Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 1536 | | Total RAM Bits | 18432 | | Number of I/O | 60 | | Number of Gates | 60000 | | Voltage - Supply | 1.14V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | -20°C ~ 85°C (TJ) | | Package / Case | 81-WFBGA, CSBGA | | Supplier Device Package | 81-CSP (5x5) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agln060v2-zcsg81 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **IGLOO** nano Ordering Information #### Notes: - Z-feature grade devices AGLN060Z, AGLN125Z, and AGLN250Z do not support the enhanced nano features of Schmitt Trigger input, bus hold (hold previous I/O state in Flash*Freeze mode), cold-sparing, hot-swap I/O capability and 1.2 V programming. The AGLN030 Z feature grade does not support Schmitt trigger input, bus hold and 1.2 V programming. For the VQ100, CS81, UC81, QN68, and QN48 packages, the Z feature grade and the N part number are not marked on the device. Z feature grade devices are not recommended for new designs. - AGLN030 is available in the Z feature grade only. - 3. Marking Information: IGLOO nano V2 devices do not have a V2 marking, but IGLOO nano V5 devices are marked with a V5 designator. # **Devices Not Recommended For New Designs** AGLN015, AGLN030Z, AGLN060Z, AGLN125Z, and AGLN250Z are not recommended for new designs. For more information on obsoleted devices/packages, refer to the *PDN1503 - IGLOO nano Z and ProASIC3 nano Z Families*. IV Revision 19 Note: *Bank 0 for the AGLN030 device Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks and No RAM (AGLN010 and AGLN030) Figure 1-2 • IGLOO Device Architecture Overview with Three I/O Banks and No RAM (AGLN015 and AGLN020) 1-4 Revision 19 # User Nonvolatile FlashROM IGLOO nano devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: - · Internet protocol addressing (wireless or fixed) - · System calibration settings - Device serialization and/or inventory control - · Subscription-based business models (for example, set-top boxes) - Secure key storage for secure communications algorithms - Asset management/tracking - Date stamping - Version management The FlashROM is written using the standard IGLOO nano IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGLN030 and smaller devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The IGLOO nano development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature enables the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Microsemi Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. #### SRAM and FIFO IGLOO nano devices (except the AGLN030 and smaller devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGLN030 and smaller devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. #### PLL and CCC Higher density IGLOO nano devices using either the two I/O bank or four I/O bank architectures provide designers with very flexible clock conditioning capabilities. AGLN060, AGLN125, and AGLN250 contain six CCCs. One CCC (center west side) has a PLL. The AGLN030 and smaller devices use different CCCs in their architecture (CCC-GL). These CCC-GLs contain a global MUX but do not have any PLLs or programmable delays. For devices using the six CCC block architecture, these are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | [| Device-Spe | cific Dyna | mic Power | r (µW/MHz) |) | | | | |-----------|--|-----------------|------------|------------|-------------|------------|---------|--|--|--| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | | | | PAC1 | Clock contribution of a Global Rib | 2.829 | 2.875 | 1.728 | 0 | 0 | 0 | | | | | PAC2 | Clock contribution of a Global Spine | 1.731 | 1.265 | 1.268 | 2.562 | 2.562 | 1.685 | | | | | PAC3 | Clock contribution of a VersaTile row | 0.957 | 0.963 | 0.967 | 0.862 | 0.862 | 0.858 | | | | | PAC4 | Clock contribution of a VersaTile used as a sequential module | 0.098 | 0.098 | 0.098 | 0.094 | 0.094 | 0.091 | | | | | PAC5 | First contribution of a VersaTile used as a sequential module | | | 0.0 | 45 | | | | | | | PAC6 | Second contribution of a VersaTile used as a sequential module | 0.186 | | | | | | | | | | PAC7 | Contribution of a VersaTile used as a combinatorial module | | | 0.1 | 11 | | | | | | | PAC8 | Average contribution of a routing net | | | 0.4 | 1 5 | | | | | | | PAC9 | Contribution of an I/O input pin (standard-dependent) | | See | Table 2-10 | 3 on page 2 | 2-9 | | | | | | PAC10 | Contribution of an I/O output pin (standard-dependent) | | See | Table 2-14 | 4 on page 2 | 2-9 | | | | | | PAC11 | Average contribution of a RAM block during a read operation | 25.00 | | | | | | | | | | PAC12 | Average contribution of a RAM block during a write operation | olock 30.00 N/A | | | N/A | | | | | | | PAC13 | Dynamic contribution for PLL | | 2.10 | | | N/A | | | | | Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage | | | | Device | -Specific S | tatic Powe | er (mW) | | |-------------------|---|----------------------------|---------|--------------|-------------|---------|---------| | Parameter | Definition | AGLN250 | AGLN125 | AGLN060 | AGLN020 | AGLN015 | AGLN010 | | PDC1 | Array static power in Active mode | See Table 2-12 on page 2-8 | | | | | | | PDC2 | Array static power in Static (Idle) mode | See Table 2-12 on page 2-8 | | | | | | | PDC3 | Array static power in Flash*Freeze mode | | Se | ee Table 2-9 | 9 on page 2 | ·-7 | | | PDC4 ¹ | Static PLL contribution | | 0.90 | | | N/A | | | PDC5 | Bank quiescent power
(VCCI-dependent) ² | See Table 2-12 on page 2-8 | | | | | | #### Notes: - 1. Minimum contribution of the PLL when running at lowest frequency. - 2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC. Figure 2-5 • Output Buffer Model and Delays (example) IGLOO nano DC and Switching Characteristics # Single-Ended I/O Characteristics #### 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Table 2-34 • Minimum and Maximum DC Input and Output Levels | 3.3 V LVTTL /
3.3 V LVCMOS | ٧ | TL. | v | IH | VOL | VOH | IOL | ЮН | IOSL | юзн | IIL 1 | IIH ² | |-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 2 | 2 | 25 | 27 | 10 | 10 | | 4 mA | -0.3 | 8.0 | 2 | 3.6 | 0.4 | 2.4 | 4 | 4 | 25 | 27 | 10 | 10 | | 6 mA | -0.3 | 8.0 | 2 | 3.6 | 0.4 | 2.4 | 6 | 6 | 51 | 54 | 10 | 10 | | 8 mA | -0.3 | 0.8 | 2 | 3.6 | 0.4 | 2.4 | 8 | 8 | 51 | 54 | 10 | 10 | #### Notes: - 1. $I_{|L|}$ is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-7 • AC Loading Table 2-35 • 3.3 V LVTTL/LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 3.3 | 1.4 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. 2-26 Revision 19 #### **Timing Characteristics** #### Applies to 1.5 V DC Core Voltage Table 2-47 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 4.13 | 0.19 | 1.10 | 1.24 | 0.66 | 4.01 | 4.13 | 1.73 | 1.74 | ns | | 4 mA | STD | 0.97 | 4.13 | 0.19 | 1.10 | 1.24 | 0.66 | 4.01 | 4.13 | 1.73 | 1.74 | ns | | 8 mA | STD | 0.97 | 3.39 | 0.19 | 1.10 | 1.24 | 0.66 | 3.31 | 3.39 | 1.98 | 2.19 | ns | | 8 mA | STD | 0.97 | 3.39 | 0.19 | 1.10 | 1.24 | 0.66 | 3.31 | 3.39 | 1.98 | 2.19 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-48 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V | Drive Strength | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | t _{PYS} | t _{EOUT} | t _{ZL} | t _{ZH} | t _{LZ} | t _{HZ} | Units | |----------------|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------| | 2 mA | STD | 0.97 | 2.19 | 0.19 | 1.10 | 1.24 | 0.66 | 2.23 | 2.11 | 1.72 | 1.80 | ns | | 4 mA | STD | 0.97 | 2.19 | 0.19 | 1.10 | 1.24 | 0.66 | 2.23 | 2.11 | 1.72 | 1.80 | ns | | 6 mA | STD | 0.97 | 1.81 | 0.19 | 1.10 | 1.24 | 0.66 | 1.85 | 1.63 | 1.97 | 2.26 | ns | | 8 mA | STD | 0.97 | 1.81 | 0.19 | 1.10 | 1.24 | 0.66 | 1.85 | 1.63 | 1.97 | 2.26 | ns | #### Notes: - 1. Software default selection highlighted in gray. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. #### 1.8 V LVCMOS Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-51 • Minimum and Maximum DC Input and Output Levels | 1.8 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSL | IOSH | IIL ¹ | I _I H ² | |-------------------|-----------|-------------|-------------|-----------|-----------|-------------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.45 | VCCI - 0.45 | 2 | 2 | 9 | 11 | 10 | 10 | | 4 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.45 | VCCI - 0.45 | 4 | 4 | 17 | 22 | 10 | 10 | #### Notes: - 1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL. - 2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-9 • AC Loading Table 2-52 • 1.8 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 1.8 | 0.9 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. ### 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-57 • Minimum and Maximum DC Input and Output Levels | 1.5 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSL | IOSH | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | 13 | 16 | 10 | 10 | #### Notes: - 1. I_{II} is the input leakage current per I/O pin over recommended operating conditions where –0.3 < VIN < VIL. - 2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. - 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-10 • AC Loading Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads | Input LOW (V) | Input HIGH (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 1.5 | 0.75 | 5 | Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points. IGLOO nano DC and Switching Characteristics ## 1.2 V DC Core Voltage Table 2-87 • Register Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |---------------------|---------------------------------------------------------------|------|-------| | t _{CLKQ} | Clock-to-Q of the Core Register | 1.61 | ns | | t _{SUD} | Data Setup Time for the Core Register | 1.17 | ns | | t_{HD} | Data Hold Time for the Core Register | 0.00 | ns | | t _{SUE} | Enable Setup Time for the Core Register | 1.29 | ns | | t _{HE} | Enable Hold Time for the Core Register | 0.00 | ns | | t _{CLR2Q} | Asynchronous Clear-to-Q of the Core Register | 0.87 | ns | | t _{PRE2Q} | Asynchronous Preset-to-Q of the Core Register | 0.89 | ns | | t _{REMCLR} | Asynchronous Clear Removal Time for the Core Register | 0.00 | ns | | t _{RECCLR} | Asynchronous Clear Recovery Time for the Core Register | 0.24 | ns | | t _{REMPRE} | Asynchronous Preset Removal Time for the Core Register | 0.00 | ns | | t _{RECPRE} | Asynchronous Preset Recovery Time for the Core Register | 0.24 | ns | | t _{WCLR} | Asynchronous Clear Minimum Pulse Width for the Core Register | 0.46 | ns | | t _{WPRE} | Asynchronous Preset Minimum Pulse Width for the Core Register | 0.46 | ns | | t _{CKMPWH} | Clock Minimum Pulse Width HIGH for the Core Register | 0.95 | ns | | t _{CKMPWL} | Clock Minimum Pulse Width LOW for the Core Register | 0.95 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2-62 Revision 19 IGLOO nano DC and Switching Characteristics Table 2-103 • RAM512X18 ## Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |-----------------------|---------------------------------------------------------------------------------------------------------------------|------|-------| | t _{AS} | Address setup time | 0.69 | ns | | t _{AH} | Address hold time | 0.13 | ns | | t _{ENS} | REN, WEN setup time | 0.61 | ns | | t _{ENH} | REN, WEN hold time | 0.07 | ns | | t _{DS} | Input data (WD) setup time | 0.59 | ns | | t _{DH} | Input data (WD) hold time | 0.30 | ns | | t _{CKQ1} | Clock HIGH to new data valid on RD (output retained) | 3.51 | ns | | t _{CKQ2} | Clock HIGH to new data valid on RD (pipelined) | 1.43 | ns | | t _{C2CRWH} 1 | Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge | 0.35 | ns | | t _{C2CWRH} 1 | Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge | 0.42 | ns | | t _{RSTBQ} | RESET Low to data out Low on RD (flow-through) | 1.72 | ns | | | RESET Low to data out Low on RD (pipelined) | 1.72 | ns | | t _{REMRSTB} | RESET removal | 0.51 | 0.51 | | t _{RECRSTB} | RESET recovery | 2.68 | ns | | t _{MPWRSTB} | RESET minimum pulse width | 0.68 | ns | | t _{CYC} | Clock cycle time | 6.24 | ns | | F _{MAX} | Maximum frequency | 160 | MHz | #### Notes: 2-78 Revision 19 For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note. ^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Figure 2-38 • FIFO FULL Flag and AFULL Flag Assertion Figure 2-39 • FIFO EMPTY Flag and AEMPTY Flag Deassertion Figure 2-40 • FIFO FULL Flag and AFULL Flag Deassertion 2-84 Revision 19 | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | A1 | IO64RSB2 | | | A2 | IO54RSB2 | | | A3 | IO57RSB2 | | | A4 | IO36RSB1 | | | A5 | IO32RSB1 | | | A6 | IO24RSB1 | | | A7 | IO20RSB1 | | | A8 | IO04RSB0 | | | A9 | IO08RSB0 | | | B1 | IO59RSB2 | | | B2 | IO55RSB2 | | | В3 | IO62RSB2 | | | B4 | IO34RSB1 | | | B5 | IO28RSB1 | | | В6 | IO22RSB1 | | | В7 | IO18RSB1 | | | B8 | IO00RSB0 | | | В9 | IO03RSB0 | | | C1 | IO51RSB2 | | | C2 | IO50RSB2 | | | C3 | NC | | | C4 | NC | | | C5 | NC | | | C6 | NC | | | C7 | NC | | | C8 | IO10RSB0 | | | C9 | IO07RSB0 | | | D1 | IO49RSB2 | | | D2 | IO44RSB2 | | | D3 | NC | | | D4 | VCC | | | D5 | VCCIB2 | | | D6 | GND | | | D7 | NC | | | D8 | IO13RSB0 | | | D9 | IO12RSB0 | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | E1 | GEC0/IO48RSB2 | | | E2 | GEA0/IO47RSB2 | | | E3 | NC | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | NC | | | E8 | GDA0/IO15RSB0 | | | E9 | GDC0/IO14RSB0 | | | F1 | IO46RSB2 | | | F2 | IO45RSB2 | | | F3 | NC | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | NC | | | F7 | NC | | | F8 | IO16RSB0 | | | F9 | IO17RSB0 | | | G1 | IO43RSB2 | | | G2 | IO42RSB2 | | | G3 | IO41RSB2 | | | G4 | IO31RSB1 | | | G5 | NC | | | G6 | IO21RSB1 | | | G7 | NC | | | G8 | VJTAG | | | G9 | TRST | | | H1 | IO40RSB2 | | | H2 | FF/IO39RSB1 | | | H3 | IO35RSB1 | | | H4 | IO29RSB1 | | | H5 | IO26RSB1 | | | H6 | IO25RSB1 | | | H7 | IO19RSB1 | | | H8 | TDI | | | H9 | TDO | | | UC81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | J1 | IO38RSB1 | | | J2 | IO37RSB1 | | | J3 | IO33RSB1 | | | J4 | IO30RSB1 | | | J5 | IO27RSB1 | | | J6 | IO23RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | 4-4 Revision 19 # **CS81** Note: This is the bottom view of the package. #### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. 4-6 Revision 19 | Pin Number AGLN020 Function A1 IO64RSB2 A2 IO54RSB2 A3 IO57RSB2 A4 IO36RSB1 A5 IO32RSB1 A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 | CS81 | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--| | A2 IO54RSB2 A3 IO57RSB2 A4 IO36RSB1 A5 IO32RSB1 A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO33RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO49RSB2 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND | Pin Number | AGLN020 Function | | | A3 IO57RSB2 A4 IO36RSB1 A5 IO32RSB1 A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO49RSB2 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC <t< td=""><td>A1</td><td>IO64RSB2</td></t<> | A1 | IO64RSB2 | | | A4 IO36RSB1 A5 IO32RSB1 A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO33RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO49RSB2 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A2 | IO54RSB2 | | | A5 IO32RSB1 A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A3 | IO57RSB2 | | | A6 IO24RSB1 A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A4 | IO36RSB1 | | | A7 IO20RSB1 A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A5 | IO32RSB1 | | | A8 IO04RSB0 A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A6 | IO24RSB1 | | | A9 IO08RSB0 B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A7 | IO20RSB1 | | | B1 IO59RSB2 B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A8 | IO04RSB0 | | | B2 IO55RSB2 B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | A9 | IO08RSB0 | | | B3 IO62RSB2 B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | B1 | IO59RSB2 | | | B4 IO34RSB1 B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO33RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | B2 | IO55RSB2 | | | B5 IO28RSB1 B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | В3 | IO62RSB2 | | | B6 IO22RSB1 B7 IO18RSB1 B8 IO00RSB0 B9 IO3RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | B4 | IO34RSB1 | | | B7 IO18RSB1 B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | B5 | IO28RSB1 | | | B8 IO00RSB0 B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | В6 | IO22RSB1 | | | B9 IO03RSB0 C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | В7 | IO18RSB1 | | | C1 IO51RSB2 C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | B8 | IO00RSB0 | | | C2 IO50RSB2 C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | В9 | IO03RSB0 | | | C3 NC C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C1 | IO51RSB2 | | | C4 NC C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C2 | IO50RSB2 | | | C5 NC C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C3 | NC | | | C6 NC C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C4 | NC | | | C7 NC C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C5 | NC | | | C8 IO10RSB0 C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C6 | NC | | | C9 IO07RSB0 D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C7 | NC | | | D1 IO49RSB2 D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C8 | IO10RSB0 | | | D2 IO44RSB2 D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | C9 | IO07RSB0 | | | D3 NC D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | D1 | IO49RSB2 | | | D4 VCC D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | D2 | IO44RSB2 | | | D5 VCCIB2 D6 GND D7 NC D8 IO13RSB0 | D3 | NC | | | D6 GND D7 NC D8 IO13RSB0 | D4 | VCC | | | D7 NC D8 IO13RSB0 | D5 | VCCIB2 | | | D8 IO13RSB0 | D6 | GND | | | | D7 | NC | | | D9 IO12RSB0 | D8 | IO13RSB0 | | | | D9 | IO12RSB0 | | | CS81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | E1 | GEC0/IO48RSB2 | | | E2 | GEA0/IO47RSB2 | | | E3 | NC | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | NC | | | E8 | GDA0/IO15RSB0 | | | E9 | GDC0/IO14RSB0 | | | F1 | IO46RSB2 | | | F2 | IO45RSB2 | | | F3 | NC | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | NC | | | F7 | NC | | | F8 | IO16RSB0 | | | F9 | IO17RSB0 | | | G1 | IO43RSB2 | | | G2 | IO42RSB2 | | | G3 | IO41RSB2 | | | G4 | IO31RSB1 | | | G5 | NC | | | G6 | IO21RSB1 | | | G7 | NC | | | G8 | VJTAG | | | G9 | TRST | | | H1 | IO40RSB2 | | | H2 | FF/IO39RSB1 | | | H3 | IO35RSB1 | | | H4 | IO29RSB1 | | | H5 | IO26RSB1 | | | H6 | IO25RSB1 | | | H7 | IO19RSB1 | | | H8 | TDI | | | H9 | TDO | | | CS81 | | | |------------|------------------|--| | Pin Number | AGLN020 Function | | | J1 | IO38RSB1 | | | J2 | IO37RSB1 | | | J3 | IO33RSB1 | | | J4 | IO30RSB1 | | | J5 | IO27RSB1 | | | J6 | IO23RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | | CS81 | | | |------------|-------------------|--| | Pin Number | AGLN060Z Function | | | A1 | GAA0/IO02RSB0 | | | A2 | GAA1/IO03RSB0 | | | A3 | GAC0/IO06RSB0 | | | A4 | IO09RSB0 | | | A5 | IO13RSB0 | | | A6 | IO18RSB0 | | | A7 | GBB0/IO21RSB0 | | | A8 | GBA1/IO24RSB0 | | | A9 | GBA2/IO25RSB0 | | | B1 | GAA2/IO95RSB1 | | | B2 | GAB0/IO04RSB0 | | | В3 | GAC1/IO07RSB0 | | | B4 | IO08RSB0 | | | B5 | IO15RSB0 | | | В6 | GBC0/IO19RSB0 | | | В7 | GBB1/IO22RSB0 | | | В8 | IO26RSB0 | | | В9 | GBB2/IO27RSB0 | | | C1 | GAB2/IO93RSB1 | | | C2 | IO94RSB1 | | | C3 | GND | | | C4 | IO10RSB0 | | | C5 | IO17RSB0 | | | C6 | GND | | | C7 | GBA0/IO23RSB0 | | | C8 | GBC2/IO29RSB0 | | | C9 | IO31RSB0 | | | D1 | GAC2/IO91RSB1 | | | D2 | IO92RSB1 | | | D3 | GFA2/IO80RSB1 | | | D4 | VCC | | | D5 | VCCIB0 | | | D6 | GND | | | D7 | GCC2/IO43RSB0 | | | CS81 | | | |-----------------|-------------------|--| | Pin Number | AGLN060Z Function | | | D8 | GCC1/IO35RSB0 | | | D9 | GCC0/IO36RSB0 | | | E1 | GFB0/IO83RSB1 | | | E2 | GFB1/IO84RSB1 | | | E3 | GFA1/IO81RSB1 | | | E4 | VCCIB1 | | | E5 | VCC | | | E6 | VCCIB0 | | | E7 | GCA1/IO39RSB0 | | | E8 | GCA0/IO40RSB0 | | | E9 | GCB2/IO42RSB0 | | | F1 ¹ | VCCPLF | | | F2 ¹ | VCOMPLF | | | F3 | GND | | | F4 | GND | | | F5 | VCCIB1 | | | F6 | GND | | | F7 | GDA1/IO49RSB0 | | | F8 | GDC1/IO45RSB0 | | | F9 | GDC0/IO46RSB0 | | | G1 | GEA0/IO69RSB1 | | | G2 | GEC1/IO74RSB1 | | | G3 | GEB1/IO72RSB1 | | | G4 | IO63RSB1 | | | G5 | IO60RSB1 | | | G6 | IO54RSB1 | | | G7 | GDB2/IO52RSB1 | | | G8 | VJTAG | | | G9 | TRST | | | H1 | GEA1/IO70RSB1 | | | H2 | FF/GEB2/IO67RSB1 | | | H3 | IO65RSB1 | | | H4 | IO62RSB1 | | | H5 | IO59RSB1 | | | CS81 | | | |-----------------|-------------------|--| | Pin Number | AGLN060Z Function | | | H6 | IO56RSB1 | | | H7 ² | GDA2/IO51RSB1 | | | H8 | TDI | | | H9 | TDO | | | J1 | GEA2/IO68RSB1 | | | J2 | GEC2/IO66RSB1 | | | J3 | IO64RSB1 | | | J4 | IO61RSB1 | | | J5 | IO58RSB1 | | | J6 | IO55RSB1 | | | J7 | TCK | | | J8 | TMS | | | J9 | VPUMP | | #### Notes: - 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81. - 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81. 4-10 Revision 19 # **QN68** #### Notes: - 1. This is the bottom view of the package. - 2. The die attach paddle of the package is tied to ground (GND). ## Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. 4-18 Revision 19 | VQ100 | | | VQ100 | |------------|------------------|------------|------------------| | Pin Number | AGLN060 Function | Pin Number | AGLN060 Function | | 1 | GND | 36 | IO61RSB1 | | 2 | GAA2/IO51RSB1 | 37 | VCC | | 3 | IO52RSB1 | 38 | GND | | 4 | GAB2/IO53RSB1 | 39 | VCCIB1 | | 5 | IO95RSB1 | 40 | IO60RSB1 | | 6 | GAC2/IO94RSB1 | 41 | IO59RSB1 | | 7 | IO93RSB1 | 42 | IO58RSB1 | | 8 | IO92RSB1 | 43 | IO57RSB1 | | 9 | GND | 44 | GDC2/IO56RSB1 | | 10 | GFB1/IO87RSB1 | 45* | GDB2/IO55RSB1 | | 11 | GFB0/IO86RSB1 | 46 | GDA2/IO54RSB1 | | 12 | VCOMPLF | 47 | TCK | | 13 | GFA0/IO85RSB1 | 48 | TDI | | 14 | VCCPLF | 49 | TMS | | 15 | GFA1/IO84RSB1 | 50 | VMV1 | | 16 | GFA2/IO83RSB1 | 51 | GND | | 17 | VCC | 52 | VPUMP | | 18 | VCCIB1 | 53 | NC | | 19 | GEC1/IO77RSB1 | 54 | TDO | | 20 | GEB1/IO75RSB1 | 55 | TRST | | 21 | GEB0/IO74RSB1 | 56 | VJTAG | | 22 | GEA1/IO73RSB1 | 57 | GDA1/IO49RSB0 | | 23 | GEA0/IO72RSB1 | 58 | GDC0/IO46RSB0 | | 24 | VMV1 | 59 | GDC1/IO45RSB0 | | 25 | GNDQ | 60 | GCC2/IO43RSB0 | | 26 | GEA2/IO71RSB1 | 61 | GCB2/IO42RSB0 | | 27 | FF/GEB2/IO70RSB1 | 62 | GCA0/IO40RSB0 | | 28 | GEC2/IO69RSB1 | 63 | GCA1/IO39RSB0 | | 29 | IO68RSB1 | 64 | GCC0/IO36RSB0 | | 30 | IO67RSB1 | 65 | GCC1/IO35RSB0 | | 31 | IO66RSB1 | 66 | VCCIB0 | | 32 | IO65RSB1 | 67 | GND | | 33 | IO64RSB1 | 68 | VCC | | 34 | IO63RSB1 | 69 | IO31RSB0 | | 35 | IO62RSB1 | 70 | GBC2/IO29RSB0 | | VQ100 | | | |------------|------------------|--| | Pin Number | AGLN060 Function | | | 71 | GBB2/IO27RSB0 | | | 72 | IO26RSB0 | | | 73 | GBA2/IO25RSB0 | | | 74 | VMV0 | | | 75 | GNDQ | | | 76 | GBA1/IO24RSB0 | | | 77 | GBA0/IO23RSB0 | | | 78 | GBB1/IO22RSB0 | | | 79 | GBB0/IO21RSB0 | | | 80 | GBC1/IO20RSB0 | | | 81 | GBC0/IO19RSB0 | | | 82 | IO18RSB0 | | | 83 | IO17RSB0 | | | 84 | IO15RSB0 | | | 85 | IO13RSB0 | | | 86 | IO11RSB0 | | | 87 | VCCIB0 | | | 88 | GND | | | 89 | VCC | | | 90 | IO10RSB0 | | | 91 | IO09RSB0 | | | 92 | IO08RSB0 | | | 93 | GAC1/IO07RSB0 | | | 94 | GAC0/IO06RSB0 | | | 95 | GAB1/IO05RSB0 | | | 96 | GAB0/IO04RSB0 | | | 97 | GAA1/IO03RSB0 | | | 98 | GAA0/IO02RSB0 | | | 99 | IO01RSB0 | | | 100 | IO00RSB0 | | Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060-VQ100. 4-24 Revision 19 ## Datasheet Information | Revision | Changes | Page | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | Revision 12
(March 2012) | The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34663). | I, 1-2 | | | Notes indicating that AGLN015 is not recommended for new designs have been added (SAR 35759). | III, IV | | | Notes indicating that nano-Z devices are not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 36759). | | | Revision 12
(continued) | The Y security option and Licensed DPA Logo were added to the "IGLOO nano Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34722). | IV | | | The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry enables rapid, single-voltage (3.3 V) programming of IGLOO nano devices via an IEEE 1532 JTAG interface" (SAR 34683). | 1-3 | | | The "Specifying I/O States During Programming" section is new (SAR 34694). | 1-9 | | | The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO nano FPGA Fabric User's Guide</i> (SAR 34732). | 2-12 | | | Figure 2-4 has been modified for DIN waveform; the Rise and Fall time label has been changed to tDIN (37106). | 2-16 | | | The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34885). | 2-26,
2-20 | | | The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100~\mu A$. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34765). | 2-20,
2-29,
2-40 | | | Added values for minimum pulse width and removed the FRMAX row from Table 2-88 through Table 2-99 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 36953). | 2-64 to
2-69 | | | Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification were updated. A note was added indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 34817). | 2-70
and
2-71 | | | The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-36 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35754). | 2-74,
2-77,
2-85 | | | Reference was made to a new application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs, which covers these cases in detail (SAR 34865). | | | | The "Pin Descriptions" chapter has been added (SAR 34770). | 3-1 | | | Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34770). | 4-1 | 5-2 Revision 19