

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

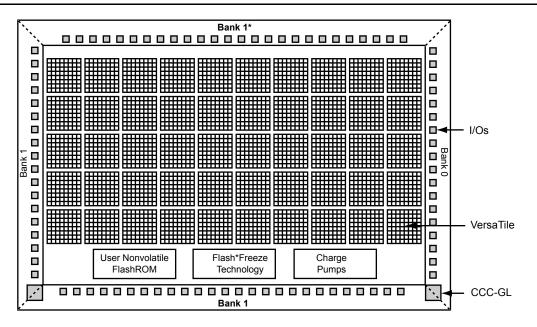
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

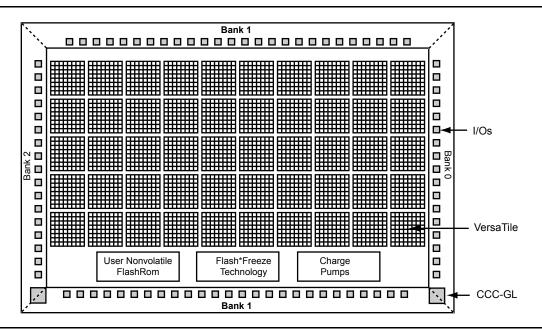
Details

Detailo	
Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln250v2-zvqg100i


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO nano Device Status


IGLOO nano Devices	Status	IGLOO nano-Z Devices	Status
AGLN010	Production		
AGLN015	Not recommended for new designs.		
AGLN020	Production		
		AGLN030Z	Not recommended for new designs.
AGLN060	Production	AGLN060Z	Not recommended for new designs.
AGLN125	Production	AGLN125Z	Not recommended for new designs.
AGLN250	Production	AGLN250Z	Not recommended for new designs.

Note: *Bank 0 for the AGLN030 device

Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks and No RAM (AGLN010 and AGLN030)

Figure 1-2 • IGLOO Device Architecture Overview with Three I/O Banks and No RAM (AGLN015 and AGLN020)

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-7 on page 1-9).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 - I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Figure 1-7 • I/O States During Programming Window

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * PAC8 * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-14.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

 $\mathsf{F}_{\mathsf{READ-CLOCK}}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-14.

PLL Contribution—P_{PLL}

P_{PLL} = PDC4 + PAC13 *F_{CLKOUT}

F_{CLKOUT} is the output clock frequency.¹

1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.

IGLOO nano Low Power Flash FPGAs

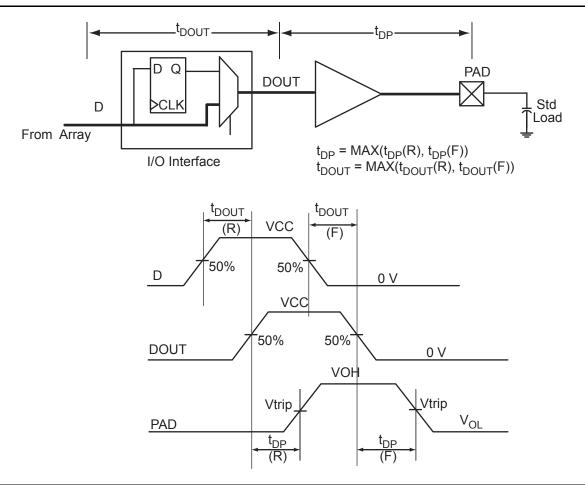


Figure 2-5 • Output Buffer Model and Delays (example)

IGLOO nano DC and Switching Characteristics

Applies to IGLOO nano at 1.2 V Core Operating Conditions

Table 2-26 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,Worst-Case VCCI = 3.0 V

	-														
I/O Standard	Drive Strength (mA)	Equiv. Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	teouт	t _{DP}	t _{DIN}	t _P Y)	t _{PYS}	teour	t _{zı}	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	1.55	3.25	0.26	1.31	1.91	1.10	3.25	2.61	3.38	4.27	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	1.55	2.78	0.26	1.27	1.77	1.10	2.82	2.62	2.44	2.74	ns
1.2 V LVCMOS	1 mA	1 mA	High	5 pF	1.55	3.50	0.26	1.56	2.27	1.10	3.37	3.10	2.55	2.66	ns
1.2 V LVCMOS Wide Range ³	100 µA	1 mA	High	5 pF	1.55	3.50	0.26	1.56	2.27	1.10	3.37	3.10	2.55	2.66	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V side range as specified in the JESD8-12 specification.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.44	0.19	1.03	1.44	0.66	5.25	5.44	1.69	1.35	ns
4 mA	STD	0.97	4.44	0.19	1.03	1.44	0.66	4.37	4.44	1.99	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.64	0.19	1.03	1.44	0.66	2.59	2.64	1.69	1.40	ns
4 mA	STD	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.92	0.26	1.13	1.59	1.10	5.72	5.92	2.11	1.95	ns
4 mA	STD	1.55	4.91	0.26	1.13	1.59	1.10	4.82	4.91	2.42	2.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	3.05	0.26	1.13	1.59	1.10	3.01	3.05	2.10	2.00	ns
4 mA	STD	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-59 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.39	0.19	1.19	1.62	0.66	5.48	5.39	2.02	2.06	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-60 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

			J	,				,				
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.39	0.19	1.19	1.62	0.66	2.44	2.24	2.02	2.15	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-61 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.87	0.26	1.27	1.77	1.10	5.92	5.87	2.45	2.65	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-62 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

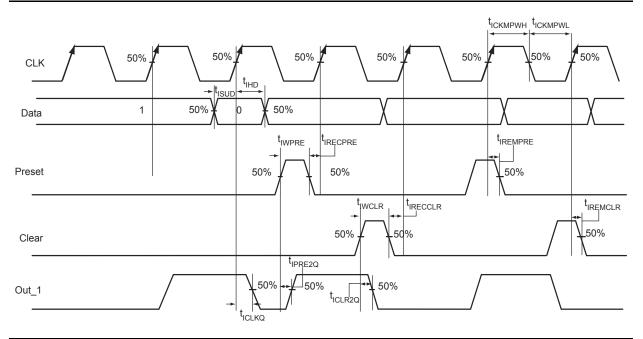
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.78	0.26	1.27	1.77	1.10	2.82	2.62	2.44	2.74	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.


IGLOO nano DC and Switching Characteristics

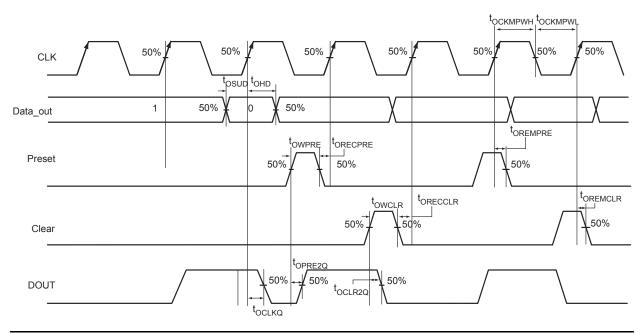
Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{oclr2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
toesud	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-71 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-13 on page 2-43 for more information.

Input Register

Figure 2-14 • Input Register Timing Diagram


Timing Characteristics

1.5 V DC Core Voltage

Table 2-72 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.42	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.47	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.79	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.79	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-74 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	BUD Data Setup Time for the Output Data Register 0		ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE} Asynchronous Preset Removal Time for the Output Data Register		0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

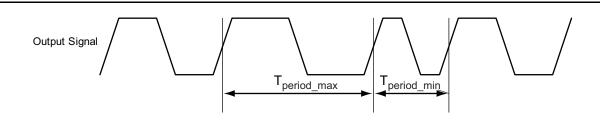
Parameter Description		Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR		ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q} Asynchronous Clear-to-Out for Output DDR		1.99	ns
t _{DDROREMCLR} Asynchronous Clear Removal Time for Output DDR		0.00	ns
DDRORECCLR Asynchronous Clear Recovery Time for Output DDR		0.24	ns
t _{DDROWCLR1}	DDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.19		ns
t _{DDROCKMPWH} Clock Minimum Pulse Width HIGH for the Output DDR 0.31		0.31	ns
t _{DDROCKMPWL} Clock Minimum Pulse Width LOW for the Output DDR		0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-87 • Register Delays


Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR} Asynchronous Clear Removal Time for the Core Register		0.00	ns
t _{RECCLR} Asynchronous Clear Recovery Time for the Core Register 0.24		ns	
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ *Figure 2-26* • Peak-to-Peak Jitter Definition

Embedded FlashROM Characteristics

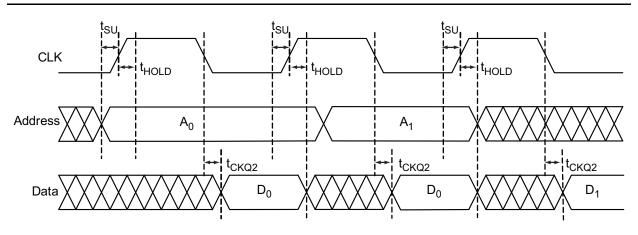


Figure 2-41 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-108 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	20.90	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-109 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	35.74	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO nano devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO nano devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO nano FPGA Fabric User's Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Locations for IGLOO nano Devices

Package	Flash*Freeze Pin
CS81/UC81	H2
QN48	14
QN68	18
VQ100	27
UC36	E2

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

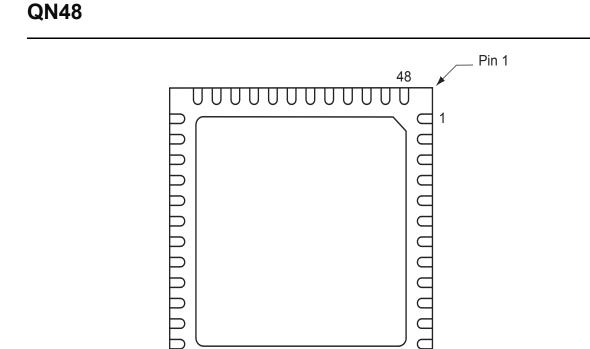
VJTAG	Tie-Off Resistance ^{1,2}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.


3. Equivalent parallel resistance if more than one device is on the JTAG chain

IGLOO nano Low Power Flash FPGAs

CS81		CS81		
Pin Number	AGLN250 Function	Pin Number	AGLN250 Function	
A1	GAA0/IO00RSB0	E1	GFB0/IO59RSB3	
A2	GAA1/IO01RSB0	E2	GFB1/IO60RSB3	
A3	GAC0/IO04RSB0	E3	GFA1/IO58RSB3	
A4	IO07RSB0	E4	VCCIB3	
A5	IO09RSB0	E5	VCC	
A6	IO12RSB0	E6	VCCIB1	
A7	GBB0/IO16RSB0	E7	GCA0/IO28RSB1	
A8	GBA1/IO19RSB0	E8	GCA1/IO27RSB1	
A9	GBA2/IO20RSB1	E9	GCB2/IO29RSB1	
B1	GAA2/IO67RSB3	F1	VCCPLF	
B2	GAB0/IO02RSB0	F2	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO06RSB0	F4	GND	
B5	IO10RSB0	F5	VCCIB2	
B6	GBC0/IO14RSB0	F6	GND	
B7	GBB1/IO17RSB0	F7	GDA1/IO33RSB1	
B8	IO21RSB1	F8	GDC1/IO31RSB1	
B9	GBB2/IO22RSB1	F9	GDC0/IO32RSB1	
C1	GAB2/IO65RSB3	G1	GEA0/IO51RSB3	
C2	IO66RSB3	G2	GEC1/IO54RSB3	
C3	GND	G3	GEC0/IO53RSB3	
C4	IO08RSB0	G4	IO45RSB2	
C5	IO11RSB0	G5	IO42RSB2	
C6	GND	G6	IO37RSB2	
C7	GBA0/IO18RSB0	G7	GDB2/IO35RSB2	
C8	GBC2/IO23RSB1	G8	VJTAG	
C9	IO24RSB1	G9	TRST	
D1	GAC2/IO63RSB3	H1	GEA1/IO52RSB3	
D2	IO64RSB3	H2	FF/GEB2/IO49RSB2	
D3	GFA2/IO56RSB3	H3	IO47RSB2	
D4	VCC	H4	IO44RSB2	
D5	VCCIB0	H5	IO41RSB2	
D6	GND	H6	IO39RSB2	
D7	IO30RSB1	H7	GDA2/IO34RSB2	
D8	GCC1/IO25RSB1	H8	TDI	
D9	GCC0/IO26RSB1	H9	TDO	

CS81		
Pin Number	AGLN250 Function	
J1	GEA2/IO50RSB2	
J2	GEC2/IO48RSB2	
J3	IO46RSB2	
J4	IO43RSB2	
J5	IO40RSB2	
J6	IO38RSB2	
J7	ТСК	
J8	TMS	
J9	VPUMP	

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250-CS81.

 $\underline{\mathsf{n}}\,\underline{\mathsf{$

Notes:

- 1. This is the bottom view of the package.
- The die attach paddle of the package is tied to ground (GND). 2.

7

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

QN48			
Pin Number AGLN030Z Function			
1	IO82RSB1		
2	GEC0/IO73RSB1		
3	GEA0/IO72RSB1		
4	GEB0/IO71RSB1		
5	GND		
6	VCCIB1		
7	IO68RSB1		
8	IO67RSB1		
9	IO66RSB1		
10	IO65RSB1		
11	IO64RSB1		
12	IO62RSB1		
13	IO61RSB1		
14	FF/IO60RSB1		
15	IO57RSB1		
16	IO55RSB1		
17	IO53RSB1		
18	VCC		
19	VCCIB1		
20	IO46RSB1		
21	IO42RSB1		
22	TCK		
23	TDI		
24	TMS		
25	VPUMP		
26	TDO		
27	TRST		
28	VJTAG		
29	IO38RSB0		
30	GDB0/IO34RSB0		
31	GDA0/IO33RSB0		
32	GDC0/IO32RSB0		
33	VCCIB0		
34	GND		
35	VCC		
36	IO25RSB0		

		QN48		
	Pin Number	AGLN030Z Function		
	37	IO24RSB0		
	38	IO22RSB0		
	39	IO20RSB0		
	40	IO18RSB0		
	41	IO16RSB0		
	42	IO14RSB0		
	43	IO10RSB0		
	44	IO08RSB0		
	45	IO06RSB0		
	46	IO04RSB0		
	47	IO02RSB0		
	48	IO00RSB0		
1				

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.