

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LCD, PWM, WDT
Number of I/O	57
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08gw64clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Devices in the MC9S08GW64 Series

Table 1 summarizes the feature set available in the MC9S08GW64 series of MCUs.

Table 1. MC9S08GW64 Series Features by MCU and Package

Feature	MC9S0	8GW64	MC9S0	8GW32	
Package	80-pin LQFP	64-pin LQFP	80-pin LQFP	64-pin LQFP	
FLASH	65,536	Bytes	32,768	B Bytes	
RAM	4,032	Bytes	2,048	Bytes	
ADC0 ¹ Single-ended Channels	7-ch	7-ch	7-ch	7-ch	
ADC0 Differential Channels ²	1	0	1	0	
ADC1 Single-ended Channels	7-ch	7-ch	7-ch	7-ch	
ADC1 Differential Channels	ADC1 Differential Channels 1		1	1	
BKPT	уе	es	yes		
ICS	ye	es	yes		
IIC	ye	es	yes		
IRQ	уе	es	yes		
IRTC	ye	es	yes		
KBI	8-	ch	8-ch		
MTIM8	2	2	2		
MTIM16	ye	es	yes		
PCNT	ye	es	yes		
PCRC	ye	es	ye	es	
PDB	ye	es	ye	es	
PRACMP	;	3	:	3	
SCI		4		4	
SPI	;	3	:	3	
FTM	2-	2-ch		ch	
LCD	8×36 4×40	8×24 4×28	8×36 4×40	8×24 4×28	
VREFO	yes	yes	yes	yes	
XOSC	2	2	:	2	
I/O pins ³	57	45	57	45	

Devices in the MC9S08GW64 Series

- ¹ There are two 16-bit ADC modules, so two parallel conversions at two channels can be made simultaneously.
- ² Each differential channel consists of two pins (DADPx and DADMx).
- ³ The I/O pins include one output-only pin.

The block diagram in Figure 1 shows the structure of the MC9S08GW64 series MCUs.

Devices in the MC9S08GW64 Series

Figure 1. MC9S08GW64 Series Block Diagram

Pin Assignments

Figure 3. MC9S08GW64 Series in 64-Pin LQFP Package

80	64	Port Pin	Default func	Alt 1	Alt 2	Alt3	Alt4
1	1	PTE6	PTE6		LCD24		
2	2	PTE7	PTE7		LCD25		
3	3	PTF0	PTF0	LCD26			
4	4	PTF1	PTF1	LCD27			
5		PTF2	PTF2	LCD28			
6		PTF3	PTF3	LCD29			

Table 2. Pin Availability by Package Pin-Count

Pin Assignments

80	64	Port Pin	Default func	Alt 1	Alt 2	Alt3	Alt4
7		PTF4	PTF4	LCD30			
8		PTF5	PTF5	LCD31			
9	5	PTF6	PTF6	MTIMCLK	AD4	LCD32	
10	6	PTF7	PTF7	FTMCLK	AD5	LCD33	
11	7	PTG0	PTG0	MOSI1	AD6	LCD34	
12	8	PTG1	PTG1	MISO1	AD7	LCD35	
13	9	PTG2	PTG2	SCLK1	AD8	LCD36	
14	10	PTG3	PTG3	SS1	AD9	LCD37	
15	11	PTG4	PTG4	CMPOUT1	RxD3	AD10	LCD38
16	12	PTG5	PTG5	CMPOUT2	TxD3	AD11	LCD39
17	13	PTG6	PTG6	CMPP3	AD12	PCNT0	LCD40
18	14	PTG7	PTG7	CMPP4	AD13	PCNT1	LCD41
19	15	PTH0	PTH0	CMPP5	AD14	PCNT2	LCD42
20	16	PTH1	PTH1	RTCCLKOUT	AD15	LCD43	
21	17	V _{DDA}	V _{DDA}				
22	17	V _{REFH}	V _{REFH}				
23	10	V _{SSA}	V _{SSA}				
24	18	V _{REFL}	V _{REFL}				
25		DADP0	DADP0				
26		DADM0	DADM0				
27	19	V _{REFO}	V _{REFO}				
28	20	DADP1	DADP1				
29	21	DADM1	DADM1				
30	22	V _{BAT}	V _{BAT}				
31	23	EXTAL1	EXTAL1				
32	24	XTAL1	XTAL1				
33	25	TAMPER1 ¹	TAMPER1				
34	26	TAMPER2	TAMPER2				
35	27	PTA0	PTA0	MOSI2	PCNTCH0	SCL	AD2
36	28	PTA1	PTA1	MISO2	PCNTCH1	SDA	AD3
37	29	PTA2	PTA2	SCLK2	FTMCH0	PCNT0	CMPP0
38	30	PTA3	PTA3	SS2	FTMCH1	PCNT1	CMPP1
39	31	PTA4	PTA4	MTIMCLK	RxD2	PCNT2	CMPP2
40	32	PTA5 ²	PTA5	FTMCLK	TxD2	EXTRIG	IRQ
41	33	PTA6 ³	BKGD/MS	CMPOUT0	CLKOUT	BKGD/MS	

Table 2. Pin Availability by Package Pin-Count (continued)

80	64	Port Pin	Default func	Alt 1	Alt 2	Alt3	Alt4
42	34	V _{DD}	V _{DD}				
43	35	V _{SS}	V _{SS}				
44	36	PTB0	PTB0	KBIP0	TxD1	EXTAL2	
45	37	PTB1 ¹	PTB1	KBIP1	RxD1	CMPP6	XTAL2
46	38	RESET	RESET				
47	39	PTB2	PTB2	KBIP2	MOSI0	MISO0	RxD0
48	40	PTB3 ⁴	PTB3	KBIP3	MISO0	MOSI0	TxD0
49	41	PTB4 ³	PTB4	KBIP4	SCLK0	SCL	
50	42	PTB5 ³	PTB5	KBIP5	SS0	SDA	
51	43	PTB6	PTB6	KBIP6	RxD2	LCD0	
52	44	PTB7	PTB7	KBIP7	TxD2	LCD1	
53		PTC0	PTC0	MOSI1	LCD2		
54		PTC1	PTC1	MISO1	LCD3		
55		PTC2	PTC2	SCLK1	LCD4		
56		PTC3	PTC3	SS1	LCD5		
57	45	PTC4	PTC4	FTMCH0	RxD1	LCD6	
58	46	PTC5	PTC5	FTMCH1	TxD1	LCD7	
59	47	PTC6	PTC6	PCNTCH0	RxD3	LCD8	
60	48	PTC7	PTC7	PCNTCH1	TxD3	LCD9	
61	49	PTD0	PTD0	KBIP0	MOSI2	LCD10	
62	50	PTD1	PTD1	KBIP1	MISO2	LCD11	
63	51	PTD2	PTD2	KBIP2	SCLK2	LCD12	
64	52	PTD3	PTD3	KBIP3	SS2	LCD13	
65	53	PTD4	PTD4	KBIP4	LCD14		
66	54	PTD5	PTD5	KBIP5	CLKOUT	LCD15	
67	55	PTD6	PTD6	KBIP6	LCD16		
68	56	PTD7	PTD7	KBIP7	LCD17		
69		PTE0	PTE0	LCD18			
70		PTE1	PTE1	LCD19			
71		PTE2	PTE2	LCD20			
72		PTE3	PTE3	LCD21			
73	57	PTE4	PTE4		LCD22		
74	58	PTE5	PTE5		LCD23		
75	59	V _{SS}	V _{SS}				
76	60	V _{LL3}	V _{LL3}				

Table 2. Pin Availability by Package Pin-Count (continued)

high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins except PTA5 and PTB1) ^{1, 2, 3}	۱ _D	± 25	mA
Instantaneous maximum current Single pin limit (applies to PTA5 and PTB1) ^{1,2,3}	Ι _D	± 50	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4.	Absolute	Maximum	Ratings
	Abounde	Muximani	nutings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 85	°C
Maximum junction temperature	Τ _J	95	°C
Thermal resistance Single-layer board			
80-pin LQFP	θ_{JA}	61	°C/W
64-pin LQFP		70	
Thermal resistance Four-layer board			
80-pin LQFP	θ_{JA}	48	°C/W
64-pin LQFP		52	

Table 5. T	Thermal C	Character	ristics
------------	-----------	-----------	---------

Figure 8. Typical High-Side (Source) Characteristics (Non LCD pins)— Low Drive (PTxDSn = 0)

Figure 9. Typical High-Side (Source) Characteristics(Non LCD pins) — High Drive (PTxDSn = 1)

Electrical Characteristics

Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO pins)— Low Drive (PTxDSn = 0)

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Table 9. Supply Current Characteristics

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz		17.4	20.5	mA	–40 to 85°C
	Т	FEI mode, all modules on, running from Flash		2 MHz	3	2.6	—		
2	С	Run supply current	RI _{DD}	20 MHz		10.5	_	mA	–40 to 85°C
	Т	FEI mode, all modules off, running from Flash		2 MHz	3	1.6	—		
3	т	Run supply current	RI _{DD}	16 kHz FBILP	3	158	—	μA	–40 to 85°C
	т	from Flash		16 kHz FBELP		148	—		
4	т	Run supply current	RI _{DD}	16 kHz FBILP	3	160	—	μΑ	–40 to 85°C
	т	from Flash		16 kHz FBELP		23	—		

Num	C	Parameter	Condition		Unite			
Nulli	C	Farameter	Condition	-40	25	70	85	Units
6	С	VREFO	Not using the bandgap (BGBE = 0), in tight regulation mode	264	286	296	298	μA
7	С	IRTC		1.4	1.65	2.01	2.27	μA
8	С	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0), single conversion	78.1	88.5	92.6	93.6	μA
9	С	LCD	VIREG enabled for Contrast control, 1/8 Duty cycle, 8x24 configuration for driving 192 Segments, 32Hz frame rate, No LCD glass connected.	0.67	0.88	3.74	7.16	μA
10	С	PCNT ¹	32KHz clock, without PWM output	33	47	67	77	nA
11	С	PCNT ¹	32KHz clock, with PWM output	40	50	63	77	nA

Table	10. Stop	Mode	Adders	(continued)(\	V _{DD} =3V,	V _{DDA} =V	' _{DD})
-------	----------	------	--------	---------------	----------------------	---------------------	-------------------

¹ Not available in stop2 mode.

Electrical Characteristics

3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 14 and Figure 15 for crystal or resonator circuits.

Table 11. XOSCVLP and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See N See N	ote ² ote ³	
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1	—	MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz			 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	t _{CSTL}	 	600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode		0.03125 0		20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² Load capacitors ($C_{1,}C_{2}$), feedback resistor (R_{F}) and series resistor (R_{S}) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

3.10.1 Control Timing

Num	С	Rating		Min	Typ ¹	Max	Unit
1	D	Bus frequency $(t_{cyc} = 1/f_{Bus})$		dc		20	MHz
2	D	Internal low power oscillator period	t _{LPO}	700		1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}		_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes		500	_		ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100		_	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}			ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}			ns
9	C	Port rise and fall time — Non-LCD Pins Low output drive (PTxDS = 0) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		16 23		ns
	0	Port rise and fall time — Non-LCD Pins High output drive (PTxDS = 1) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		5 9		ns
10	С	Voltage Regulator Recovery time	t _{VRR}	—	6	10	us

Table 13. Control Timing

¹ Typical values are based on characterization data at $V_{DD} = 3.0 \text{ V}$, 25°C unless otherwise stated.

 2 This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

⁵ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40° C to 85°C.

⁶ Except for LCD pins in Open Drain mode.

Figure 17. Reset Timing

Figure 18. IRQ/KBIPx Timing

3.10.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4		t _{cyc}
3	D	External clock high time	t _{clkh}	1.5		t _{cyc}
4	D	External clock low time	t _{ciki}	1.5		t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5		t _{cyc}

Table 14. TPM Input Timing

|--|

3.10.3 SPI Timing

Table 15 and Figure 20 through Figure 23 describe the timing requirements for the SPI system^{1,2}.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	30 30		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
(7)	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		60 60	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
(1)	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
(12)	D	Fall time Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns

Table 15. SPI Timing

^{1.} There is 20 pF load on the SPI ports.

^{2.} There are three types of SPI ports in MC9S08GW64 Series. They are ports for AMR, ports shared with LCD pads and normal ports. This timing is for normal ports condition.

Electrical Characteristics

Num	Charact eristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
5	Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
6	Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
7	Input Capacit ance	16-bit modes 8/10/12-bit modes	C _{ADIN}	_	8 4	10 5	pF	
8	Input Resista nce		R _{ADIN}	_	2	5	kΩ	
9		16 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz				0.5 1 2		
10	Analog Source	13/12 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz	R _{AS}			1 2 5	kΩ	External to MCU Assumes ADLSMP=0
11	nce	11/10 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz				2 5 10		
12		9/8 bit modes f _{ADCK} > 8MHz f _{ADCK} < 8MHz				5 10		
13	ADC	ADLPC = 0, ADHSC = 1		1.0	_	10		
14	Convers ion Clock	ADLPC = 0, ADHSC = 0	f _{ADCK}	1.0	_	5	MHz	
15	Freq.	ADLPC = 1, ADHSC = 0		1.0	_	2.5		

Table 17. 16-bit ADC Operating Conditions

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Figure 24. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Supply Current	ADLPC = 1, ADHSC = 0			_	215	—		
	ADLPC = 0, ADHSC = 0	Т	I _{DDA}	_	540	—	μA	ADLSMP = 0 ADCO = 1
	ADLPC=0, ADHSC=1			_	610	—		
Supply Current	Stop, Reset, Module Off	С	I _{DDA}	—	0.072	—	μA	
ADC	ADLPC = 1, ADHSC = 0		f _{adack}	—	2.4	—		
Asynchronous Clock Source	ADLPC = 0, ADHSC = 0	Р		_	5.2	—	MHz	t _{ADACK} = 1/f _{ADACK}
	ADLPC = 0, ADHSC = 1			_	6.2	—		
Sample Time	See reference manual for sample times							
Conversion Time	See reference manual for conversion times							

Table 18. 16-bit ADC Characteristics full operating range($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$, $F_{ADCK} \le 10MHz$)

¹ All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDAD}$

² Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Characteristic	Conditions ¹	С	Symb	Min	Typ ²	Max	Unit	Comment
Total Unadjusted	16-bit differential mode 16-bit single-ended mode	Т	TUE		±16 ±20	+24/-24 +32/-20	LSB ³	32x Hardware
Error	13-bit differential mode 12-bit single-ended mode	Т			±1.5 ±1.75	±2.0 ±2.5		(AVGE = %1 AVGS = %11)
	11-bit differential mode 10-bit single-ended mode	Т			±0.7 ±0.8	±1.0 ±1.25		
	9-bit differential mode 8-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	DNL		±2.5 ±2.5	±3 ±3	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±1 ±1		
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±0.75 ±0.75		
	9-bit differential mode 8-bit single-ended mode	Т			±0.2 ±0.2	±0.5 ±0.5		
Integral Non-Linearity	16-bit differential mode 16-bit single-ended mode	Т	INL		±6.0 ±10.0	±12.0 ±16.0	LSB ²	
	13-bit differential mode 12-bit single-ended mode	Т			±1.0 ±1.0	±2.0 ±2.0	-	
	11-bit differential mode 10-bit single-ended mode	Т			±0.5 ±0.5	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т			±0.3 ±0.3	±0.5 ±0.5		
Zero-Scale Error	16-bit differential mode 16-bit single-ended mode	Т	E _{ZS}		±4.0 ±4.0	+16/0 +16/-38	LSB ²	$V_{ADIN} = V_{SSAD}$
	13-bit differential mode 12-bit single-ended mode	Т			±0.7 ±0.7	±2.0 ±2.0		
	11-bit differential mode 10-bit single-ended mode	Т		_	±0.4 ±0.4	±1.0 ±1.0		
	9-bit differential mode 8-bit single-ended mode	Т		_	±0.2 ±0.2	±0.5 ±0.5		

Table 19. 16-bit ADC Characteristics(V_{REFH} = V_{DDAD} \geq 2.7V, V_{REFL} = V_{SSAD}, F_{ADCK} \leq 4MHz, ADHSC=1)

- ² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.
- ³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0$ V, bus frequency = 4.0 MHz.
- ⁴ Typical endurance for FLASH was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory.*
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

4 Ordering Information

This section contains the ordering information and the device numbering system for the MC9S08GW64 Series.

4.1 Device Numbering System

Example of the device numbering system:

5 Package Information and Mechanical Drawings

Table 23 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08GW64 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 23, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 23) in the "Enter Keyword" search box at the top of the page.

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W

Table 23	Package	Descriptions
----------	---------	--------------