

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	60
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-20°C ~ 85°C (TJ)
Package / Case	81-WFBGA, CSBGA
Supplier Device Package	81-CSP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln250v5-zcsg81

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOO nano Device Overview

General Description

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO nano devices enables entering and exiting an ultra-low power mode that consumes nanoPower while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO nano device is completely functional in the system. This allows the IGLOO nano device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO nano devices the advantage of being a secure, low power, single-chip solution that is Instant On. The IGLOO nano device is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO nano devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGLN030 and smaller devices have no PLL or RAM support. IGLOO nano devices have up to 250 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 71 user I/Os.

IGLOO nano devices increase the breadth of the IGLOO product line by adding new features and packages for greater customer value in high volume consumer, portable, and battery-backed markets. Features such as smaller footprint packages designed with two-layer PCBs in mind, power consumption measured in nanoPower, Schmitt trigger, and bus hold (hold previous I/O state in Flash*Freeze mode) functionality make these devices ideal for deployment in applications that require high levels of flexibility and low cost.

Flash*Freeze Technology

The IGLOO nano device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO nano devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO nano V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state, tristate, HIGH, or LOW.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and small-footprint packages make IGLOO nano devices the best fit for portable electronics.

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $T_J = 70^{\circ}\text{C}$, VCC = 1.14 V)

For IGLOO nano V2, 1.2 V DC Core Supply Voltage

Array Voltage VCC (V)	Junction Temperature (°C)									
	-40°C	–20°C	0°C	25°C	70°C	85°C	100°C			
1.14	0.968	0.974	0.979	0.991	1.000	1.006	1.009			
1.2	0.863	0.868	0.873	0.884	0.892	0.898	0.901			
1.26	0.792	0.797	0.801	0.811	0.819	0.824	0.827			

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations								
Modes/Power Supplies	VCC	VCCPLL	VCCPLL VCCI		VPUMP				
Flash*Freeze	On	On	On	On	On/off/floating				
Sleep	Off	Off	On	Off	Off				
Shutdown	Off	Off	Off	Off	Off				
No Flash*Freeze	On	On	On	On	On/off/floating				

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO nano Flash*Freeze Mode*

	Core Voltage	AGLN010	AGLN015	AGLN020	AGLN060	AGLN125	AGLN250	Units
Typical (25°C)	1.2 V	1.9	3.3	3.3	8	13	20	μΑ
	1.5 V	5.8	6	6	10	18	34	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 through Table 2-14 on page 2-9 and Table 2-15 on page 2-10 through Table 2-18 on page 2-11 (PDC6 and PDC7).

IGLOO nano DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
4 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
6 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns
8 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
4 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
6 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
8 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-28 Revision 19

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-77 • Output Enable Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.10	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	1.15	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.65	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.65	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-50 Revision 19

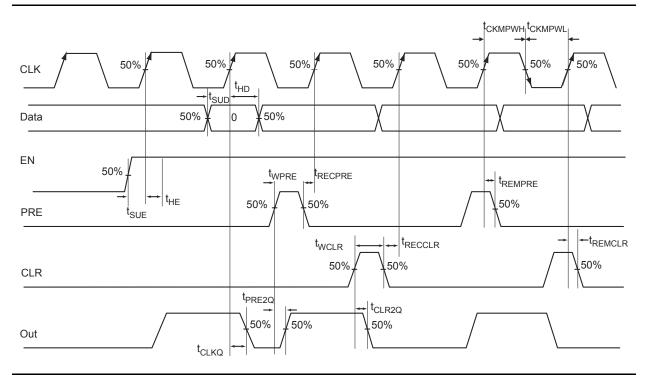


Figure 2-24 • Timing Model and Waveforms

Timing Characteristics 1.5 V DC Core Voltage

Table 2-86 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.62	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano Low Power Flash FPGAs

Table 2-90 • AGLN020 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-91 • AGLN060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.71	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-94 • AGLN010 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

			Std.		
Parameter	Description	•	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.71	2.09	ns
t _{RCKH}	Input High Delay for Global Clock		1.78	2.31	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.53	ns

Notes:

- Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-95 • AGLN015 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

	Std.		td.		
Parameter	Description		Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.81	2.26	ns
t _{RCKH}	Input High Delay for Global Clock		1.90	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.61	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

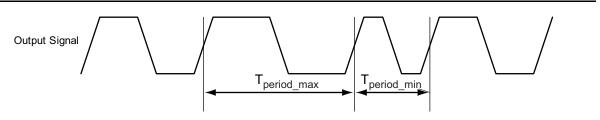
Table 2-96 • AGLN020 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.81	2.26	ns
t _{RCKH}	Input High Delay for Global Clock	1.90	2.51	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-97 • AGLN060 Global Resource
Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V


		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.02	2.42	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.56	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-68 Revision 19

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$

Figure 2-26 • Peak-to-Peak Jitter Definition

2-72 Revision 19

Embedded SRAM and FIFO Characteristics

SRAM

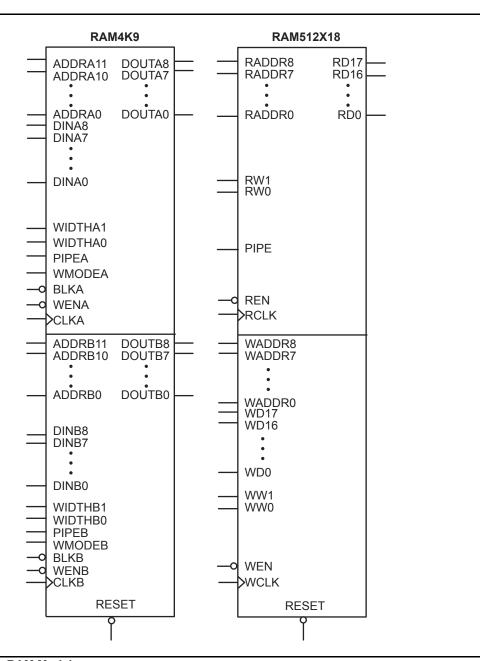


Figure 2-27 • RAM Models

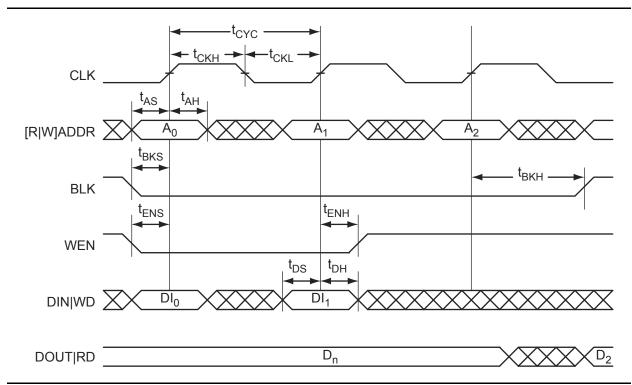


Figure 2-30 • RAM Write, Output Retained (WMODE = 0). Applicable to Both RAM4K9 and RAM512x18.

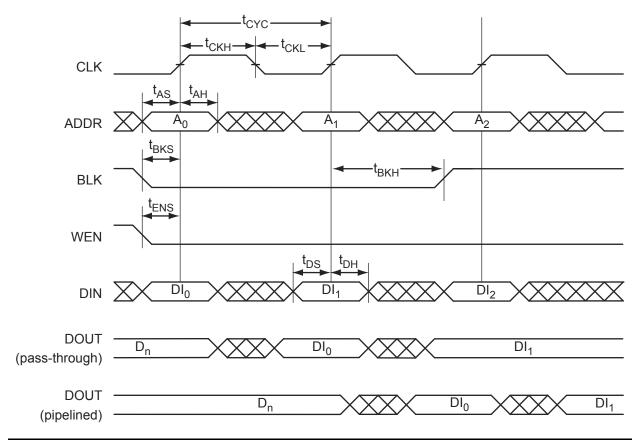


Figure 2-31 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

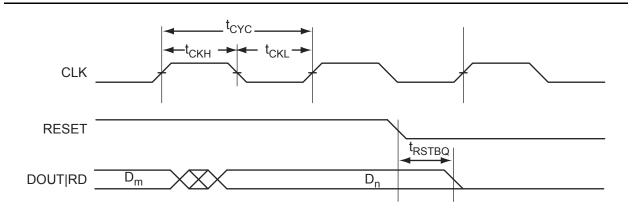


Figure 2-32 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.

2-76 Revision 19

IGLOO nano Low Power Flash FPGAs

Timing Characteristics

1.5 V DC Core Voltage

Table 2-102 • RAM4K9

Commercial-Case Conditions: $T_J = 70^{\circ}C$, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.68	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{BKS}	BLK setup time	1.37	ns
t _{BKH}	BLK hold time	0.13	ns
t _{DS}	Input data (DIN) setup time	0.59	ns
t _{DH}	Input data (DIN) hold time	0.30	ns
t _{CKQ1}	Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)	2.94	ns
	Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)	2.55	ns
t _{CKQ2}	Clock HIGH to new data valid on DOUT (pipelined)	1.51	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	1.72	ns
	RESET Low to data out Low on DOUT (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

^{1.} For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

^{2.} For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

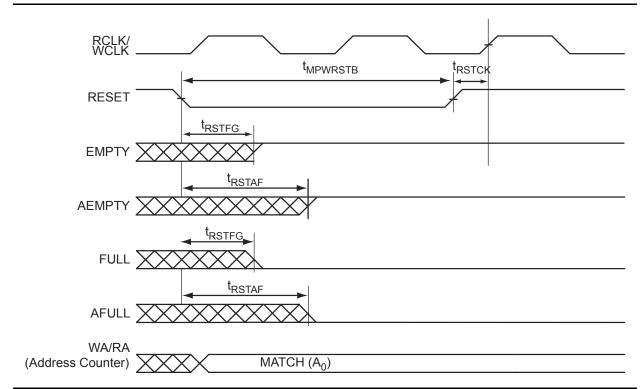


Figure 2-36 • FIFO Reset

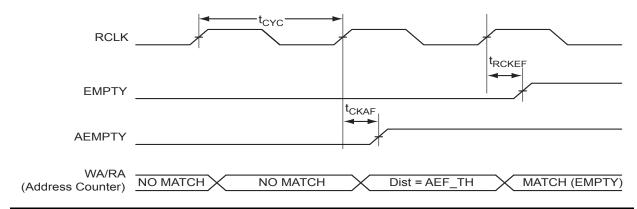


Figure 2-37 • FIFO EMPTY Flag and AEMPTY Flag Assertion

IGLOO nano DC and Switching Characteristics

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-110 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-111 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2-88 Revision 19

Pin Descriptions

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

3-4 Revision 19

Package Pin Assignments

UC81		
Pin Number	AGLN020 Function	
A1	IO64RSB2	
A2	IO54RSB2	
A3	IO57RSB2	
A4	IO36RSB1	
A5	IO32RSB1	
A6	IO24RSB1	
A7	IO20RSB1	
A8	IO04RSB0	
A9	IO08RSB0	
B1	IO59RSB2	
B2	IO55RSB2	
В3	IO62RSB2	
B4	IO34RSB1	
B5	IO28RSB1	
В6	IO22RSB1	
В7	IO18RSB1	
B8	IO00RSB0	
В9	IO03RSB0	
C1	IO51RSB2	
C2	IO50RSB2	
C3	NC	
C4	NC	
C5	NC	
C6	NC	
C7	NC	
C8	IO10RSB0	
C9	IO07RSB0	
D1	IO49RSB2	
D2	IO44RSB2	
D3	NC	
D4	VCC	
D5	VCCIB2	
D6	GND	
D7	NC	
D8	IO13RSB0	
D9	IO12RSB0	

Pin Number	AGLN020 Function GEC0/IO48RSB2
	GEC0/IO48RSB2
E2	GEA0/IO47RSB2
E3	NC
E4	VCCIB1
E5	VCC
E6	VCCIB0
E7	NC
E8	GDA0/IO15RSB0
E9	GDC0/IO14RSB0
F1	IO46RSB2
F2	IO45RSB2
F3	NC
F4	GND
F5	VCCIB1
F6	NC
F7	NC
F8	IO16RSB0
F9	IO17RSB0
G1	IO43RSB2
G2	IO42RSB2
G3	IO41RSB2
G4	IO31RSB1
G5	NC
G6	IO21RSB1
G7	NC
G8	VJTAG
G9	TRST
H1	IO40RSB2
H2	FF/IO39RSB1
H3	IO35RSB1
H4	IO29RSB1
H5	IO26RSB1
H6	IO25RSB1
H7	IO19RSB1
H8	TDI
H9	TDO

UC81			
Pin Number	AGLN020 Function		
J1	IO38RSB1		
J2	IO37RSB1		
J3	IO33RSB1		
J4	IO30RSB1		
J5	IO27RSB1		
J6	IO23RSB1		
J7	TCK		
J8	TMS		
J9	VPUMP		

4-4 Revision 19

Package Pin Assignments

	CS81			
Pin Number	AGLN060Z Function			
A1	GAA0/IO02RSB0			
A2	GAA1/IO03RSB0			
A3	GAC0/IO06RSB0			
A4	IO09RSB0			
A5	IO13RSB0			
A6	IO18RSB0			
A7	GBB0/IO21RSB0			
A8	GBA1/IO24RSB0			
A9	GBA2/IO25RSB0			
B1	GAA2/IO95RSB1			
B2	GAB0/IO04RSB0			
В3	GAC1/IO07RSB0			
B4	IO08RSB0			
B5	IO15RSB0			
В6	GBC0/IO19RSB0			
В7	GBB1/IO22RSB0			
В8	IO26RSB0			
В9	GBB2/IO27RSB0			
C1	GAB2/IO93RSB1			
C2	IO94RSB1			
C3	GND			
C4	IO10RSB0			
C5	IO17RSB0			
C6	GND			
C7	GBA0/IO23RSB0			
C8	GBC2/IO29RSB0			
C9	IO31RSB0			
D1	GAC2/IO91RSB1			
D2	IO92RSB1			
D3	GFA2/IO80RSB1			
D4	VCC			
D5	VCCIB0			
D6	GND			
D7	GCC2/IO43RSB0			

CS81			
Pin Number	AGLN060Z Function		
D8	GCC1/IO35RSB0		
D9	GCC0/IO36RSB0		
E1	GFB0/IO83RSB1		
E2	GFB1/IO84RSB1		
E3	GFA1/IO81RSB1		
E4	VCCIB1		
E5	VCC		
E6	VCCIB0		
E7	GCA1/IO39RSB0		
E8	GCA0/IO40RSB0		
E9	GCB2/IO42RSB0		
F1 ¹	VCCPLF		
F2 ¹	VCOMPLF		
F3	GND		
F4	GND		
F5	VCCIB1		
F6	GND		
F7	GDA1/IO49RSB0		
F8	GDC1/IO45RSB0		
F9	GDC0/IO46RSB0		
G1	GEA0/IO69RSB1		
G2	GEC1/IO74RSB1		
G3	GEB1/IO72RSB1		
G4	IO63RSB1		
G5	IO60RSB1		
G6	IO54RSB1		
G7	GDB2/IO52RSB1		
G8	VJTAG		
G9	TRST		
H1	GEA1/IO70RSB1		
H2	FF/GEB2/IO67RSB1		
НЗ	IO65RSB1		
H4	IO62RSB1		
H5	IO59RSB1		

CS81			
Pin Number	AGLN060Z Function		
H6	IO56RSB1		
H7 ²	GDA2/IO51RSB1		
H8	TDI		
H9	TDO		
J1	GEA2/IO68RSB1		
J2	GEC2/IO66RSB1		
J3	IO64RSB1		
J4	IO61RSB1		
J5	IO58RSB1		
J6	IO55RSB1		
J7	TCK		
J8	TMS		
J9	VPUMP		

Notes:

- 1. Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN060Z-CS81.
- 2. The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin H7 in AGLN060Z-CS81.

4-10 Revision 19

Package Pin Assignments

CS81		
Pin Number	AGLN250Z Function	
A1	GAA0/IO00RSB0	
A2	GAA1/IO01RSB0	
A3	GAC0/IO04RSB0	
A4	IO07RSB0	
A5	IO09RSB0	
A6	IO12RSB0	
A7	GBB0/IO16RSB0	
A8	GBA1/IO19RSB0	
A9	GBA2/IO20RSB1	
B1	GAA2/IO67RSB3	
B2	GAB0/IO02RSB0	
В3	GAC1/IO05RSB0	
B4	IO06RSB0	
B5	IO10RSB0	
В6	GBC0/IO14RSB0	
В7	GBB1/IO17RSB0	
B8	IO21RSB1	
В9	GBB2/IO22RSB1	
C1	GAB2/IO65RSB3	
C2	IO66RSB3	
C3	GND	
C4	IO08RSB0	
C5	IO11RSB0	
C6	GND	
C7	GBA0/IO18RSB0	
C8	GBC2/IO23RSB1	
C9	IO24RSB1	
D1	GAC2/IO63RSB3	
D2	IO64RSB3	
D3	GFA2/IO56RSB3	
D4	VCC	
D5	VCCIB0	
D6	GND	
D7	IO30RSB1	
D8	GCC1/IO25RSB1	
D9	GCC0/IO26RSB1	

CS81	
Pin Number AGLN250Z Function	
E1	GFB0/IO59RSB3
E2	GFB1/IO60RSB3
E3	GFA1/IO58RSB3
E4	VCCIB3
E5	VCC
E6	VCCIB1
E7	GCA0/IO28RSB1
E8	GCA1/IO27RSB1
E9	GCB2/IO29RSB1
F1*	VCCPLF
F2*	VCOMPLF
F3	GND
F4	GND
F5	VCCIB2
F6	GND
F7	GDA1/IO33RSB1
F8	GDC1/IO31RSB1
F9	GDC0/IO32RSB1
G1	GEA0/IO51RSB3
G2	GEC1/IO54RSB3
G3	GEC0/IO53RSB3
G4	IO45RSB2
G5	IO42RSB2
G6	IO37RSB2
G7	GDB2/IO35RSB2
G8	VJTAG
G9	TRST
H1	GEA1/IO52RSB3
H2	FF/GEB2/IO49RSB2
H3	IO47RSB2
H4	IO44RSB2
H5	IO41RSB2
H6	IO39RSB2
H7	GDA2/IO34RSB2
H8	TDI
H9	TDO

CS81	
Pin Number	AGLN250Z Function
J1	GEA2/IO50RSB2
J2	GEC2/IO48RSB2
J3	IO46RSB2
J4	IO43RSB2
J5	IO40RSB2
J6	IO38RSB2
J7	TCK
J8	TMS
J9	VPUMP

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN250Z-CS81.

4-14 Revision 19

Datasheet Information

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "IGLOO nano Device Status" table on page III, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The Microsemi products described in this advance status document may not have completed Microsemi's qualification process. Microsemi may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Microsemi product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Microsemi's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the Microsemi SoC Products Group's products is at http://www.microsemi.com/socdocuments/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Microsemi sales office for additional reliability information.

5-8 Revision 19