

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln250v2-zvq100i

Email: info@E-XFL.COM

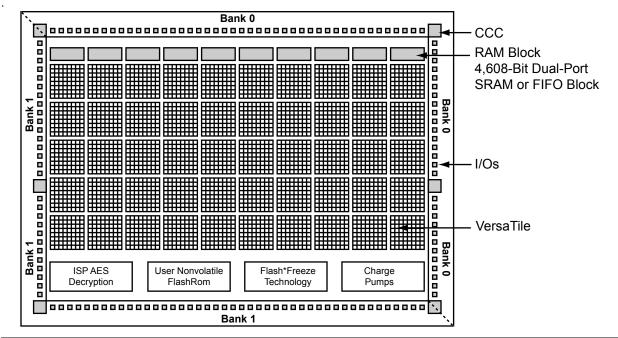
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Products Available in the Z Feature Grade

IGLOO nano-Z Devices	AGLN030Z*	AGLN060Z*	AGLN125Z*	AGLN250Z*
	QN48	-	-	-
	QN68	-	-	-
	UC81	-	-	-
	CS81	CS81	CS81	CS81
Packages	VQ100	VQ100	VQ100	VQ100

Note: *Not recommended for new designs.

Temperature Grade Offerings


	AGLN010	AGLN015 [*]	AGLN020		AGLN060	AGLN125	AGLN250
Package				AGLN030Z [*]	AGLN060Z [*]	AGLN125Z [*]	AGLN250Z [*]
UC36	C, I	-	-	-	-	-	-
QN48	C, I	-	-	C, I	-	-	-
QN68	-	C, I	C, I	C, I	-	-	-
UC81	-	-	C, I	C, I	-	-	-
CS81	-	-	C, I	C, I	C, I	C, I	C, I
VQ100	-	-	-	C, I	C, I	C, I	C, I

Note: * Not recommended for new designs.

C = Enhanced Commercial temperature range: -20°C to +85°C junction temperature

I = Industrial temperature range: -40°C to +100°C junction temperature

Contact your local Microsemi representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks (AGLN060, AGLN125)

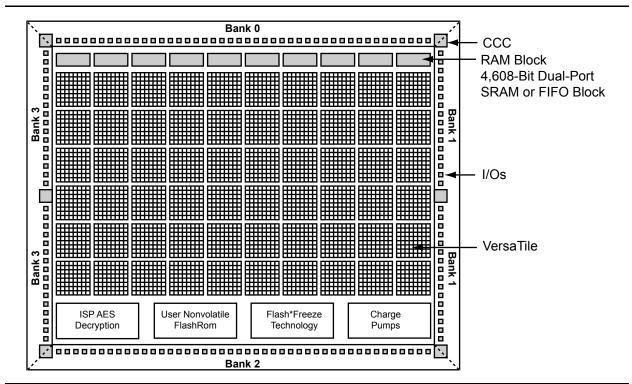


Figure 1-4 • IGLOO Device Architecture Overview with Four I/O Banks (AGLN250)

IGLOO nano Device Overview

- 6. Click **OK** to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

IGLOO nano DC and Switching Characteristics

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-19 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

Applies to IGLOO nano at 1.5 V Core Operating Conditions

Table 2-25 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 3.0 V

I/O Standard	Drive Strength (mA)	Equivalent Software Default t Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	t _{воит}	top	t _{DIN}	t _{PY}	ters	teour	tzı	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	0.97	2.56	0.19	1.20	1.66	0.66	2.57	2.02	2.82	3.31	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	0.97	2.39	0.19	1.19	1.52	0.66	2.44	2.24	2.02	2.15	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Detailed I/O DC Characteristics

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-27 • Input Capacitance

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent s	software default drive
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS ⁴	1 mA	315	315
1.2 V LVCMOS Wide Range ⁴	100 µA	315	315

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models posted at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO nano V2 devices operating at VCCI ≥ VCC.

3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range ¹	Software	Software VIL		,	VIH	VOL	VOH	IOL	I _{OH}	IIL ²	IIH ³
Drive Strength	Default Drive Strength Option ⁴	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VCCI - 0.2	100	100	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VCCI - 0.2	100	100	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10

Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range

Notes:

1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification.

2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

5. Currents are measured at 85°C junction temperature.

6. Software default selection is highlighted in gray.

Applies to 1.2 V DC Core Voltage

Table 2-43 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	1.55	6.01	0.26	1.31	1.91	1.10	6.01	5.66	3.02	3.49	ns
100 µA	4 mA	STD	1.55	6.01	0.26	1.31	1.91	1.10	6.01	5.66	3.02	3.49	ns
100 µA	6 mA	STD	1.55	5.02	0.26	1.31	1.91	1.10	5.02	4.76	3.38	4.10	ns
100 µA	8 mA	STD	1.55	5.02	0.26	1.31	1.91	1.10	5.02	4.76	3.38	4.10	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-44 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	1.55	3.82	0.26	1.31	1.91	1.10	3.82	3.15	3.01	3.65	ns
100 µA	4 mA	STD	1.55	3.82	0.26	1.31	1.91	1.10	3.82	3.15	3.01	3.65	ns
100 µA	6 mA	STD	1.55	3.25	0.26	1.31	1.91	1.10	3.25	2.61	3.38	4.27	ns
100 µA	8 mA	STD	1.55	3.25	0.26	1.31	1.91	1.10	3.25	2.61	3.38	4.27	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.44	0.19	1.03	1.44	0.66	5.25	5.44	1.69	1.35	ns
4 mA	STD	0.97	4.44	0.19	1.03	1.44	0.66	4.37	4.44	1.99	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.64	0.19	1.03	1.44	0.66	2.59	2.64	1.69	1.40	ns
4 mA	STD	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.92	0.26	1.13	1.59	1.10	5.72	5.92	2.11	1.95	ns
4 mA	STD	1.55	4.91	0.26	1.13	1.59	1.10	4.82	4.91	2.42	2.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

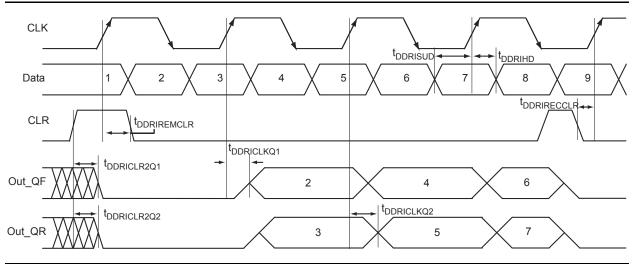
Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	3.05	0.26	1.13	1.59	1.10	3.01	3.05	2.10	2.00	ns
4 mA	STD	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.


IGLOO nano DC and Switching Characteristics

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{oclr2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
toesud	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-71 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-13 on page 2-43 for more information.

IGLOO nano DC and Switching Characteristics

Figure 2-18 • Input DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-79 •	Input DDR Propagation Delays
	Commercial-Case Conditions: T ₁ = 70°C, Worst-Case VCC = 1.25 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.48	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.65	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.50	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.82	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.98	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.76	ns
AND2	$Y = A \cdot B$	t _{PD}	0.87	ns
NAND2	Y = !(A · B)	t _{PD}	0.91	ns
OR2	Y = A + B	t _{PD}	0.90	ns
NOR2	Y = !(A + B)	t _{PD}	0.94	ns
XOR2	Y = A 🕀 B	t _{PD}	1.39	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.44	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.60	ns
MUX2	Y = A !S + B S	t _{PD}	1.17	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.18	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-85 •Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.33	ns
AND2	$Y = A \cdot B$	t _{PD}	1.48	ns
NAND2	Y = !(A · B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	1.53	ns
NOR2	Y = !(A + B)	t _{PD}	1.63	ns
XOR2	Y = A 🕀 B	t _{PD}	2.34	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.59	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	2.74	ns
MUX2	Y = A !S + B S	t _{PD}	2.03	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Global Resource Characteristics

AGLN125 Clock Tree Topology

Clock delays are device-specific. Figure 2-25 is an example of a global tree used for clock routing. The global tree presented in Figure 2-25 is driven by a CCC located on the west side of the AGLN125 device. It is used to drive all D-flip-flops in the device.

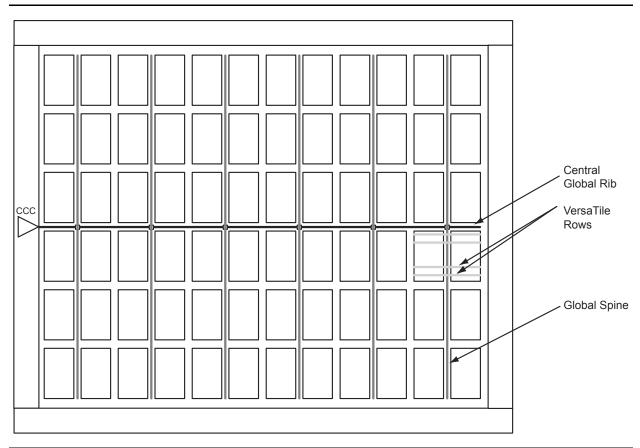


Figure 2-25 • Example of Global Tree Use in an AGLN125 Device for Clock Routing

1.2 V DC Core Voltage

Table 2-104 • RAM4K9

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.25	ns
t _{ENH}	REN, WEN hold time	0.25	ns
t _{BKS}	BLK setup time	2.54	ns
t _{BKH}	BLK hold time	0.25	ns
t _{DS}	Input data (DIN) setup time	1.10	ns
t _{DH}	Input data (DIN) hold time	0.55	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	5.51	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	4.77	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	2.82	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.01	ns
t _{RSTBQ}	RESET LOW to data out LOW on DOUT (flow-through)	3.21	ns
	RESET LOW to data out LOW on DO (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Timing Characteristics

Maximum Frequency for FIFO

1.5 V DC Core Voltage

Table 2-106 • FIFO

 $\mathsf{F}_{\mathsf{MAX}}$

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V Parameter Units Description Std. REN, WEN Setup Time 1.66 ns t_{ENS} REN, WEN Hold Time 0.13 t_{ENH} ns **BLK Setup Time** 0.30 ns t_{BKS} **BLK Hold Time** 0.00 ns t_{BKH} Input Data (WD) Setup Time 0.63 ns t_{DS} Input Data (WD) Hold Time 0.20 t_{DH} ns Clock High to New Data Valid on RD (flow-through) 2.77 ns t_{CKQ1} Clock High to New Data Valid on RD (pipelined) 1.50 ns t_{CKQ2} RCLK High to Empty Flag Valid 2.94 ns t_{RCKEF} WCLK High to Full Flag Valid 2.79 ns t_{WCKFF} Clock High to Almost Empty/Full Flag Valid 10.71 ns t_{CKAF} RESET Low to Empty/Full Flag Valid 2.90 ns t_{RSTFG} RESET Low to Almost Empty/Full Flag Valid 10.60 t_{RSTAF} ns RESET Low to Data Out LOW on RD (flow-through) 1.68 ns t_{RSTBQ} RESET Low to Data Out LOW on RD (pipelined) 1.68 ns **RESET Removal** 0.51 ns t_{REMRSTB} **RESET Recovery** 2.68 **t**_{RECRSTB} ns **RESET Minimum Pulse Width** 0.68 ns t_{MPWRSTB} Clock Cycle Time t_{CYC} 6.24 ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

160

MHz

Pin Descriptions

interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP

Programming Supply Voltage

IGLOO nano devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

FF

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter in the *IGLOO nano FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in nano Devices" chapter of the IGLOO nano FPGA Fabric User's Guide for an explanation of the naming of global pins.

Flash*Freeze Mode Activation Pin

Flash*Freeze is available on IGLOO nano devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin

IGLOO nano Low Power Flash FPGAs

	CS81		CS81
Pin Number	AGLN125 Function	Pin Number	AGLN125 Function
A1	GAA0/IO00RSB0	E1	GFB0/IO120RSB1
A2	GAA1/IO01RSB0	E2	GFB1/IO121RSB1
A3	GAC0/IO04RSB0	E3	GFA1/IO118RSB1
A4	IO13RSB0	E4	VCCIB1
A5	IO22RSB0	E5	VCC
A6	IO32RSB0	E6	VCCIB0
A7	GBB0/IO37RSB0	E7	GCA0/IO56RSB0
A8	GBA1/IO40RSB0	E8	GCA1/IO55RSB0
A9	GBA2/IO41RSB0	E9	GCB2/IO58RSB0
B1	GAA2/IO132RSB1	F1*	VCCPLF
B2	GAB0/IO02RSB0	F2*	VCOMPLF
B3	GAC1/IO05RSB0	F3	GND
B4	IO11RSB0	F4	GND
B5	IO25RSB0	F5	VCCIB1
B6	GBC0/IO35RSB0	F6	GND
B7	GBB1/IO38RSB0	F7	GDA1/IO65RSB0
B8	IO42RSB0	F8	GDC1/IO61RSB0
B9	GBB2/IO43RSB0	F9	GDC0/IO62RSB0
C1	GAB2/IO130RSB1	G1	GEA0/IO104RSB1
C2	IO131RSB1	G2	GEC0/IO108RSB1
C3	GND	G3	GEB1/IO107RSB1
C4	IO15RSB0	G4	IO96RSB1
C5	IO28RSB0	G5	IO92RSB1
C6	GND	G6	IO72RSB1
C7	GBA0/IO39RSB0	G7	GDB2/IO68RSB1
C8	GBC2/IO45RSB0	G8	VJTAG
C9	IO47RSB0	G9	TRST
D1	GAC2/IO128RSB1	H1	GEA1/IO105RSB1
D2	IO129RSB1	H2	FF/GEB2/IO102RSB1
D3	GFA2/IO117RSB1	H3	IO99RSB1
D4	VCC	H4	IO94RSB1
D5	VCCIB0	H5	IO91RSB1
D6	GND	H6	IO81RSB1
D7	GCC2/IO59RSB0	H7	GDA2/IO67RSB1
D8	GCC1/IO51RSB0	H8	TDI
		H9	TDO

	CS81
Pin Number	AGLN125 Function
J1	GEA2/IO103RSB1
J2	GEC2/IO101RSB1
J3	IO97RSB1
J4	IO93RSB1
J5	IO90RSB1
J6	IO78RSB1
J7	ТСК
J8	TMS
J9	VPUMP

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125-CS81.

	QN48					
Pin Number AGLN030Z Function						
1	IO82RSB1					
2	GEC0/IO73RSB1					
3	GEA0/IO72RSB1					
4	GEB0/IO71RSB1					
5	GND					
6	VCCIB1					
7	IO68RSB1					
8	IO67RSB1					
9	IO66RSB1					
10	IO65RSB1					
11	IO64RSB1					
12	IO62RSB1					
13	IO61RSB1					
14	FF/IO60RSB1					
15	IO57RSB1					
16	IO55RSB1					
17	17 IO53RSB1					
18	VCC					
19	VCCIB1					
20	IO46RSB1					
21	IO42RSB1					
22	ТСК					
23	TDI					
24	TMS					
25	VPUMP					
26	TDO					
27	TRST					
28	VJTAG					
29	IO38RSB0					
30	GDB0/IO34RSB0					
31	GDA0/IO33RSB0					
32	GDC0/IO32RSB0					
33	VCCIB0					
34	GND					
35	35 VCC					
36	IO25RSB0					

_						
		QN48				
	Pin Number	AGLN030Z Function				
	37	IO24RSB0				
	38	IO22RSB0				
	39	IO20RSB0				
	40	IO18RSB0				
	41	IO16RSB0				
	42	IO14RSB0				
	43	IO10RSB0				
	44	IO08RSB0				
	45	IO06RSB0				
	46	IO04RSB0				
	47	IO02RSB0				
	48	IO00RSB0				
1						

Package Pin Assignments

	VQ100	VQ100		
Pin Number AGLN250 Function		Pin Number	AGLN250 Function	
1	GND	37	VCC	
2	GAA2/IO67RSB3	38	GND	
3	IO66RSB3	39	VCCIB2	
4	GAB2/IO65RSB3	40	IO39RSB2	
5	IO64RSB3	41	IO38RSB2	
6	GAC2/IO63RSB3	42	IO37RSB2	
7	IO62RSB3	43	GDC2/IO36RSB2	
8	IO61RSB3	44	GDB2/IO35RSB2	
9	GND	45	GDA2/IO34RSB2	
10	GFB1/IO60RSB3	46	GNDQ	
11	GFB0/IO59RSB3	47	TCK	
12	VCOMPLF	48	TDI	
13	GFA0/IO57RSB3	49	TMS	
14	VCCPLF	50	VMV2	
15	GFA1/IO58RSB3	51	GND	
16	GFA2/IO56RSB3	52	VPUMP	
17	VCC	53	NC	
18	VCCIB3	54	TDO	
19	GFC2/IO55RSB3	55	TRST	
20	GEC1/IO54RSB3	56	VJTAG	
21	GEC0/IO53RSB3	57	GDA1/IO33RSB1	
22	GEA1/IO52RSB3	58	GDC0/IO32RSB1	
23	GEA0/IO51RSB3	59	GDC1/IO31RSB1	
24	VMV3	60	IO30RSB1	
25	GNDQ	61	GCB2/IO29RSB1	
26	GEA2/IO50RSB2	62	GCA1/IO27RSB1	
27	FF/GEB2/IO49RSB2	63	GCA0/IO28RSB1	
28	GEC2/IO48RSB2	64	GCC0/IO26RSB1	
29	IO47RSB2	65	GCC1/IO25RSB1	
30	IO46RSB2	66	VCCIB1	
31	IO45RSB2	67	GND	
32	IO44RSB2	68	VCC	
33	IO43RSB2	69	IO24RSB1	
34	IO42RSB2	70	GBC2/IO23RSB1	
35	IO41RSB2	71	GBB2/IO22RSB1	
36	IO40RSB2	72	IO21RSB1	

VQ100				
Pin Number	AGLN250 Function			
73	GBA2/IO20RSB1			
74	VMV1			
75	GNDQ			
76	GBA1/IO19RSB0			
77	GBA0/IO18RSB0			
78	GBB1/IO17RSB0			
79	GBB0/IO16RSB0			
80	GBC1/IO15RSB0			
81	GBC0/IO14RSB0			
82	IO13RSB0			
83	IO12RSB0			
84	IO11RSB0			
85	IO10RSB0			
86	IO09RSB0			
87	VCCIB0			
88	GND			
89	VCC			
90	IO08RSB0			
91	IO07RSB0			
92	IO06RSB0			
93 GAC1/IO05RSE				
94	GAC0/IO04RSB0			
95	GAB1/IO03RSB0			
96	GAB0/IO02RSB0			
97	GAA1/IO01RSB0			
98	GAA0/IO00RSB0			
99	GNDQ			
100	VMV0			

Datasheet Information

Revision	Changes	Page	
Revision 10 (continued)	The following tables were updated with current available information. The equivalent software default drive strength option was added.	2-19 through	
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels		
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings		
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings		
	Table 2-28 • I/O Output Buffer Maximum Resistances ¹		
	Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances		
	Table 2-30 • I/O Short Currents IOSH/IOSL		
	Timing tables in the "Single-Ended I/O Characteristics" section, including new tables for 3.3 V and 1.2 V LVCMOS wide range.		
	Table 2-40 \bullet Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range		
	Table 2-63 • Minimum and Maximum DC Input and Output Levels		
	Table 2-67 • Minimum and Maximum DC Input and Output Levels (new)		
	The formulas in the notes to Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 21348).	2-24	
	The text introducing Table 2-31 • Duration of Short Circuit Event before Failure was revised to state six months at 100° instead of three months at 110° for reliability concerns. The row for 110° was removed from the table.		
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5-V tolerant input buffer and push-pull output buffer."	2-32	
	The $F_{DDRIMAX}$ and F_{DDOMAX} values were added to tables in the "DDR Module Specifications" section (SAR 23919). A note was added stating that DDR is not supported for AGLN010, AGLN015, and AGLN020.	2-51	
	Tables in the "Global Tree Timing Characteristics" section were updated with new information available.	2-64	
	Table 2-100 • IGLOO nano CCC/PLL Specification and Table 2-101 • IGLOO nano CCC/PLL Specification were revised (SAR 79390).	2-70, 2-71	
	Tables in the SRAM "Timing Characteristics" section and FIFO "Timing Characteristics" section were updated with new information available.	2-77, 2-85	
	Table 3-3 • TRST and TCK Pull-Down Recommendations is new.	3-4	
	A note was added to the "CS81" pin tables for AGLN060, AGLN060Z, AGLN125, AGLN125Z, AGLN250, and AGLN250Z indicating that pins F1 and F2 must be grounded (SAR 25007).	4-9, through 4-14	
	A note was added to the "CS81" and "VQ100" pin tables for AGLN060 and AGLN060Z stating that bus hold is not available for pin H7 or pin 45 (SAR 24079).	4-9, 4-24	
	The AGLN250 function for pin C8 in the "CS81" table was revised (SAR 22134).	4-13	