comr | nercial ¹ | Indu | strial ² | |--------------------------------------|------------------|----------------------|------------------|---------------------| | | IIL ³ | IIH ⁴ | IIL ³ | IIH ⁴ | | DC I/O Standards | μΑ | μΑ | μΑ | μΑ | | 3.3 V LVTTL / 3.3 V LVCMOS | 10 | 10 | 15 | 15 | | 3.3 V LVCOMS Wide Range | 10 | 10 | 15 | 15 | | 2.5 V LVCMOS | 10 | 10 | 15 | 15 | | 1.8 V LVCMOS | 10 | 10 | 15 | 15 | | 1.5 V LVCMOS | 10 | 10 | 15 | 15 | | 1.2 V LVCMOS ⁵ | 10 | 10 | 15 | 15 | | 1.2 V LVCMOS Wide Range ⁵ | 10 | 10 | 15 | 15 | #### Notes: - 1. Commercial range ($-20^{\circ}\text{C} < T_A < 70^{\circ}\text{C}$) - 2. Industrial range (-40°C < T_A < 85°C) - 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions, where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 4. I_{II} is the input leakage current per I/O pin over recommended operating conditions, where -0.3 V < VIN < VIL. - 5. Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC. IGLOO nano Low Power Flash FPGAs ## **Timing Characteristics** ## Applies to 1.5 V DC Core Voltage Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 3.52 | 0.19 | 0.86 | 1.16 | 0.66 | 3.59 | 3.42 | 1.75 | 1.90 | ns | | 4 mA | STD | 0.97 | 3.52 | 0.19 | 0.86 | 1.16 | 0.66 | 3.59 | 3.42 | 1.75 | 1.90 | ns | | 6 mA | STD | 0.97 | 2.90 | 0.19 | 0.86 | 1.16 | 0.66 | 2.96 | 2.83 | 1.98 | 2.29 | ns | | 8 mA | STD | 0.97 | 2.90 | 0.19 | 0.86 | 1.16 | 0.66 | 2.96 | 2.83 | 1.98 | 2.29 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.16 | 0.19 | 0.86 | 1.16 | 0.66 | 2.20 | 1.80 | 1.75 | 1.99 | ns | | 4 mA | STD | 0.97 | 2.16 | 0.19 | 0.86 | 1.16 | 0.66 | 2.20 | 1.80 | 1.75 | 1.99 | ns | | 6 mA | STD | 0.97 | 1.79 | 0.19 | 0.86 | 1.16 | 0.66 | 1.83 | 1.45 | 1.98 | 2.38 | ns | | 8 mA | STD | 0.97 | 1.79 | 0.19 | 0.86 | 1.16 | 0.66 | 1.83 | 1.45 | 1.98 | 2.38 | ns | ## Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. IGLOO nano Low Power Flash FPGAs ## 3.3 V LVCMOS Wide Range Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range | 3.3 V LVCMOS
Wide Range ¹ | Software | | ΊL | , | VIH | VOL | VOH | IOL | I _{OH} | IIL ² | IIH ³ | |---|---|-----------|-----------|-----------|-----------|-----------|------------|-----|-----------------|-------------------------|-------------------------| | Drive
Strength | Default
Drive
Strength
Option ⁴ | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | μА | μА | μ Α ⁵ | μ Α ⁵ | | 100 μΑ | 2 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 4 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 6 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | | 100 μΑ | 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.2 | VCCI - 0.2 | 100 | 100 | 10 | 10 | #### Notes: - 1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification. - 2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. - 5. Currents are measured at 85°C junction temperature. - 6. Software default selection is highlighted in gray. ### Applies to 1.2 V DC Core Voltage Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 6.01 | 0.26 | 1.31 | 1.91 | 1.10 | 6.01 | 5.66 | 3.02 | 3.49 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 5.02 | 0.26 | 1.31 | 1.91 | 1.10 | 5.02 | 4.76 | 3.38 | 4.10 | ns | #### Notes: Table 2-44 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_{.I} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V | Drive
Strength | Equivalent
Software
Default
Drive
Strength
Option ¹ | Speed
Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |-------------------|---|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 100 μΑ | 2 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 4 mA | STD | 1.55 | 3.82 | 0.26 | 1.31 | 1.91 | 1.10 | 3.82 | 3.15 | 3.01 | 3.65 | ns | | 100 μΑ | 6 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | | 100 μΑ | 8 mA | STD | 1.55 | 3.25 | 0.26 | 1.31 | 1.91 | 1.10 | 3.25 | 2.61 | 3.38 | 4.27 | ns | #### Notes: - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. - 3. Software default selection highlighted in gray. ^{1.} The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. # **Output Enable Register** Figure 2-16 • Output Enable Register Timing Diagram **Timing Characteristics** 1.5 V DC Core Voltage Table 2-76 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |-----------------------|--|------|-------| | t _{OECLKQ} | Clock-to-Q of the Output Enable Register | 0.75 | ns | | t _{OESUD} | Data Setup Time for the Output Enable Register | 0.51 | ns | | t _{OEHD} | Data Hold Time for the Output Enable Register | 0.00 | ns | | t _{OECLR2Q} | Asynchronous Clear-to-Q of the Output Enable Register | 1.13 | ns | | t _{OEPRE2Q} | Asynchronous Preset-to-Q of the Output Enable Register | 1.13 | ns | | t _{OEREMCLR} | Asynchronous Clear Removal Time for the Output Enable Register | 0.00 | ns | | t _{OERECCLR} | Asynchronous Clear Recovery Time for the Output Enable Register | 0.24 | ns | | t _{OEREMPRE} | Asynchronous Preset Removal Time for the Output Enable Register | 0.00 | ns | | t _{OERECPRE} | Asynchronous Preset Recovery Time for the Output Enable Register | 0.24 | ns | | t _{OEWCLR} | Asynchronous Clear Minimum Pulse Width for the Output Enable Register | 0.19 | ns | | t _{OEWPRE} | Asynchronous Preset Minimum Pulse Width for the Output Enable Register | 0.19 | ns | | t _{OECKMPWH} | Clock Minimum Pulse Width HIGH for the Output Enable Register | 0.31 | ns | | t _{OECKMPWL} | Clock Minimum Pulse Width LOW for the Output Enable Register | 0.28 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. IGLOO nano DC and Switching Characteristics ## 1.2 V DC Core Voltage Table 2-87 • Register Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |---------------------|---|------|-------| | t _{CLKQ} | Clock-to-Q of the Core Register | 1.61 | ns | | t _{SUD} | Data Setup Time for the Core Register | 1.17 | ns | | t _{HD} | Data Hold Time for the Core Register | 0.00 | ns | | t _{SUE} | Enable Setup Time for the Core Register | 1.29 | ns | | t _{HE} | Enable Hold Time for the Core Register | 0.00 | ns | | t _{CLR2Q} | Asynchronous Clear-to-Q of the Core Register | 0.87 | ns | | t _{PRE2Q} | Asynchronous Preset-to-Q of the Core Register | 0.89 | ns | | t _{REMCLR} | Asynchronous Clear Removal Time for the Core Register | 0.00 | ns | | t _{RECCLR} | Asynchronous Clear Recovery Time for the Core Register | 0.24 | ns | | t _{REMPRE} | Asynchronous Preset Removal Time for the Core Register | 0.00 | ns | | t _{RECPRE} | Asynchronous Preset Recovery Time for the Core Register | 0.24 | ns | | t _{WCLR} | Asynchronous Clear Minimum Pulse Width for the Core Register | 0.46 | ns | | t _{WPRE} | Asynchronous Preset Minimum Pulse Width for the Core Register | 0.46 | ns | | t _{CKMPWH} | Clock Minimum Pulse Width HIGH for the Core Register | 0.95 | ns | | t _{CKMPWL} | Clock Minimum Pulse Width LOW for the Core Register | 0.95 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-62 Revision 19 IGLOO nano DC and Switching Characteristics Table 2-92 • AGLN125 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | | | Std. | | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.36 | 1.71 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.39 | 1.82 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.43 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-93 • AGLN250 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | | | Std. | | | |----------------------|---|-------------------|-------------------|-------| | Parameter | Description | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | 1.39 | 1.73 | ns | | t _{RCKH} | Input High Delay for Global Clock | 1.41 | 1.84 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | 1.40 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | 1.65 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | 0.43 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 2-66 Revision 19 IGLOO nano Low Power Flash FPGAs Table 2-101 • IGLOO nano CCC/PLL Specification For IGLOO nano V2 Devices, 1.2 V DC Core Supply Voltage | Parameter | | | Тур. | Max. | Units | | |---|-----------------|---------|---|----------|-------|--| | Clock Conditioning Circuitry Input Frequency f _{IN_CCC} | | | | 160 | MHz | | | Clock Conditioning Circuitry Output Frequency f _{OUT_CCC} | > | 0.75 | | 160 | MHz | | | Delay Increments in Programmable Delay Blocks ^{1, 2} | | | 580 ³ | | ps | | | Number of Programmable Values in Each Programmable | e Delay Block | | | 32 | | | | Serial Clock (SCLK) for Dynamic PLL ^{4,9} | | | | 60 | | | | Input Cycle-to-Cycle Jitter (peak magnitude) | | | | 0.25 | ns | | | Acquisition Time | | | | | | | | | LockControl = 0 | | | 300 | μs | | | | LockControl = 1 | | | 6.0 | ms | | | Tracking Jitter ⁵ | | | | | | | | | LockControl = 0 | | | 4 | ns | | | | LockControl = 1 | | | 3 | ns | | | Output Duty Cycle | | 48.5 | | 51.5 | % | | | Delay Range in Block: Programmable Delay 1 ^{1, 2} | | 2.3 | | 20.86 | ns | | | Delay Range in Block: Programmable Delay 2 1, 2 | | 0.025 | | 20.86 | ns | | | Delay Range in Block: Fixed Delay ^{1, 2} | | | 5.7 | | ns | | | VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁶ | | | Max Peak-to-Peak Period Jitter ^{6,7,8} | | | | | | SSO ≤ 2 | SSO ≤ 4 | SSO ≤ 8 | SSO ≤ 16 | | | | 0.75 MHz to 50MHz | 0.50 | 1.20 | 2.00 | 3.00 | % | | | 50 MHz to 100 MHz | 2.50 | 5.00 | 7.00 | 15.00 | % | | #### Notes: - 1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for deratings. - 2. $T_J = 25$ °C, $V_{CC} = 1.2$ V. - 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information. - 4. Maximum value obtained for a STD speed grade device in Worst-Case Commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-7 for derating values. - 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. - 6. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT, regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, no matter what the settings are for the output divider. - 7. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load. - 8. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO nano FPGA Fabric User's Guide. - 9. The AGLN010, AGLN015, and AGLN020 devices do not support PLLs. Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ Figure 2-26 • Peak-to-Peak Jitter Definition 2-72 Revision 19 # **Timing Waveforms** Figure 2-28 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18. Figure 2-29 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18. 2-74 Revision 19 ## **FIFO** Figure 2-33 • FIFO Model Figure 2-36 • FIFO Reset Figure 2-37 • FIFO EMPTY Flag and AEMPTY Flag Assertion # **Embedded FlashROM Characteristics** Figure 2-41 • Timing Diagram # **Timing Characteristics** 1.5 V DC Core Voltage Table 2-108 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{su} | Address Setup Time | 0.57 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 20.90 | ns | | F _{MAX} | Maximum Clock Frequency | 15 | MHz | ## 1.2 V DC Core Voltage Table 2-109 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------|-------------------------|-------|-------| | t _{SU} | Address Setup Time | 0.59 | ns | | t _{HOLD} | Address Hold Time | 0.00 | ns | | t _{CK2Q} | Clock to Out | 35.74 | ns | | F _{MAX} | Maximum Clock Frequency | 10 | MHz | # **QN48** #### Notes: - 1. This is the bottom view of the package. - 2. The die attach paddle of the package is tied to ground (GND). ## Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. IGLOO nano Low Power Flash FPGAs | | VQ100 | |------------|-------------------| | Pin Number | AGLN250Z Function | | 1 | GND | | 2 | GAA2/IO67RSB3 | | 3 | IO66RSB3 | | 4 | GAB2/IO65RSB3 | | 5 | IO64RSB3 | | 6 | GAC2/IO63RSB3 | | 7 | IO62RSB3 | | 8 | IO61RSB3 | | 9 | GND | | 10 | GFB1/IO60RSB3 | | 11 | GFB0/IO59RSB3 | | 12 | VCOMPLF | | 13 | GFA0/IO57RSB3 | | 14 | VCCPLF | | 15 | GFA1/IO58RSB3 | | 16 | GFA2/IO56RSB3 | | 17 | VCC | | 18 | VCCIB3 | | 19 | GFC2/IO55RSB3 | | 20 | GEC1/IO54RSB3 | | 21 | GEC0/IO53RSB3 | | 22 | GEA1/IO52RSB3 | | 23 | GEA0/IO51RSB3 | | 24 | VMV3 | | 25 | GNDQ | | 26 | GEA2/IO50RSB2 | | 27 | FF/GEB2/IO49RSB2 | | 28 | GEC2/IO48RSB2 | | 29 | IO47RSB2 | | 30 | IO46RSB2 | | 31 | IO45RSB2 | | 32 | IO44RSB2 | | 33 | IO43RSB2 | | 34 | IO42RSB2 | | 35 | IO41RSB2 | | 36 | IO40RSB2 | | | VQ100 | | | |------------|-------------------|--|--| | Pin Number | AGLN250Z Function | | | | 37 | VCC | | | | 38 | GND | | | | 39 | VCCIB2 | | | | 40 | IO39RSB2 | | | | 41 | IO38RSB2 | | | | 42 | IO37RSB2 | | | | 43 | GDC2/IO36RSB2 | | | | 44 | GDB2/IO35RSB2 | | | | 45 | GDA2/IO34RSB2 | | | | 46 | GNDQ | | | | 47 | TCK | | | | 48 | TDI | | | | 49 | TMS | | | | 50 | VMV2 | | | | 51 | GND | | | | 52 | VPUMP | | | | 53 | NC | | | | 54 | TDO | | | | 55 | TRST | | | | 56 | VJTAG | | | | 57 | GDA1/IO33RSB1 | | | | 58 | GDC0/IO32RSB1 | | | | 59 | GDC1/IO31RSB1 | | | | 60 | IO30RSB1 | | | | 61 | GCB2/IO29RSB1 | | | | 62 | GCA1/IO27RSB1 | | | | 63 | GCA0/IO28RSB1 | | | | 64 | GCC0/IO26RSB1 | | | | 65 | GCC1/IO25RSB1 | | | | 66 | VCCIB1 | | | | 67 | GND | | | | 68 | VCC | | | | 69 | IO24RSB1 | | | | 70 | GBC2/IO23RSB1 | | | | 71 | GBB2/IO22RSB1 | | | | 72 | IO21RSB1 | | | | VQ100 | | | | | |------------|-------------------|--|--|--| | Pin Number | AGLN250Z Function | | | | | 73 | GBA2/IO20RSB1 | | | | | 74 | VMV1 | | | | | 75 | GNDQ | | | | | 76 | GBA1/IO19RSB0 | | | | | 77 | GBA0/IO18RSB0 | | | | | 78 | GBB1/IO17RSB0 | | | | | 79 | GBB0/IO16RSB0 | | | | | 80 | GBC1/IO15RSB0 | | | | | 81 | GBC0/IO14RSB0 | | | | | 82 | IO13RSB0 | | | | | 83 | IO12RSB0 | | | | | 84 | IO11RSB0 | | | | | 85 | IO10RSB0 | | | | | 86 | IO09RSB0 | | | | | 87 | VCCIB0 | | | | | 88 | GND | | | | | 89 | VCC | | | | | 90 | IO08RSB0 | | | | | 91 | IO07RSB0 | | | | | 92 | IO06RSB0 | | | | | 93 | GAC1/IO05RSB0 | | | | | 94 | GAC0/IO04RSB0 | | | | | 95 | GAB1/IO03RSB0 | | | | | 96 | GAB0/IO02RSB0 | | | | | 97 | GAA1/IO01RSB0 | | | | | 98 | GAA0/IO00RSB0 | | | | | 99 | GNDQ | | | | | 100 | VMV0 | | | |