

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agln250v5-zvq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOO nano devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO nano devices also have low dynamic power consumption to further maximize power savings; power is reduced even further by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO nano device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO nano devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO nano devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO nano devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO nano devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO nano devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO nano devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of IGLOO nano devices. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. IGLOO nano devices, with FlashLock and AES security, are unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO nano device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO nano FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Microsemi flash-based IGLOO nano devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO nano device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO nano devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO nano flash FPGAs enable the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 μ s) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

IGLOO nano DC and Switching Characteristics

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$ for V5 devices, and $0.75 V \pm 0.2 V$ for V2 devices), the PLL output lock signal goes LOW and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO nano FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Table 2-17 •	Different Components Contributing to Dynamic Power Consumption in IGLOO nano Devices
	For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

		[Device-Spe	cific Dyna	mic Power	· (µW/MHz)				
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010			
PAC1	Clock contribution of a Global Rib	2.829	2.875	1.728	0	0	0			
PAC2	Clock contribution of a Global Spine	1.731	1.265	1.268	2.562	2.562	1.685			
PAC3	Clock contribution of a VersaTile row	0.957	0.963	0.967	0.862	0.862	0.858			
PAC4	Clock contribution of a VersaTile used as a sequential module	0.098	0.098	0.098	0.094	0.094	0.091			
PAC5	First contribution of a VersaTile used as a sequential module			0.0	45					
PAC6	Second contribution of a VersaTile used as a sequential module	. 0.186								
PAC7	Contribution of a VersaTile used as a combinatorial module			0.1	1					
PAC8	Average contribution of a routing net	0.45								
PAC9	Contribution of an I/O input pin (standard-dependent)		See	e Table 2-13	3 on page 2	2-9				
PAC10	Contribution of an I/O output pin (standard-dependent)	See Table 2-14 on page 2-9								
PAC11	Average contribution of a RAM block during a read operation		25.00		N/A					
PAC12	Average contribution of a RAM block during a write operation	< 30.00 N								
PAC13	Dynamic contribution for PLL		2.10			N/A				

Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO nano Devices For IGLOO nano V2 Devices, 1.2 V Core Supply Voltage

			Device	-Specific S	static Powe	er (mW)				
Parameter	Definition	AGLN250	AGLN125	AGLN060	AGLN020	AGLN015	AGLN010			
PDC1	Array static power in Active mode									
PDC2	Array static power in Static (Idle) mode		See Table 2-12 on page 2-8							
PDC3	Array static power in Flash*Freeze mode		Se	ee Table 2-9	9 on page 2	2-7				
PDC4 ¹	Static PLL contribution	0.90 N/A								
PDC5	Bank quiescent power (VCCI-dependent) ²	See Table 2-12 on page 2-8								

Notes:

1. Minimum contribution of the PLL when running at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC.

IGLOO nano DC and Switching Characteristics

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 2-19 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α ₁	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: STD Speed, Commercial Temperature Range ($T_J = 70^{\circ}C$), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Applies to IGLOO nano at 1.5 V Core Operating Conditions

Table 2-25 • Summary of I/O Timing Characteristics—Software Default SettingsSTD Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 3.0 V

I/O Standard	Drive Strength (mA)	Equivalent Software Default t Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	t _{воит}	toP	t _{DIN}	t _{PY}	ters	teour	tzı	tzн	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.79	0.19	0.86	1.16	0.66	1.83	1.45	1.98	2.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	8 mA	High	5 pF	0.97	2.56	0.19	1.20	1.66	0.66	2.57	2.02	2.82	3.31	ns
2.5 V LVCMOS	8 mA	8 mA	High	5 pF	0.97	1.81	0.19	1.10	1.24	0.66	1.85	1.63	1.97	2.26	ns
1.8 V LVCMOS	4 mA	4 mA	High	5 pF	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns
1.5 V LVCMOS	2 mA	2 mA	High	5 pF	0.97	2.39	0.19	1.19	1.52	0.66	2.44	2.24	2.02	2.15	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range, as specified in the JESD8-B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
4 mA	STD	1.55	4.09	0.26	0.97	1.36	1.10	4.16	3.91	2.19	2.64	ns
6 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns
8 mA	STD	1.55	3.45	0.26	0.97	1.36	1.10	3.51	3.32	2.43	3.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
4 mA	STD	1.55	2.68	0.26	0.97	1.36	1.10	2.72	2.26	2.19	2.74	ns
6 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns
8 mA	STD	1.55	2.31	0.26	0.97	1.36	1.10	2.34	1.90	2.43	3.14	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3.3 V LVCMOS Wide Range

3.3 V LVCMOS Wide Range ¹	Equivalent Software	VIL			VIH	VOL	VOH	IOL	I _{ОН}	IIL ²	IIH ³
Drive Strength	Default Drive Strength Option ⁴	Min. V	Max. V	ax. Min. Max. Max. V V V V		Min. V	μA	μA	μA ⁵	µA⁵	
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	100	100	10	10

Table 2-40 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range

Notes:

1. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V Wide Range, as specified in the JEDEC JESD8-B specification.

2. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

3. I_{IH} is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

5. Currents are measured at 85°C junction temperature.

6. Software default selection is highlighted in gray.

IGLOO nano DC and Switching Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-49 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	4.61	0.26	1.21	1.39	1.10	4.55	4.61	2.15	2.43	ns
4 mA	STD	1.55	4.61	0.26	1.21	1.39	1.10	4.55	4.61	2.15	2.43	ns
6 mA	STD	1.55	3.86	0.26	1.21	1.39	1.10	3.82	3.86	2.41	2.89	ns
8 mA	STD	1.55	3.86	0.26	1.21	1.39	1.10	3.82	3.86	2.41	2.89	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-50 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	2.68	0.26	1.21	1.39	1.10	2.72	2.54	2.15	2.51	ns
4 mA	STD	1.55	2.68	0.26	1.21	1.39	1.10	2.72	2.54	2.15	2.51	ns
6 mA	STD	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns
8 mA	STD	1.55	2.30	0.26	1.21	1.39	1.10	2.33	2.04	2.41	2.99	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO nano DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-53 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.44	0.19	1.03	1.44	0.66	5.25	5.44	1.69	1.35	ns
4 mA	STD	0.97	4.44	0.19	1.03	1.44	0.66	4.37	4.44	1.99	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-54 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.64	0.19	1.03	1.44	0.66	2.59	2.64	1.69	1.40	ns
4 mA	STD	0.97	2.08	0.19	1.03	1.44	0.66	2.12	1.95	1.99	2.19	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Applies to 1.2 V DC Core Voltage

Table 2-55 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	5.92	0.26	1.13	1.59	1.10	5.72	5.92	2.11	1.95	ns
4 mA	STD	1.55	4.91	0.26	1.13	1.59	1.10	4.82	4.91	2.42	2.73	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-56 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	1.55	3.05	0.26	1.13	1.59	1.10	3.01	3.05	2.10	2.00	ns
4 mA	STD	1.55	2.49	0.26	1.13	1.59	1.10	2.53	2.34	2.42	2.81	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

 Table 2-57 •
 Minimum and Maximum DC Input and Output Levels

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operating conditions where -0.3 < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions where VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-58 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

IGLOO nano DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.76	ns
AND2	$Y = A \cdot B$	t _{PD}	0.87	ns
NAND2	Y = !(A · B)	t _{PD}	0.91	ns
OR2	Y = A + B	t _{PD}	0.90	ns
NOR2	Y = !(A + B)	t _{PD}	0.94	ns
XOR2	Y = A ⊕ B	t _{PD}	1.39	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.44	ns
XOR3	$Y=A\oplusB\oplusC$	t _{PD}	1.60	ns
MUX2	Y = A !S + B S	t _{PD}	1.17	ns
AND3	$Y=A\cdotB\cdotC$	t _{PD}	1.18	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-85 •Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.33	ns
AND2	$Y = A \cdot B$	t _{PD}	1.48	ns
NAND2	Y = !(A · B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	1.53	ns
NOR2	Y = !(A + B)	t _{PD}	1.63	ns
XOR2	Y = A ⊕ B	t _{PD}	2.34	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.59	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	2.74	ns
MUX2	Y = A !S + B S	t _{PD}	2.03	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

IGLOO nano DC and Switching Characteristics

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$ *Figure 2-26* • Peak-to-Peak Jitter Definition

IGLOO nano DC and Switching Characteristics

Table 2-105 • RAM512X18

Commercial-Case Conditions: T	J = 70°C, Worst-Case VCC	; = 1.14 V
-------------------------------	--------------------------	------------

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.13	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{DS}	Input data (WD) setup time	1.10	ns
t _{DH}	Input data (WD) hold time	0.55	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	6.56	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	2.67	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.87	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.04	ns
t _{RSTBQ}	RESET LOW to data out LOW on RD (flow through)	3.21	ns
	RESET LOW to data out LOW on RD (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note AC374: Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based FPGAs and SoC FPGAs App Note.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO nano devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO nano devices while maintaining the same pin location on the board. Refer to the *"*Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO nano FPGA Fabric User's Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Locations for IGLOO nano Devices

Package	Flash*Freeze Pin
CS81/UC81	H2
QN48	14
QN68	18
VQ100	27
UC36	E2

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

VJTAG	Tie-Off Resistance ^{1,2}		
VJTAG at 3.3 V	200 Ω to 1 kΩ		
VJTAG at 2.5 V	200 Ω to 1 kΩ		
VJTAG at 1.8 V	500 Ω to 1 k Ω		
VJTAG at 1.5 V	500 Ω to 1 k Ω		

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

3. Equivalent parallel resistance if more than one device is on the JTAG chain

IGLOO nano Low Power Flash FPGAs

CS81		CS81			
Pin Number AGLN125 Function		Pin Number	AGLN125 Function		
A1	GAA0/IO00RSB0	E1	GFB0/IO120RSB1		
A2	GAA1/IO01RSB0 E2		GFB1/IO121RSB1		
A3	GAC0/IO04RSB0	E3	GFA1/IO118RSB1		
A4	IO13RSB0	E4	VCCIB1		
A5	IO22RSB0	E5	VCC		
A6	IO32RSB0	E6	VCCIB0		
A7	GBB0/IO37RSB0	E7	GCA0/IO56RSB0		
A8	GBA1/IO40RSB0	E8	GCA1/IO55RSB0		
A9	GBA2/IO41RSB0	E9	GCB2/IO58RSB0		
B1	GAA2/IO132RSB1	F1*	VCCPLF		
B2	GAB0/IO02RSB0	F2*	VCOMPLF		
B3	GAC1/IO05RSB0	F3	GND		
B4	IO11RSB0	F4	GND		
B5	IO25RSB0	F5	VCCIB1		
B6	GBC0/IO35RSB0	F6	GND		
B7	GBB1/IO38RSB0	F7	GDA1/IO65RSB0		
B8	IO42RSB0	F8	GDC1/IO61RSB0		
B9	GBB2/IO43RSB0	F9	GDC0/IO62RSB0		
C1	GAB2/IO130RSB1	G1	GEA0/IO104RSB1		
C2	IO131RSB1	G2	GEC0/IO108RSB1		
C3	GND	G3	GEB1/IO107RSB1		
C4	IO15RSB0	G4	IO96RSB1		
C5	IO28RSB0	G5	IO92RSB1		
C6	GND	G6	IO72RSB1		
C7	GBA0/IO39RSB0	G7	GDB2/IO68RSB1		
C8	GBC2/IO45RSB0	G8	VJTAG		
C9	IO47RSB0	G9	TRST		
D1	GAC2/IO128RSB1	H1	GEA1/IO105RSB1		
D2	IO129RSB1	H2	FF/GEB2/IO102RSB1		
D3	GFA2/IO117RSB1	H3	IO99RSB1		
D4	VCC	H4	IO94RSB1		
D5	VCCIB0	H5	IO91RSB1		
D6	GND	H6	IO81RSB1		
D7	GCC2/IO59RSB0	H7	GDA2/IO67RSB1		
D8	GCC1/IO51RSB0	H8	TDI		
D9	GCC0/IO52RSB0	H9	TDO		

C\$81					
Pin Number	AGEN125 Function				
J1	GEA2/IO103RSB1				
J2	GEC2/IO101RSB1				
J3	IO97RSB1				
J4	IO93RSB1				
J5	IO90RSB1				
J6	IO78RSB1				
J7	ТСК				
J8	TMS				
J9	VPUMP				

Note: * Pin numbers F1 and F2 must be connected to ground because a PLL is not supported for AGLN125-CS81.

Package Pin Assignments

QN48			
Pin Number	AGLN010 Function		
1	GEC0/IO37RSB1		
2	IO36RSB1		
3	GEA0/IO34RSB1		
4	IO22RSB1		
5	GND		
6	VCCIB1		
7	IO24RSB1		
8	IO33RSB1		
9	IO26RSB1		
10	IO32RSB1		
11	IO27RSB1		
12	IO29RSB1		
13	IO30RSB1		
14	FF/IO31RSB1		
15	IO28RSB1		
16	IO25RSB1		
17	IO23RSB1		
18	VCC		
19	VCCIB1		
20	IO17RSB1		
21	IO14RSB1		
22	ТСК		
23	TDI		
24	TMS		
25	VPUMP		
26	TDO		
27	TRST		
28	VJTAG		
29	IO11RSB0		
30	IO10RSB0		
31	IO09RSB0		
32	IO08RSB0		
33	VCCIB0		
34	GND		
35	VCC		

QN48			
AGLN010 Function			
IO07RSB0			
IO06RSB0			
GDA0/IO05RSB0			
IO03RSB0			
GDC0/IO01RSB0			
IO12RSB1			
IO13RSB1			
IO15RSB1			
IO16RSB1			
IO18RSB1			
IO19RSB1			
IO20RSB1			
IO21RSB1			

Package Pin Assignments

VQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO nano Low Power Flash FPGAs

VQ100		VQ100		VQ100	
Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function	Pin Number	AGLN060Z Function
1	GND	35	IO62RSB1	69	IO31RSB0
2	GAA2/IO51RSB1	36	IO61RSB1	70	GBC2/IO29RSB0
3	IO52RSB1	37	VCC	71	GBB2/IO27RSB0
4	GAB2/IO53RSB1	38	GND	72	IO26RSB0
5	IO95RSB1	39	VCCIB1	73	GBA2/IO25RSB0
6	GAC2/IO94RSB1	40	IO60RSB1	74	VMV0
7	IO93RSB1	41	IO59RSB1	75	GNDQ
8	IO92RSB1	42	IO58RSB1	76	GBA1/IO24RSB0
9	GND	43	IO57RSB1	77	GBA0/IO23RSB0
10	GFB1/IO87RSB1	44	GDC2/IO56RSB1	78	GBB1/IO22RSB0
11	GFB0/IO86RSB1	45*	GDB2/IO55RSB1	79	GBB0/IO21RSB0
12	VCOMPLF	46	GDA2/IO54RSB1	80	GBC1/IO20RSB0
13	GFA0/IO85RSB1	47	ТСК	81	GBC0/IO19RSB0
14	VCCPLF	48	TDI	82	IO18RSB0
15	GFA1/IO84RSB1	49	TMS	83	IO17RSB0
16	GFA2/IO83RSB1	50	VMV1	84	IO15RSB0
17	VCC	51	GND	85	IO13RSB0
18	VCCIB1	52	VPUMP	86	IO11RSB0
19	GEC1/IO77RSB1	53	NC	87	VCCIB0
20	GEB1/IO75RSB1	54	TDO	88	GND
21	GEB0/IO74RSB1	55	TRST	89	VCC
22	GEA1/IO73RSB1	56	VJTAG	90	IO10RSB0
23	GEA0/IO72RSB1	57	GDA1/IO49RSB0	91	IO09RSB0
24	VMV1	58	GDC0/IO46RSB0	92	IO08RSB0
25	GNDQ	59	GDC1/IO45RSB0	93	GAC1/IO07RSB0
26	GEA2/IO71RSB1	60	GCC2/IO43RSB0	94	GAC0/IO06RSB0
27	FF/GEB2/IO70RSB1	61	GCB2/IO42RSB0	95	GAB1/IO05RSB0
28	GEC2/IO69RSB1	62	GCA0/IO40RSB0	96	GAB0/IO04RSB0
29	IO68RSB1	63	GCA1/IO39RSB0	97	GAA1/IO03RSB0
30	IO67RSB1	64	GCC0/IO36RSB0	98	GAA0/IO02RSB0
31	IO66RSB1	65	GCC1/IO35RSB0	99	IO01RSB0
32	IO65RSB1	66	VCCIB0	100	IO00RSB0
33	IO64RSB1	67	GND		
34	IO63RSB1	68	VCC		

Note: *The bus hold attribute (hold previous I/O state in Flash*Freeze mode) is not supported for pin 45 in AGLN060Z-VQ100.