

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, I ² C, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 12x10b, 8x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f563tbedfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

1.1 Outline of Specifications

 Table 1.1 lists the specifications in outline, and Table 1.2 lists the functions of products.

Table 1.1 shows an outline of the maximum specifications, and the available peripheral modules and number of channels differ according to the number of pins on the package and the ROM capacity. For details, see Table 1.2, Comparison of Functions for Different Packages.

Classification	Module/Function	 Description Maximum operating frequency: 100 MHz 32-bit RX CPU Minimum instruction execution time: One instruction per state (cycle of the system clock) Address space: 4-Gbyte linear Register set of the CPU General purpose: Sixteen 32-bit registers Control: Nine 32-bit registers Accumulator: One 64-bit register Basic instructions: 73 Floating-point operation instructions: 8 DSP instructions: 9 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits 					
CPU	CPU						
	FPU	 Single precision floating point (32 bits) Data types and floating-point exceptions in conformance with the IEEE754 standard 					
Memory	ROM	 Capacity: 512 Kbytes, 384 Kbytes, 256 Kbytes, 64 Kbytes, 48 Kbytes, 32 Kbytes 100 MHz, no-wait access On-board programming: Programs can be modified through SCI or USB while the MCU is mounted on the board. Off-board programming: Programs can be modified using parallel programmer. (only in 144-, 120-, 112- and 100-pin versions) 					
	RAM	 Capacity: 48 Kbytes, 32 Kbytes, 24 Kbytes, 8 Kbytes 100 MHz, no-wait access 					
	E ² data flash	 Capacity: 32 Kbytes, 8 Kbytes Programming/erasing: 100,000 times On-board programming: Programs can be modified through SCI or USB while the MCU is mounted on the board. Programming from the user program is possible. 					
MCU operating modes		[144-, 120-, 112- and 100-pin versions] Single-chip mode, on-chip ROM enabled extended mode, on-chip ROM disabled extended mode (switchable by software) [64- and 48-pin versions] Single-chip mode					

 Table 1.1
 Outline of Specifications (1/7)

Classification Module/Function	Description						
12-bit A/D converter (S12ADB) [64- and 48-pin versions]	 12 bits (8 channels x 1 unit) 12-bit resolution Conversion time 0 µs per channel (S12ADB clock: PCLKD (A/D conversion clock: ADCLK) = 50 MHz Operating modes Scan mode (single scan mode / continuous scan mode / group scan mode) Group A priority control (group scan mode only) Sample-and-hold function A common sample-and-hold circuit for units is included Separate sample-and-hold circuits are also included (three channels per unit) Self-diagnosis function Three analog input voltages (VREFL0, VREFH0 × 1/2, VREFH0) can be generated internally by the self-diagnosis function. Double trigger mode (double the results of A/D conversion) Three ways to start A/D conversion Conversion can be started by software, a conversion start trigger from a timer (MTU3 conversion) 						
10-bit A/D converter (ADA)	 Window comparators (three channels per unit) 10 bits (20 channels × 1 unit) 10-bit resolution Conversion time 0.5 µs per channel (A/D conversion clock ADCLK = 100 MHz) Two operating modes Single mode, scan mode Scan mode Scan mode Scan mode Sample-and-hold function A common sample-and-hold circuit for units is included Three ways to start A/D conversion Conversion can be started by software, a conversion start trigger from a timer (MTU3 GPT), or an external trigger signal. 8-bit precision output 2-bit right shifting for output of conversion results is selectable. Self-diagnostic function The self-diagnostic function internally generates three analog input voltages (AVSS, 						
D/A converter (DAa)	 2 channels 10-bit resolution Output voltage: 0 V to VREF 						
CRC calculator (CRC)	 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1. Generation of CRC codes for use with LSB-first or MSB-first communications is selectable 						
Data operating circuit (DOC)	Comparison, addition, and subtraction of 16-bit data						
Digital power supply controller (DPC)	 Control parameters calculation unit of the digital switch-mode power supply systems. Adopt robust control algorithm with high control stability Results of measurement by the 10-bit A/D converter can be used in calculating the control parameters. 						
Operating frequency	Up to 100 MHz						
Power supply voltage [144-, 120-, 112- and 100-pin versions]	 3-V product VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V AVCC0 = AVCC = VREF = 3.0 to 3.6 V, or 4.0 to 5.5 V VREFH0 = 3.0 to AVCC0, or 4.0 to AVCC0 5-V product VCC = PLLVCC = 4.0 to 5.5 V VCC_USB = 3.0 to 3.6 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V VREFH0 = 4.0 to AVCC0 						
Power supply voltage [64- and 48-pin versions]	VCC = 2.7 to 3.6 V, AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0						

 Table 1.1
 Outline of Specifications (6/7)

Classification Mo	dule/Function	Description
Operating temperature		D version: -40 to +85°C,
		G version: -40 to +105°C *1
Package		144-pin LQFP (PLQP0144KA-A (20 × 20, 0.5-mm pitch))
-		120-pin LQFP (PLQP0120KA-A (16 × 16, 0.5-mm pitch))
		112-pin LQFP (PLQP0112JA-A (20 × 20, 0.65-mm pitch))
		100-pin LQFP (PLQP0100KB-A (14 × 14, 0.5-mm pitch))
		64-pin LQFP (PLQP0064KB-A (10 × 10, 0.5-mm pitch))
		48-pin LQFP (PLQP0048KB-A (07 × 07, 0.5-mm pitch))
On-chip debugging system		• E1 emulator (JTAG and FINE interfaces)
		 E20 emulator (JTAG interface)

Table 1.1Outline of Specifications (7/7)

Note 1. Please contact Renesas Electronics sales office for derating of operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

1.4 Pin Functions

 Table 1.4 lists the pin functions.

Table 1.4Pin Functions (1/5)

Classifications	Pin Name	I/O	Description
Power supply	VCC	_	Power supply pin. Connect it to the system power supply. Connect this pin to VSS via a 0.1 - μ F capacitor. The capacitor should be placed close to the pin
	VCL	_	Connect this pin to VSS via a 0.1- μ F capacitor. The capacitor should be placed close to the pin
	VSS		Ground pin. Connect it to the system power supply (0 V)
	PLLVCC	_	Power supply pin. Connect it to the system power supply.
	PLLVSS	_	Ground pin. Connect it to the system power supply (0 V)
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input
	EXTAL	Input	through the EXTAL pin
	BCLK	Output	Outputs the external bus clock for external devices
Clock frequency accuracy measurement	CACREF	Input	Input for the trigger signal in measuring accuracy of the clock frequency
Operating mode control	MD	Input	Pin for setting the operating mode. The signal levels on these pins must not be changed during operation
System control	RES#	Input	Reset signal input pin. This LSI enters the reset state when this signal goes low
	EMLE	Input	Input pin for the on-chip emulator enable signal. When the on-chip emulator is used, this pin should be driven high. When not used, it should be driven low
On-chip emulator	FINEC	Input	Fine interface clock pin
	FINED	I/O	Fine interface pin
	TRST#	Input	On-chip emulator pins. When the EMLE pin is driven high, these
	TMS	Input	pins are dedicated for the on-chip emulator.
	TDI	Input	-
	ТСК	Input	-
	TDO	Output	-
	TRCLK	Output	This pin outputs the clock for synchronization with the trace data
	TRSYNC	Output	This pin indicates that output from the TRDATA0 to TRDATA3 pins is valid
	TRDATA0 to TRDATA3	Output	These pins output the trace information
Address bus	A0 to A19	Output	Output pins for the address
Data bus	D0 to D15	I/O	Input and output pins for the bidirectional data bus
Multiplexed bus	A0/D0 to A15/D15	I/O	Address/data multiplexed bus
Bus control	RD#	Output	Strobe signal which indicates that reading from the external bus interface space is in progress
	WR#	Output	Strobe signal which indicates that writing to the external bus interface space is in progress, in 1-write strobe mode
	WR0# to WR1#	Output	Strobe signals which indicate that either group of data bus pins (D7 to D0 and D15 to D8) is valid in writing to the external bus interface space, in byte strobe mode
	BC0# to BC1#	Output	Strobe signals which indicate that either group of data bus pins (D7 to D0 and D15 to D8) is valid in access to the external bus interface space, in 1-write strobe mode
	ALE	Output	Address latch signal when address/data multiplexed bus is selected
	WAIT#	Input	Input pin for wait request signals in access to the external space
	CS0# to CS3#	Output	Select signals for CS areas

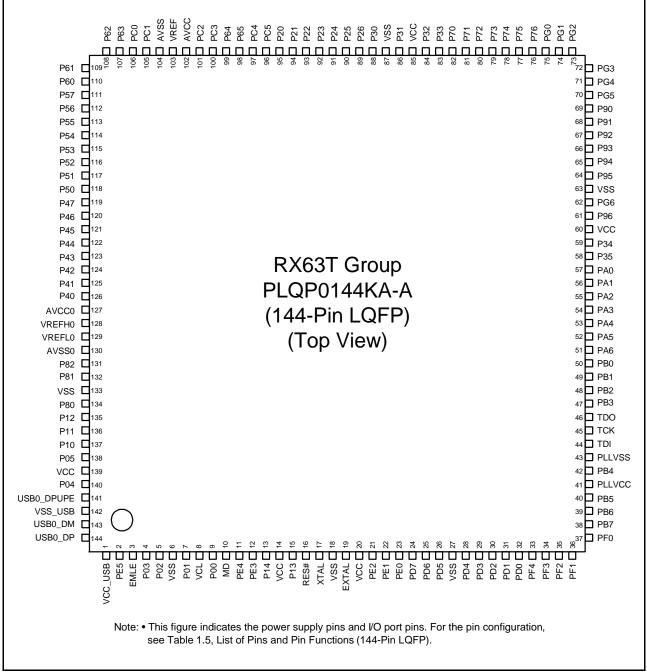

Classifications	Pin Name	I/O	Description
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQ0 to IRQ7	Input	Maskable interrupt request pin
Multi-function timer pulse unit 3	MTIOC0A, MTIOC0B MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/ PWM output pins
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output PWM output pins
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output PWM output pins
	MTIOC3A, MTIOC3B MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/ PWM output pins
	MTIOC4A, MTIOC4B MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/ PWM output pins
	MTIC5U, MTIC5V MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/dead time compensation input pins
	MTIOC6A, MTIOC6B MTIOC6C, MTIOC6D	I/O	The TGRA6 to TGRD6 input capture input/output compare output/ PWM output pins
	MTIOC7A, MTIOC7B MTIOC7C, MTIOC7D	I/O	The TGRA7 to TGRD7 input capture input/output compare output/ PWM output pins
	MTCLKA, MTCLKB MTCLKC, MTCLKD	Input	Input pins for external clock
Port output enable 3	POE0#, POE4# POE8#, POE10# POE11#, POE12#	Input	Input pins for request signals to place the MTU/GPT large-current pins in the high impedance state
General PWM timer	GTIOC0A, GTIOC0B	I/O	The GPT0.GTGRA and GPT0.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC1A, GTIOC1B	I/O	The GPT1.GTGRA and GPT1.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC2A, GTIOC2B	I/O	The GPT2.GTGRA and GPT2.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC3A, GTIOC3B	I/O	The GPT3.GTGRA and GPT3.GTGRB input capture input/output compare output/PWM output pins.
	GTETRG0	Input	External trigger input pin for the GPT0 to GPT3
	GTIOC4A, GTIOC4B	I/O	The GPT4.GTGRA and GPT4.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC5A, GTIOC5B	I/O	The GPT5.GTGRA and GPT5.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC6A, GTIOC6B	I/O	The GPT6.GTGRA and GPT6.GTGRB input capture input/output compare output/PWM output pins.
	GTIOC7A, GTIOC7B	I/O	The GPT7.GTGRA and GPT7.GTGRB input capture input/output compare output/PWM output pins.
	GTETRG1	Input	External trigger input pin for the GPT4 to GPT7

Table 1.4Pin Functions (2/5)

1.5 Pin Assignments

Figure 1.3 to Figure 1.8 show the pin assignments. Table 1.5 to Table 1.10 show the lists of pins and pin functions.

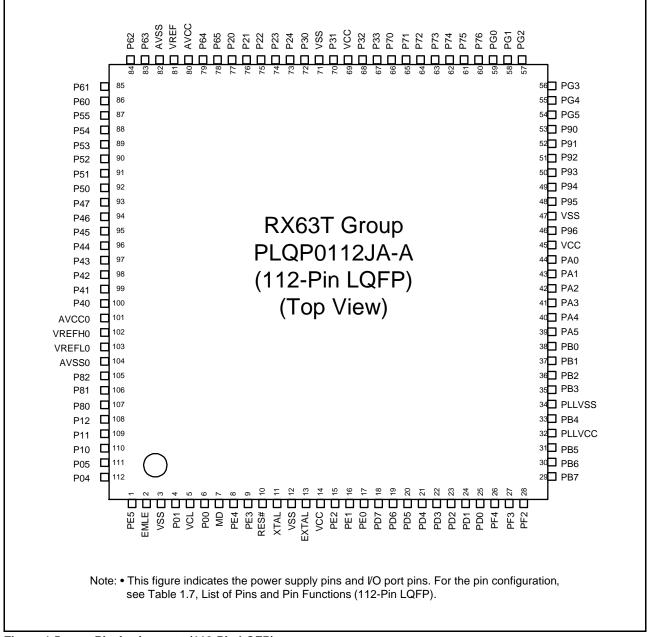


Figure 1.5 Pin Assignment (112-Pin LQFP)

Pin Number 100-Pin LQFP	Power Supply Clock System Control	I/O Port	Bus	Timer (MTU3, GPT, POE3, CAC)	Communications (SCIc, SCId, RSPI, RIIC, CAN)	Interrupt	S12ADB, AD, DA
1		PE5	BCLK		,	IRQ0	
2	EMLE	-	-				
3	VSS						
4		P01	RD#		CTS0#/RTS0#/SS0#		
5	VCL						
6		P00	CS1#	CACREF			
7	MD/FINED						
8		PE4	A10	POE10#/MTCLKC		IRQ1	
9		PE3	A11	POE11#/MTCLKD		IRQ2-DS	
10	RES#						
11	XTAL						
12	VSS						
13	EXTAL						
14	VCC						
15		PE2		POE10#		NMI	
16		PE1	WR0#/WR#		CTS12#/RTS12#/ SS12#/SSLA3/SSLB3		
17		PE0	WR1#/BC1#/ WAIT#		SSLA2/SSLB2/CRX1	IRQ7	
18	TRST#	PD7		GTIOC0A	CTS0#/RTS0#/SS0#/ SSLA1/SSLB1/CTX1		
19	TMS	PD6		GTIOC0B	SSLA0/SSLB0		
20	TDI	PD5		GTIOC1A	RXD1/SMISO1/SSCL1	IRQ6	
21	TCK/FINEC	PD4		GTIOC1B	SCK1		
22	TDO	PD3		GTIOC2A	TXD1/SMOSI1/SSDA1		
23		PD2	CS2#	GTIOC2B	MOSIA/MOSIB		
24		PD1	CS0#	GTIOC3A	MISOA/MISOB		
25		PD0	A12	GTIOC3B	RSPCKA/RSPCKB		
26		PB7	A19		SCK12		
27		PB6	A18		RXD12/SMISO12/ SSCL12/RXDX12/ CRX1	IRQ2	
28		PB5	A17		TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12/CTX1		
29	PLLVCC						
30		PB4	A16	POE8#/GTETRG0		IRQ3-DS	
31	PLLVSS						
32		PB3	A15	MTIOC0A/CACREF	SCK0		
33		PB2		MTIOC0B	TXD0/SMOSI0/ SSDA0/SDA0		
34		PB1		MTIOC0C	RXD0/SMISO0/ SSCL0/SCL0	IRQ4	
35		PB0	A14	MTIOC0D	MOSIA/MOSIB		
36		PA5		MTIOC1A	RXD0/SMISO0/ SSCL0/ MISOA/MISOB		ADTRG1

Pin Number	Power Supply Clock		POE3	Timer	Comn	nunications		
64-Pin LQFP	System Control	I/O Port		(MTU3, GPT, CAC)	(SCIc, SCId)	(RSPI, RIIC)	Interrupt	S12ADB
1	EMLE							
2		P00		GTIOC3A	CTS0# RTS0# SS0#		IRQ2-DS	
3	VCL							
4		P01		GTIOC3B CACREF			IRQ4-DS	
5	MD FINED							
6	RES#							
7	XTAL							
8	VSS							
9	EXTAL							
10	VCC							
11		PE2	POE10#				NMI	
12	TRST#	PD7		GTIOC0A	CTS0# RTS0# SS0#			
13	TMS	PD6		GTIOC0B				
14	TDI	PD5		GTIOC1A	RXD1 SMISO1 SSCL1			
15	TCK FINEC	PD4		GTIOC1B	SCK1			
16	TDO	PD3		GTIOC2A	TXD1 SMOSI1 SSDA1			
17		PB7		GTIOC2B	SCK12			
18		PB6		GTIOC2B	RXD12 SMISO12 SSCL12 RXDX12			
19		PB5	POE11#		TXD12 SMOSI12 SSDA12 TXDX12 SIOX12		IRQ0	
20	VCC							
21		PB4	POE8#	GTETRG	CTS12# RTS12# SS12#		IRQ3-DS	
22	VSS		1	1		1		
23		PB3		MTIOC0A MTCLKA CACREF	SCK0			
24		PB2		MTIOC0B MTCLKB	TXD0 SMOSI0 SSDA0	SDA		
25		PB1		MTIOC0C	RXD0 SMISO0 SSCL0	SCL		
26		PB0	1	MTIOC0D		MOSIA		1

 Table 1.9
 List of Pins and Pin Functions (64-Pin LQFP) (1/3)

	Module		Register	Number	Access	Number of Access States	Module		
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK} \qquad \textbf{ICLK} < \textbf{PCLK}$	Name	Remarks	
0008 732C	ICU	Interrupt Source Priority Register 044	IPR044	8	8	2 ICLK	ICUb	Not present in versions with 64 or 48 pins.	
0008 732Dh	ICU	Interrupt Source Priority Register 045	IPR045	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7331h	ICU	Interrupt Source Priority Register 049	IPR049	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7334h	ICU	Interrupt Source Priority Register 052	IPR052	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7336h	ICU	Interrupt Source Priority Register 054	IPR054	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7337h	ICU	Interrupt Source Priority Register 055	IPR055	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7338h	ICU	Interrupt Source Priority Register 056	IPR056	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7339h	ICU	Interrupt Source Priority Register 057	IPR057	8	8	2 ICLK			
0008 733Ah	ICU	Interrupt Source Priority Register 058	IPR058	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 733Bh	ICU	Interrupt Source Priority Register 059	IPR059	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 733Ch	ICU	Interrupt Source Priority Register 060	IPR060	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 733Dh	ICU	Interrupt Source Priority Register 061	IPR061	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 733Eh	ICU	Interrupt Source Priority Register 062	IPR062	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7340h	ICU	Interrupt Source Priority Register 064	IPR064	8	8	2 ICLK	-		
0008 7341h	ICU	Interrupt Source Priority Register 065	IPR065	8	8	2 ICLK	-		
0008 7342h	ICU	Interrupt Source Priority Register 066	IPR066	8	8	2 ICLK			
0008 7343h	ICU	Interrupt Source Priority Register 067	IPR067	8	8	2 ICLK	_		
0008 7344h	ICU	Interrupt Source Priority Register 068	IPR068	8	8	2 ICLK			
0008 7345h	ICU	Interrupt Source Priority Register 069	IPR069	8	8	2 ICLK			
0008 7346h	ICU	Interrupt Source Priority Register 070	IPR070	8	8	2 ICLK	_	Not present in versions with 64 or 48 pins.	
0008 7347h	ICU	Interrupt Source Priority Register 071	IPR071	8	8	2 ICLK	-	Not present in versions with 64 or 48 pins.	
0008 735Ah	ICU	Interrupt Source Priority Register 090	IPR090	8	8	2 ICLK		Not present in versions with 112, 100, 64 or 48 pins.	
0008 7362h	ICU	Interrupt Source Priority Register 098	IPR098	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7366h	ICU	Interrupt Source Priority Register 102	IPR102	8	8	2 ICLK	_		
0008 7367h	ICU	Interrupt Source Priority Register 103	IPR103	8	8	2 ICLK	_		
0008 7368h	ICU	Interrupt Source Priority Register 104	IPR104	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7369h	ICU	Interrupt Source Priority Register 105	IPR105	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 736Ah	ICU	Interrupt Source Priority Register 106	IPR106	8	8	2 ICLK		Not present in versions with 64 or 48 pins.	
0008 7372h	ICU	Interrupt Source Priority Register 114	IPR114	8	8	2 ICLK			
0008 737Ah	ICU	Interrupt Source Priority Register 122	IPR122	8	8	2 ICLK	-		
0008 737Eh	ICU	Interrupt Source Priority Register 126	IPR126	8	8	2 ICLK			
0008 7382h	ICU	Interrupt Source Priority Register 130	IPR130	8	8	2 ICLK			
0008 7385h	ICU	Interrupt Source Priority Register 133	IPR133	8	8	2 ICLK	_		
0008 7387h	ICU	Interrupt Source Priority Register 135	IPR135	8	8	2 ICLK	-		
0008 7387h	ICU	Interrupt Source Priority Register 137	IPR135	8	8	2 ICLK	-		
	ICU		IPR137	8	8	2 ICLK	-		
0008 738Bh		Interrupt Source Priority Register 139					-		
0008 738Dh	ICU	Interrupt Source Priority Register 141	IPR141	8	8	2 ICLK	4		
0008 7391h	ICU	Interrupt Source Priority Register 145	IPR145	8	8	2 ICLK	-		
0008 7392h	ICU	Interrupt Source Priority Register 146	IPR146	8	8	2 ICLK	4		
0008 7396h	ICU	Interrupt Source Priority Register 150	IPR150	8	8	2 ICLK			
0008 7397h	ICU	Interrupt Source Priority Register 151	IPR151	8	8	2 ICLK		1	

Table 4.1 List of I/O Registers (Address Order) (12/48)

	Module		Register	Number	Access	Number of A	ccess States	Module	
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Name	Remarks
000C 299Eh	GPT5	General PWM Timer Cycle Setting Buffer Register	GTPBR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	GPT	Not present in version with 64 or 48 pins.
000C 29A0h	GPT5	General PWM Timer Cycle Setting Double- Buffer Register	GTPDBR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in versions with 64 or 48 pins.
000C 29A4h	GPT5	A/D Converter Start Request Timing Register A	GTADTRA	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in versions with 64 or 48 pins.
000C 29A6h	GPT5	A/D Converter Start Request Timing Buffer Register A	GTADTBRA	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29A8h	GPT5	A/D Converter Start Request Timing Double- Buffer Register A	GTADTDBRA	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29ACh	GPT5	A/D Converter Start Request Timing Register B	GTADTRB	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 29AEh	GPT5	A/D Converter Start Request Timing Buffer Register B	GTADTBRB	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29B0h	GPT5	A/D Converter Start Request Timing Double- Buffer Register B	GTADTDBRB	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29B4h	GPT5	General PWM Timer Output Negate Control Register	GTONCR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29B6h	GPT5	General PWM Timer Dead Time Control Register	GTDTCR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29B8h	GPT5	General PWM Timer Dead Time Value Register U	GTDVU	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29BAh	GPT5	General PWM Timer Dead Time Value Register D	GTDVD	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in versions with 64 or 48 pins.
000C 29BCh	GPT5	General PWM Timer Dead Time Buffer Register U	GTDBU	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29BEh	GPT5	General PWM Timer Dead Time Buffer Register D	GTDBD	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29C0h	GPT5	General PWM Timer Output Protection Function Status Register	GTSOS	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 29C2h	GPT5	General PWM Timer Output Protection Function Temporary Release Register	GTSOTR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A00h	GPT6	General PWM Timer I/O Control Register	GTIOR	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A02h	GPT6	General PWM Timer Interrupt Output Setting Register	GTINTAD	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A04h	GPT6	General PWM Timer Control Register	GTCR	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A06h	GPT6	General PWM Timer Buffer Enable Register	GTBER	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A08h	GPT6	General PWM Timer Count Direction Register	GTUDC	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A0Ah	GPT6	General PWM Timer Interrupt, A/D Converter Start Request Skipping Setting Register	GTITC	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A0Ch	GPT6	General PWM Timer Status Register	GTST	16	8, 16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A0Eh	GPT6	General PWM Timer Counter	GTCNT	16	16	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A10h	GPT6	General PWM Timer Compare Capture Register A	GTCCRA	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A12h	GPT6	General PWM Timer Compare Capture Register B	GTCCRB	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A14h	GPT6	General PWM Timer Compare Capture Register C	GTCCRC	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A16h	GPT6	General PWM Timer Compare Capture Register D	GTCCRD	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A18h	GPT6	General PWM Timer Compare Capture Register E	GTCCRE	16	16, 32	2 to 5 PCLKA	2, 3 ICLK		Not present in version with 64 or 48 pins.
000C 2A1Ah	GPT6	General PWM Timer Compare Capture Register F	GTCCRF	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	1	Not present in version with 64 or 48 pins.
000C 2A1Ch	GPT6	General PWM Timer Cycle Setting Register	GTPR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A1Eh	GPT6	General PWM Timer Cycle Setting Buffer Register	GTPBR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	-	Not present in version with 64 or 48 pins.
000C 2A20h	GPT6	General PWM Timer Cycle Setting Double- Buffer Register	GTPDBR	16	16, 32	2 to 5 PCLKA	2, 3 ICLK	1	Not present in version with 64 or 48 pins.

Table 4.1 List of I/O Registers (Address Order) (44/48)

Table 5.4DC Characteristics (3)

Note: Common standard values for conditions not given in the table are listed as "Condition 1" to "Condition 3" below.

Condition 1: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0

Condition 2: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VCC_USB = 3.0 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

The following relation applies when the USB is in use under condition 1 or condition 2: $Vcc = PLLVcc = Vcc_USB = 3.0$ to 3.6 V. $T_a = T_{opr}$, T_a is common to conditions 1 to 3.

	lte	m	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Supply current	During	Max. *2	I _{CC} *3	—	—	70	mA	ICLK = 100 MHz
*1	operation	Normal *4		_	40	—		PCLKA = 100 MHz PCLKB = 50 MHz
		Increased by BGO operation *5		_	15	—		PCLKC = 100 MHz PCLKD = 50 MHz
	Sleep mode	•			40	55		FCLK = 50 MHz
	All-module-cl	ock-stop mode *6			20	30		
	During	Software standby mode		_	0.10	3	mA	
	standby	Deep software standby mode		_	20	60	μA	
Analog power	During 12-bit	AI _{CC0}	—	1.5	4.2	mA		
supply current	Programmabl		_	1	1.5	mA		
	Window comp		_	0.5	0.7	mA		
	Waiting for 12		_	0.1	8	μA		
	During 10-bit	AI _{CC}	_	0.9	1.4	mA		
	During D/A co			0.1	4	μA		
	Waiting for 10-bit A/D, D/A conversion (all units)			_	0.1	4	μA	
Reference	During 12-bit	A/D conversion (per unit)	AI _{REFH0}	_	1.6	2.5	mA	
power supply current	Waiting for 12	P-bit A/D conversion (all units)		_	0.1	1.5	μA	
	During 10-bit	A/D conversion (per channel)	AI _{REF}	_	0.2	0.3	mA	
	During D/A co	During D/A conversion (per unit)			1	1.5	mA	
	Waiting for 10- units)		—	0.1	1.2	μA		
VCC rising grad	VCC rising gradient			—	—	20	ms/ V	

Note 1. Supply current values are with all output pins unloaded.

Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.

Note 3. I_{CC} depends on f (ICLK) as follows. (ICLK: PCLK = 8:4)

 $I_{CC} \max = 0.6 \times f + 10 \pmod{2}$

 I_{CC} typ = 0.3 × f + 10 (normal)

 I_{CC} max = 0.45 × f + 10 (sleep mode)

Note 4. Measured with clocks not supplied to the peripheral functions. This does not include the BGO operation.

Note 5. Incremented if data is written to or erased from the on-chip ROM or on-chip data-flash memory for data storage during the program execution.

Note 6. The values are for reference.

Table 5.6 Permissible Power Consumption (G version product only)

Note: Common standard values for conditions not given in the table are listed as "Condition 1" to "Condition 3" below.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 3.0 to 3.6V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

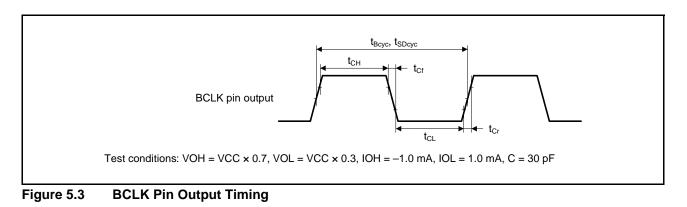
Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS = AVSS = VREFL0 = 0V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

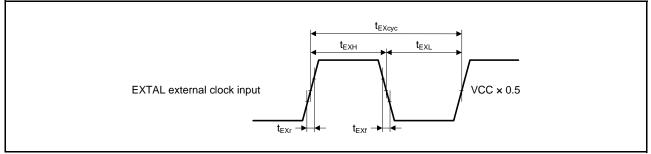
Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0V

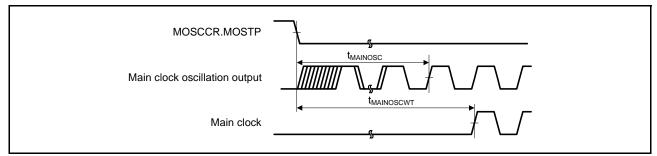
AVCC0 = AVCC = 4.0 to 5.5V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Ta = -40 to +105°C. Ta is common to conditions 1 to 3.

Item	Symbol	Тур.	Max.	Unit	Test Conditions
Total permissible power consumption*1	Pd	—	345	mW	85°C < Ta ≤ 105°C


Note: • Please contact Renesas Electronics sales office for derating of operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.


Note 1. The total power consumption of the whole chip including output current.


Note 4. This is calculated from the formula below, where n is the number of cycles set by the PLLWTCR.PSTS[4:0] bits.

$$\begin{split} t_{\text{PLLWT1}} &= t_{\text{PLL1}} + \ \frac{n + 131072}{f_{\text{PLL}}} \\ t_{\text{PLLWT2}} &= t_{\text{PLL2}} + \ \frac{n + 131072}{f_{\text{PLL}}} = t_{\text{MAINOSC}} + t_{\text{PLL1}} + \ \frac{n + 131072}{f_{\text{PLL}}} \end{split}$$

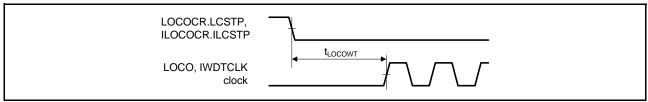


Table 5.16 Timing of On-Chip Peripheral Modules (6)

Note: Common standard values for conditions not given in the table are listed as "Condition 1" to "Condition 3" below.

Condition 1: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0

Condition 2: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VCC_USB = 3.0 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

 $T_a = T_{opr}$. T_a is common to conditions 1 to 3.

	Item	Symbol	Min.* ^{1, *2}	Max.	Unit	Test Conditions
Simple IIC	SCL, SDA input rise time t		—	1000	ns	Figure 5.36
(Standard-mode)	SCL, SDA input fall time	t _{Sf}	—	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data input setup time	t _{SDAS}	250	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	Cb	—	400	pF	
Simple IIC	SCL, SDA input rise time	t _{Sr}	20 + 0.1C _b	300	ns	
(Fast-mode)	SCL, SDA input fall time	t _{Sf}	20 + 0.1C _b	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data input setup time	t _{SDAS}	100	—	ns	
	Data input hold time	t _{SDAH}	0	—	ns	
	SCL, SDA capacitive load	Cb	—	400	pF	

Note 1. The value in parentheses is used when ICMR3.NF[1:0] are set to 11b while a digital filter is enabled with ICFER.NFE = 1.

Note 2. Cb indicates the total capacity of the bus line.

Note 3. t_{Pcyc}: PCLK cycle

5.3.7 Timing of PWM Delay Generation Circuit

Table 5.17 Timing of the PWM Delay Generation Circuit

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Ta = Topr. Ta is common to conditions 1 to 3.

Item	Symbol	Тур.	Max.	Unit	Test Conditions
Resolution	_	312.5	_	ps	PCLKA = 100 MHz
DNL*1	—	±2.0	_	LSB	

Note 1. This value is correct when the difference between each code and the next is a resolution of one bit (1 LSB).

6.3.5 Timing of On-Chip Peripheral Modules

Table 6.11 Timing of On-Chip Peripheral Modules (1)

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V, AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, To - T

Ta = T_{opr}

Item			Symbol	Min.	Max.	Unit*1	Test Conditions	
I/O ports	Input data pulse width		t _{PRW}	1.5	—	t _{Pcyc}	Figure 6.12	
MTU3	Input capture input pulse width	Single-edge setting	t _{TICW}	3	—	t _{PAcyc}	Figure 6.13	
		Both-edge setting	-	5	—			
	Timer clock pulse width	Single-edge setting	t _{TCKWH,} t _{TCKWL}	3	—	t _{PAcyc}	Figure 6.14	
		Both-edge setting	-	5	—			
		Phase counting mode		5	—			
POE3	POE# input pulse width		t _{POEW}	1.5	—	t _{Pcyc}	Figure 6.16	
GPT	Input capture input pulse width	Single-edge setting	t _{GTICW}	3	—	t _{PAcyc}	Figure 6.15	
		Both-edge setting	-	5	—			
	External trigger input pulse width	Single-edge setting	t _{otetw}	3	—	t _{PAcyc}	Figure 6.18	
		Both-edge setting	-	5	—			
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure 6.17	
		Clock synchronous	-	6	—			
	Input clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}		
	Input clock rise time		t _{SCKr}	—	20	ns		
	Input clock fall time		t _{SCKf}	—	20	ns		
	Output clock cycle	Asynchronous	t _{Scyc}	16	—	t _{Pcyc}		
		Clock synchronous		4	—			
	Output clock pulse width	t _{SCKW}	0.4	0.6	t _{Scyc}			
	Output clock rise time		t _{SCKr}	—	20	ns		
	Output clock fall time		t _{SCKf}	—	20	ns		
	Transmit data delay time	Clock synchronous	t _{TXD}	_	40	ns	Figure 6.18	
	Receive data setup time	Clock synchronous	t _{RXS}	40	—	ns		
	Receive data hold time	t _{RXH}	40	—	ns			
A/D converter	12-bit A/D converter trigger in	put pulse width	t _{TRGW}	1.5	—	t _{Pcyc}	Figure 6.19	

Note 1. t_{Pcyc}: PCLK cycle, t_{PAcye}: PCLKA cycle

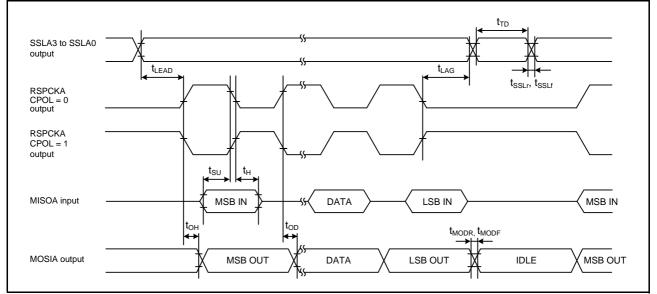


Figure 6.22 RSPI Timing (Master, CPHA = 1) and Simple SPI Timing (Master, CKPH = 0)

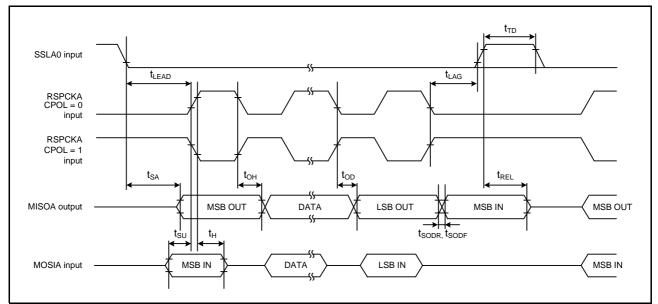


Figure 6.23 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1)

6.8 E² DataFlash Characteristic

Table 6.22 E² DataFlash (Flash Memory for Data Storage) Characteristics (1)

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V

AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0

Temperature range for the programming/erasure operation: $T_a = T_{opr}$, T_a is common to conditions 1 to 3.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Reprogram/erase cycle*1	N _{DPEC}	100000	_		Times	
Data hold time	t _{DDRP}	30* ²	_		Year	Ta = +85°C

Note 1. Definition of reprogram/erase cycle:

The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 128-byte programming is performed 16 times for different addresses in 2-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. The value is obtained from the reliability test.

Table 6.23 E² DataFlash (Flash Memory for Data Storage) Characteristics (2)

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V,

AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0,

Ta = T_{opr}

Item		Symbol	min	typ	max	Unit	Test Condition
Programming time	2 bytes	t _{DP2}	—	0.25	2	ms	FCLK = 50 MHz
Erasure time	32 bytes	t _{DE32}	—	2	20	ms	FCLK = 50 MHz N _{DPEC} ≤ 100
	32 bytes	t _{DE32}	—	4	20	ms	FCLK = 50 MHz N _{DPEC} > 100
Blank check time	2 bytes	t _{DBC2}	—	—	30	μs	FCLK = 50 MHz
Suspend delay time during programming		t _{DSPD}	—	—	120	μs	Figure 6.31
First suspend delay time during erasing (in suspend priority mode)		t _{DSESD1}	—	—	120	μs	PCLKB = 50 MHz
Second suspend delay time during erasing (in suspend priority mode)		t _{DSESD2}	—	—	300	μs	
Suspend delay time during erasing (in erasure priority mode)		t _{DSEED}	—	—	300	μs	

Rev.	Date	Description						
Rev.		Page	Summary					
2.10	Sep 26, 2013	36 to 39	Table 1.7 List of Pins and Pin Functions (112-Pin LQFP), changed					
		40 to 42	Table 1.8 List of Pins and Pin Functions (100-Pin LQFP), changed					
		43 to 45	Table 1.9 List of Pins and Pin Functions (64-Pin LQFP), changed					
		46 to 47	Table 1.10 List of Pins and Pin Functions (48-Pin LQFP), changed					
		4. I/O Registe	ers					
		56 to 103	Table 4.1 List of I/O Registers (Address Order), changed					
		5. Electrical C	Characteristics [144-, 120-, 112- and 100-Pin Versions]					
		104	Table 5.1 Absolute Maximum Ratings, changed					
		107	Table 5.4 DC Characteristics (3), Note 7, deleted					
		108	Table 5.6 Permissible Power Consumption, added					
		128	5.3.7 Timing of PWM Delay Generation Circuit, added					
		128	Table 42.21 Timing of the PWM Delay Generation Circuit, added					
		132	Figure 5.32 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Division Ratio Set to a Value Other Than 1/2) and Simple SPI Timing (Master, CKPH = 1), changed					
		133	Figure 5.34 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 0), changed					
		134	Figure 5.35 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 1), changed					
		6. Electrical C	Characteristics [64- and 48-Pin Versions]					
		149	Table 6.1 Absolute Maximum Ratings, changed					
		151	Table 6.3 DC Characteristics (2), Note 3, changed					
		152	Table 6.5 Permissible Power Consumption, added					

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applicables on use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong roug Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice