

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, I ² C, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 12x10b, 8x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f563tcedfh-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Classification	Module/Function	Description
Clock	Clock generation circuit	 Main clock oscillator, low-speed on-chip oscillator, PLL frequency synthesizer, and dedicated on-chip oscillator for the IWDT Main-clock oscillation stop detection Separate frequency-division and multiplication settings for the system clock (ICLK), peripheral module clock (PCLKA), peripheral module clock (PCLKB), AD clock (PCLKC), FlashIF clock (FCLK) and S12AD clock (PCLKD). The CPU and other bus masters run in synchronization with the system clock (ICLK): Up to 100 MHz Multi-function timer pulse unit 3 and general PWM timer run in synchronization with PCLKA: Up to 100 MHz Peripheral modules run in synchronization with the peripheral module clock (PCLKB): Up to 50 MHz Flash IF run in synchronization with the FlashIF clock (FCLK): Up to 50 MHz Devices connected to the external bus run in synchronization with the external bus clock (BCLK): Up to 50 MHz 10-bit A/D converter runs in synchronization with the AD clock (PCLKC): Up to 100 MHz
Clock	Clock frequency accuracy measurement circuit (CAC)	The frequency of the following clocks can be measured; the main clock oscillator, PLL circuit, and IWDT-dedicated on-chip oscillator.
Reset		RES# pin reset, power-on reset, voltage-monitoring reset, independent watchdog timer reset, watchdog timer reset, deep software standby reset, and software reset
Voltage detectio	n circuit	When the voltage on VCC passes the voltage detection level (Vdet), an internal reset or internal interrupt is generated.
Low power consumption	Low power consumption facilities	 Module stop function Four low power consumption modes Sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode
Interrupt	Interrupt controller (ICUb)	 Peripheral function interrupts: Up to 169 sources External interrupts: Up to 8 (pins IRQ0 to IRQ7) Software interrupts: One source Non-maskable interrupts: 6 sources Sixteen levels specifiable for the order of priority
External bus ext	tension	 The external address space can be divided into four areas (CS0 to CS3), each with independent control of access settings. Capacity of each area: 1 Mbyte (CS0 to CS3) A chip-select signal (CS0# to CS3#) can be output for each area. Each area is specifiable as an 8- or 16-bit bus space The data arrangement in each area is selectable as little or big endian (only for data). Bus format: Separate bus, multiplex bus Wait control Write buffer facility
DMA	DMA controller (DMACA)	 4 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions
	Data transfer controller (DTCa)	 Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software interrupt activation register settings, external interrupts, and interrupt requests from peripheral functions

 Table 1.1
 Outline of Specifications (2/7)

Group	Part No.	Order Part No.	Package	On-chip ROM Capacity	On-chip RAM Capacity	Option	Operating Voltage	Operating Temperature
RX63T	R5F563TBAGFA	R5F563TBAGFA#V1	PLQP0120KA-A	256 Kbytes	24 Kbytes	CAN module included	VCC/ PLLVCC	-40 to +105°C (G Version)*1
	R5F563TBAGFH	R5F563TBAGFH#V1	PLQP0112JA-A	256 Kbytes	24 Kbytes	CAN module included	4.0 to 5.5V VCC_USB 3.0 to 3.6V	
	R5F563TBAGFP	R5F563TBAGFP#V1	PLQP0100KB-A	256 Kbytes	24 Kbytes	CAN module included	AVCC/ AVCC0 4.0 to 5.5V	
	R5F563TEBGFB	R5F563TEBGFB#V1	PLQP0144KA-A	512 Kbytes	48 Kbytes	CAN module included	VCC/ PLLVCC/	
	R5F563TEBGFA	R5F563TEBGFA#V1	PLQP0120KA-A	512 Kbytes	48 Kbytes	CAN module included	VCC_USB 2.7 to 3.6V AVCC/	
	R5F563TEBGFH	R5F563TEBGFH#V1	PLQP0112JA-A	512 Kbytes	48 Kbytes	CAN module included	AVCC0 3.0 to 3.6V or 4.0 to 5.5V	
	R5F563TEBGFP	R5F563TEBGFP#V1	PLQP0100KB-A	512 Kbytes	48 Kbytes	CAN module included		
	R5F563TCBGFB	R5F563TCBGFB#V1	PLQP0144KA-A	384 Kbytes	32 Kbytes	CAN module included		
	R5F563TCBGFA	R5F563TCBGFA#V1	PLQP0120KA-A	384 Kbytes	32 Kbytes	CAN module included		
	R5F563TCBGFH	R5F563TCBGFH#V1	PLQP0112JA-A	384 Kbytes	32 Kbytes	CAN module included		
	R5F563TCBGFP	R5F563TCBGFP#V1	PLQP0100KB-A	384 Kbytes	32 Kbytes	CAN module included		
	R5F563TBBGFB	R5F563TBBGFB#V1	PLQP0144KA-A	256 Kbytes	24 Kbytes	CAN module included		
	R5F563TBBGFA	R5F563TBBGFA#V1	PLQP0120KA-A	256 Kbytes	24 Kbytes	CAN module included		
	R5F563TBBGFH	R5F563TBBGFH#V1	PLQP0112JA-A	256 Kbytes	24 Kbytes	CAN module included		
	R5F563TBBGFP	R5F563TBBGFP#V1	PLQP0100KB-A	256 Kbytes	24 Kbytes	CAN module included		
	R5F563T6EGFM	R5F563T6EGFM#V0	PLQP0064KB-A	64 Kbytes	8 Kbytes	CAN module not included	VCC/ PLLVCC	
	R5F563T5EGFM	R5F563T5EGFM#V0	PLQP0064KB-A	48 Kbytes	8 Kbytes	CAN module not included	2.7 to 3.6V AVCC0 3.0 to 3.6V	
	R5F563T4EGFM	R5F563T4EGFM#V0	PLQP0064KB-A	32 Kbytes	8 Kbytes	CAN module not included		
	R5F563T6EGFL	R5F563T6EGFL#V0	PLQP0048KB-A	64 Kbytes	8 Kbytes	CAN module not included		
	R5F563T5EGFL	R5F563T5EGFL#V0	PLQP0048KB-A	48 Kbytes	8 Kbytes	CAN module not included		
	R5F563T4EGFL	R5F563T4EGFL#V0	PLQP0048KB-A	32 Kbytes	8 Kbytes	CAN module not included		

Table 1.3List of Products (4/4)

Note: • Orderable part numbers are current as of when this manual was published. Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

Note: • The products with the product ID code 1 (ex. R5F563TEADFB#V1) are the revised version to the specification constraints of technical update TX-RX*-A84A / E described.

Note 1. Please contact Renesas Electronics sales office for derating of operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.

1.3 Block Diagram

Figure 1.2 shows a block diagram.

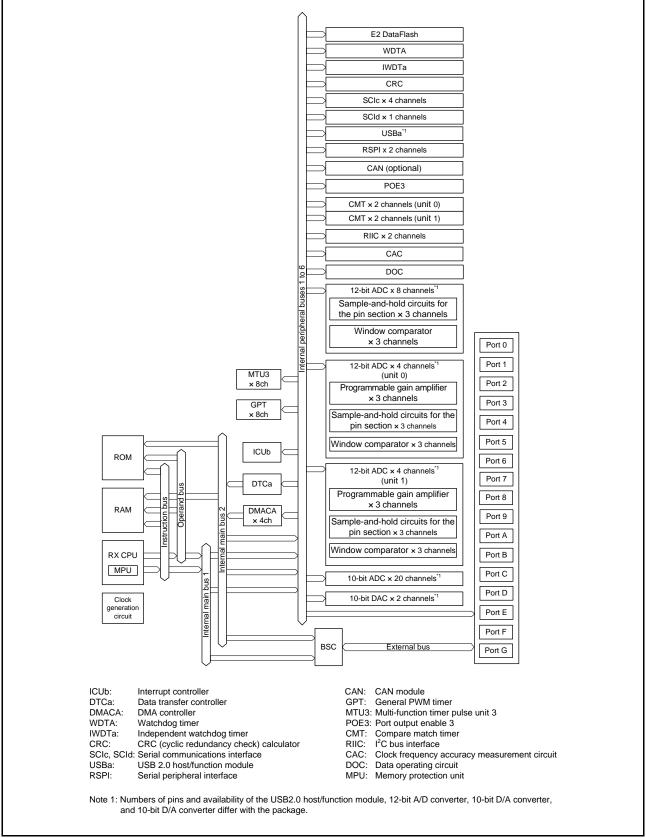
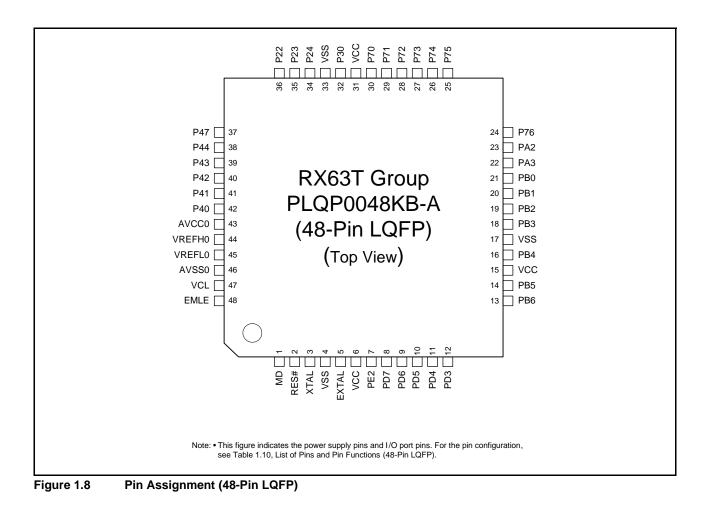



Figure 1.2 Block Diagram

Classifications	Pin Name	I/O	Description				
Serial communications	Asynchronous mode/clock	synchron	ous mode				
interface (SCIc)	SCK0, SCK1, SCK2, SCK3	I/O	Input/output pins for clock signals.				
	RXD0, RXD1, RXD2, RXD3	Input	Input pins for data reception.				
	TXD0, TXD1, TXD2, TXD3	Output	Output pins for data transmission.				
	CTS0#, CTS1#, CTS2#, CTS3#	Input	Transmit/receive start control input pins				
	RTS0#, RTS1#, RTS2#, RTS3#	Output	Transmit/receive start control output pins				
	Simple I ² C mode						
	SSCL0, SSCL1, SSCL2, SSCL3	I/O	Input/output pins for the I ² C clock				
	SSDA0, SSDA1, SSDA2, SSDA3	I/O	Input/output pins for the I ² C data				
	Simple SPI mode						
	SCK0, SCK1, SCK2, SCK3	I/O	Input/output pins for the clock				
	SMISO0, SMISO1, SMISO2, SMISO3	I/O	Input/output pins for slave transmit data.				
	SMOSI0, SMOSI1, SMOSI2, SMOSI3	I/O	Input/output pins for master transmit data.				
	SS0#, SS1#, SS2#, SS3#	Input	Input pins for chip select signals				
Serial communications	Asynchronous mode/clock synchronous mode						
interface (SCId)	SCK12	I/O	Input/output pin for clock signals.				
	RXD12	Input	Input pin for data reception.				
	TXD12	Output	Output pin for data transmission.				
	CTS12#	Input	Transmit/receive start control input pins				
	RTS12#	Output	Transmit/receive start control output pins				
	Simple I ² C mode						
	SSCL12	I/O	Input/output pins for the I ² C clock				
	SSDA12	I/O	Input/output pins for the I ² C data				
	Simple SPI mode						
	SCK12	I/O	Input/output pins for the clock				
	SMISO12	I/O	Input/output pins for slave transmit data.				
	SMOSI12	I/O	Input/output pins for master transmit data.				
	SS12#	Input	Input pins for chip select signals				
	Extended serial mode						
	RXDX12	Input	Input pin for receive data				
	TXDX12	Output	Output pin for transmit data				
	SIOX12	I/O	Input/output pin for transfer data				
I ² C bus interface	SCL, SCL0, SCL1	I/O	Clock input/output pin. N-channel open drain can directly drive buses.				
	SDA, SDA0, SDA1	I/O	Data input/output pin. N-channel open drain can directly drive buses.				

Table 1.4Pin Functions (3/5)

.

Pin Number 144-Pin LQFP	Power Supply Clock System Timer		Timer (MTU3, GPT, POE3, CAC)	Communications (SCIc, SCId, RSPI, RIIC, CAN, USB)	Interrupt	S12ADB, AD, DA	
72		PG3		GTIOC6A	TXD3/SMOSI3/SSDA3		
73		PG2			SCK2	IRQ2	
74		PG1		GTIOC7B	RXD2/SMISO2/SSCL2	IRQ1	
75		PG0		GTIOC7A	TXD2/SMOSI2/SSDA2	IRQ0	
76		P76	D0/[A0/D0]	MTIOC4D/GTIOC2B			
77		P75	D1/[A1/D1]	MTIOC4C/GTIOC1B			
78		P74	D2/[A2/D2]	MTIOC3D/GTIOC0B			
79		P73	D3/[A3/D3]	MTIOC4B/GTIOC2A			
80		P72	D4/[A4/D4]	MTIOC4A/GTIOC1A			
81		P71	D5/[A5/D5]	MTIOC3B/GTIOC0A			
82		P70	D6/[A6/D6]	POE0#	CTS1#/RTS1#/SS1#	IRQ5-DS	
83		P33	D7/[A7/D7]	MTIOC3A/MTCLKA	SSLA3/SSLB3		
84		P32	D8/[A8/D8]	MTIOC3C/MTCLKB	SSLA2/SSLB2		
85	VCC						
86		P31	D9/[A9/D9]	MTIOC0A/MTCLKC	SSLA1/SSLB1		
87	VSS						
88		P30	D10/[A10/ D10]	MTIOC0B/MTCLKD	SCK0/SSLA0/SSLB0		
89		P26	CS0#		TXD1/SMOSI1/ SSDA1/SDA1		
90		P25	CS1#		SCK1/SCL1		
91		P24	D11/[A11/D11]		CTS0#/RTS0#/SS0#/ RSPCKA/RSPCKB	IRQ4	
92		P23	D12/[A12/ D12]	CACREF	TXD0/SMOSI0/ SSDA0/MOSIA/ MOSIB/CTX1		
93		P22	D13/[A13/ D13]		RXD0/SMISO0/ SSCL0/MISOA/ MISOB/CRX1		ADTRG#
94		P21	D14/[A14/ D14]	MTCLKA		IRQ6-DS	ADTRG1#
95		P20	D15/[A15/ D15]	MTCLKB		IRQ7-DS	ADTRG0#
96		PC5					AN19
97		PC4					AN18
98		P65	A0/BC0#				AN5
99		P64	A1				AN4
100		PC3					AN17
101		PC2					AN16
102	AVCC						
103	VREF						
104	AVSS						
105		PC1					AN15
106		PC0					AN14
107		P63	A2				AN3
108		P62	A3				AN2
109		P61	A4				AN1

Table 1.5	List of Pins and Pin Functions (144-Pin LQFP) (3/4)

Pin Number	Power Supply Clock			Timer	Comn	nunications		
64-Pin LQFP	System Control	I/O Port	POE3	(MTU3, GPT, CAC)	(SCIc, SCId)	(RSPI, RIIC)	Interrupt	S12ADB
1	EMLE							
2		P00		GTIOC3A	CTS0# RTS0# SS0#		IRQ2-DS	
3	VCL							
4		P01		GTIOC3B CACREF			IRQ4-DS	
5	MD FINED							
6	RES#							
7	XTAL							
8	VSS							
9	EXTAL							
10	VCC							
11		PE2	POE10#				NMI	
12	TRST#	PD7		GTIOC0A	CTS0# RTS0# SS0#			
13	TMS	PD6		GTIOC0B				
14	TDI	PD5		GTIOC1A	RXD1 SMISO1 SSCL1			
15	TCK FINEC	PD4		GTIOC1B	SCK1			
16	TDO	PD3		GTIOC2A	TXD1 SMOSI1 SSDA1			
17		PB7		GTIOC2B	SCK12			
18		PB6		GTIOC2B	RXD12 SMISO12 SSCL12 RXDX12			
19		PB5	POE11#		TXD12 SMOSI12 SSDA12 TXDX12 SIOX12		IRQ0	
20	VCC							
21		PB4	POE8#	GTETRG	CTS12# RTS12# SS12#		IRQ3-DS	
22	VSS		1	1		1		
23		PB3		MTIOC0A MTCLKA CACREF	SCK0			
24		PB2		MTIOC0B MTCLKB	TXD0 SMOSI0 SSDA0	SDA		
25		PB1		MTIOC0C	RXD0 SMISO0 SSCL0	SCL		
26		PB0	1	MTIOC0D		MOSIA		1

 Table 1.9
 List of Pins and Pin Functions (64-Pin LQFP) (1/3)

Pin Number	Power Supply			Timer	Comn	nunications		
64-Pin LQFP	Clock System Control	I/O Port	POE3	(MTU3, GPT, CAC)	(SCIc, SCId)	(RSPI, RIIC)	Interrupt	S12ADB
1	MD FINED							
2	RES#							
3	XTAL							
4	VSS							
5	EXTAL							
6	VCC							
7		PE2	POE10#				NMI	
8	TRST#	PD7		GTIOC0A	CTS0# RTS0# SS0#			
9	TMS	PD6		GTIOC0B				
10	TDI	PD5		GTIOC1A	RXD1 SMISO1 SSCL1			
11	TCK FINEC	PD4		GTIOC1B	SCK1			
12	TDO	PD3		GTIOC2A	TXD1 SMOSI1 SSDA1			
13		PB6		GTIOC2B	RXD12 SMISO12 SSCL12 RXDX12			
14		PB5	POE11#		TXD12 SMOSI12 SSDA12 TXDX12 SIOX12		IRQ0	
15	VCC							
16		PB4	POE8#	GTETRG	CTS12# RTS12# SS12#		IRQ3-DS	
17	VSS							
18		PB3		MTIOC0A MTCLKA CACREF	SCK0			
19		PB2		MTIOC0B MTCLKB	TXD0 SMOSI0 SSDA0	SDA		
20		PB1		MTIOC0C	RXD0 SMISO0 SSCL0	SCL		
21		PB0		MTIOC0D		MOSIA		
22		PA3		MTIOC2A		SSLA0		
23		PA2		MTIOC2B		SSLA1		
24		P76		MTIOC4D GTIOC2B MTIOC7D				
25		P75		MTIOC4C GTIOC1B MTIOC7C				

Table 1.10 List of Pins and Pin Functions (48-Pin LQFP) (1/2)

3. Address Space

3.1 Address Space

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

Table 4.1	List of I/O Registers (Address Order) (2/48)
-----------	--

	Module		Register	Number	Access	Number of Access States	Module	
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK} \qquad \textbf{ICLK} < \textbf{PCLK}$	Name	Remarks
0008 201Fh	DMAC0	DMA Activation Source Flag Control Register	DMCSL	8	8	2 ICLK	DMACA	
008 2040h	DMAC1	DMA Source Address Register	DMSAR	32	32	2 ICLK		
008 2044h	DMAC1	DMA Destination Address Register	DMDAR	32	32	2 ICLK		
008 2048h	DMAC1	DMA Transfer Count Register	DMCRA	32	32	2 ICLK		
008 204Ch	DMAC1	DMA Block Transfer Count Register	DMCRB	16	16	2 ICLK		
008 2050h	DMAC1	DMA Transfer Mode Register	DMTMD	16	16	2 ICLK		
008 2053h	DMAC1	DMA Interrupt Setting Register	DMINT	8	8	2 ICLK		
008 2054h	DMAC1	DMA Address Mode Register	DMAMD	16	16	2 ICLK		
008 205Ch	DMAC1	DMA Transfer Enable Register	DMCNT	8	8	2 ICLK		
008 205Dh	DMAC1	DMA Software Start Register	DMREQ	8	8	2 ICLK		
008 205Eh	DMAC1	DMA Status Register	DMSTS	8	8	2 ICLK	-	
008 205Fh	DMAC1	DMA Activation Source Flag Control Register	DMCSL	8	8	2 ICLK	-	
008 2080h	DMAC2	DMA Source Address Register	DMSAR	32	32	2 ICLK	-	
008 2084h	DMAC2	DMA Destination Address Register	DMDAR	32	32	2 ICLK	-	
008 2088h	DMAC2	DMA Transfer Count Register	DMCRA	32	32	2 ICLK	-	
008 208Ch	DMAC2	DMA Block Transfer Count Register	DMCRB	16	16	2 ICLK		
		-					-	
008 2090h	DMAC2	DMA Transfer Mode Register	DMTMD	16	16	2 ICLK		
008 2093h	DMAC2	DMA Interrupt Setting Register	DMINT	8	8	2 ICLK	-	
008 2094h	DMAC2	DMA Address Mode Register	DMAMD	16	16	2 ICLK	-	
008 209Ch	DMAC2	DMA Transfer Enable Register	DMCNT	8	8	2 ICLK		
008 209Dh	DMAC2	DMA Software Start Register	DMREQ	8	8	2 ICLK	-	
008 209Eh	DMAC2	DMA Status Register	DMSTS	8	8	2 ICLK	-	
008 209Fh	DMAC2	DMA Activation Source Flag Control Register	DMCSL	8	8	2 ICLK		
008 20C0h	DMAC3	DMA Source Address Register	DMSAR	32	32	2 ICLK		
008 20C4h	DMAC3	DMA Destination Address Register	DMDAR	32	32	2 ICLK		
0008 20C8h	DMAC3	DMA Transfer Count Register	DMCRA	32	32	2 ICLK		
0008 20CCh	DMAC3	DMA Block Transfer Count Register	DMCRB	16	16	2 ICLK		
0008 20D0h	DMAC3	DMA Transfer Mode Register	DMTMD	16	16	2 ICLK		
008 20D3h	DMAC3	DMA Interrupt Setting Register	DMINT	8	8	2 ICLK		
008 20D4h	DMAC3	DMA Address Mode Register	DMAMD	16	16	2 ICLK		
008 20DCh	DMAC3	DMA Transfer Enable Register	DMCNT	8	8	2 ICLK		
008 20DDh	DMAC3	DMA Software Start Register	DMREQ	8	8	2 ICLK	-	
008 20DEh	DMAC3	DMA Status Register	DMSTS	8	8	2 ICLK		
008 20DFh	DMAC3	DMA Activation Source Flag Control Register	DMCSL	8	8	2 ICLK	-	
008 2200h	DMAC	DMACA Module Activation Register	DMAST	8	8	2 ICLK	-	
0008 2400h	DTC	DTC Control Register	DTCCR	8	8	2ICLK	DTCa	
008 2400h	DTC	DTC Vector Base Register	DTCVBR	32	32	2ICLK	Dica	
		-			32 8		-	
0008 2408h	DTC	DTC Address Mode Register	DTCADMOD	8		2ICLK		
0008 240Ch	DTC	DTC Module Start Register	DTCST	8	8	2ICLK	-	
0008 240Eh	DTC	DTC Status Register	DTCSTS	16	16	2ICLK		
008 3002h	BSC	CS0 Mode Register	CS0MOD	16	16	1, 2 BCLK	Buses	Not present in version with 64 or 48 pins.
008 3004h	BSC	CS0 Wait Control Register 1	CS0WCR1	32	32	1, 2 BCLK		Not present in version with 64 or 48 pins.
008 3008h	BSC	CS0 Wait Control Register 2	CS0WCR2	32	32	1, 2 BCLK		Not present in version with 64 or 48 pins.
008 3012h	BSC	CS1 Mode Register	CS1MOD	16	16	1, 2 BCLK		Not present in versior with 64 or 48 pins.
0008 3014h	BSC	CS1 Wait Control Register 1	CS1WCR1	32	32	1, 2 BCLK	1	Not present in versior with 64 or 48 pins.
0008 3018h	BSC	CS1 Wait Control Register 2	CS1WCR2	32	32	1, 2 BCLK	1	Not present in versior with 64 or 48 pins.
		CS2 Mode Register	CS2MOD	16	16	1, 2 BCLK	1	Not present in versior

	Module		Register	Number	Access	Number of A	ccess States	Module	
Address	Symbol	Register Name	Symbol	of Bits	Size	$\textbf{ICLK} \geq \textbf{PCLK}$	ICLK < PCLK	Name	Remarks
0009 1840h	CAN1	Control Register	CTLR	16	8, 16	2, 3 PCLKB	2 ICLK	CAN	Not present in version with 64 or 48 pins.
0009 1842h	CAN1	Status Register	STR	16	8, 16	2, 3 PCLKB	2 ICLK	-	Not present in version with 64 or 48 pins.
0009 1844h	CAN1	Bit Configuration Register	BCR	32	8, 16, 32	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1848h	CAN1	Receive FIFO Control Register	RFCR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1849h	CAN1	Receive FIFO Pointer Control Register	RFPCR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Ah	CAN1	Transmit FIFO Control Register	TFCR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Bh	CAN1	Transmit FIFO Pointer Control Register	TFPCR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Ch	CAN1	Error Interrupt Enable Register	EIER	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Dh	CAN1	Error Interrupt Factor Judge Register	EIFR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Eh	CAN1	Receive Error Count Register	RECR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 184Fh	CAN1	Transmit Error Count Register	TECR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1850h	CAN1	Error Code Store Register	ECSR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1851h	CAN1	Channel Search Support Register	CSSR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1852h	CAN1	Mailbox Search Status Register	MSSR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1853h	CAN1	Mailbox Search Mode Register	MSMR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1854h	CAN1	Time Stamp Register	TSR	16	8, 16	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1856h	CAN1	Acceptance Filter Support Register	AFSR	16	8, 16	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
0009 1858h	CAN1	Test Control Register	TCR	8	8	2, 3 PCLKB	2 ICLK		Not present in version with 64 or 48 pins.
000A 0000h	USB0	System Configuration Control Register	SYSCFG	16	16	3, 4 PCLKB	2, 3 ICLK	USBa	Not present in version with 112, 100, 64, or 4 pins.
000A 0004h	USB0	System Configuration Status Register 0	SYSSTS0	16	16	9 PCLKB or more			Not present in version with 112, 100, 64, or 4 pins.
000A 0008h	USB0	Device State Control Register 0	DVSTCTR0	16	16	9 PCLKB or more			Not present in version with 112, 100, 64, or 4 pins.
000A 0014h	USB0	CFIFO Port Register	CFIFO	16	8, 16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 0018h	USB0	D0FIFO Port Registe	D0FIFO	16	8, 16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 001Ch	USB0	D1FIFO Port Register	D1FIFO	16	8, 16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 0020h	USB0	CFIFO Port Select Register	CFIFOSEL	16	16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 0022h	USB0	CFIFO Port Control Register	CFIFOCTR	16	16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 0028h	USB0	D0FIFO Port Select Register	D0FIFOSEL	16	16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 002Ah	USB0	D0FIFO Port Control Register	DOFIFOCTR	16	16	3, 4 PCLKB	2, 3 ICLK		Not present in version with 112, 100, 64, or 4 pins.
000A 002Ch	USB0	D1FIFO Port Select Register	D1FIFOSEL	16	16	3, 4 PCLKB	2, 3 ICLK		Not present in versior with 112, 100, 64, or 4 pins.

Table 4.1 List of I/O Registers (Address Order) (29/48)

Table 5.3DC Characteristics (2)

Note: Common standard values for conditions not given in the table are listed as "Condition 1" to "Condition 3" below.

Condition 1: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0

Condition 2: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VCC_USB = 3.0 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

The following relation applies when the USB is in use under condition 1 or condition 2: Vcc = PLLVcc = Vcc_USB = 3.0 to 3.6 V. $T_a = T_{opr}$. T_a is common to conditions 1 to 3.

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output high voltage	All output pins (except for P52, P53, P60 to P65, P71 to P76, P90 to P95, and USB0_DPUPE)	V _{OH}	VCC - 0.5	_	_	V	I _{OH} = -1 mA
	P52, P53, and P60 to P65		AVCC - 0.5	—	_		$I_{OH} = -1 \text{ mA}$
	USB0_DPUPE		VCC_USB- 0.5				I _{OH} = -1 mA
	P71 to P76, and P90 to P95		VCC - 1.0	—	—		I _{OH} = -5 mA
Output low voltage	All output pins (except for P71 to P76, P90 to P95, and RIIC pins)	V _{OL}		_	0.5	V	I _{OL} = 1.0 mA
	P71 to P76, and P90 to P95		_	—	1.1		I _{OL} = 15 mA
	RIIC pins		_	—	0.4		I _{OL} = 3 mA
			_	—	0.6		I _{OL} = 6 mA
Input leakage current	RES#, MD pin, EMLE, Port 4, Ports P50, P51, P54 to P57, and Port C	I _{in}	_	_	1.0	μA	V _{in} = 0 V, V _{in} = VCC
Three-state leakage current (off state)	Port 0, Port 1, Ports P20 to P24, Port 3, Ports P52, P53, Ports 6 to A, Ports PB0, PB3 to PB7, and Ports D to G	I _{TSI}	_	_	1.0	μA	V _{in} = 0 V, V _{in} = VCC
	Ports P25, P26, PB1, and PB2		—	-	5.0		
Input capacitance	All output pins (except for P25, P26, PB1, and PB2)	C _{in}	—	-	15	pF	V _{in} = 0 V, f = 1 MHz,
	Ports P25, P26, PB1, and PB2		_	-	30]	T _a = 25 °C

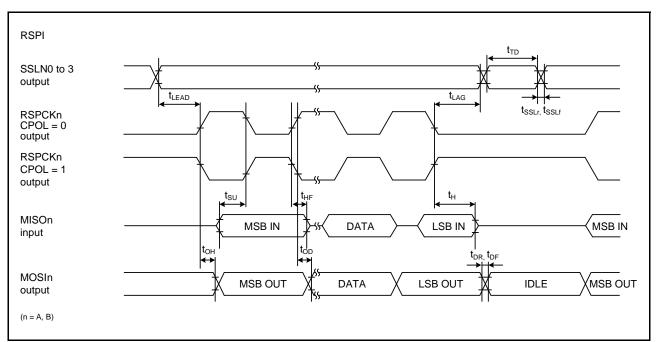


Figure 5.33 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Division Ratio Set to 1/2)

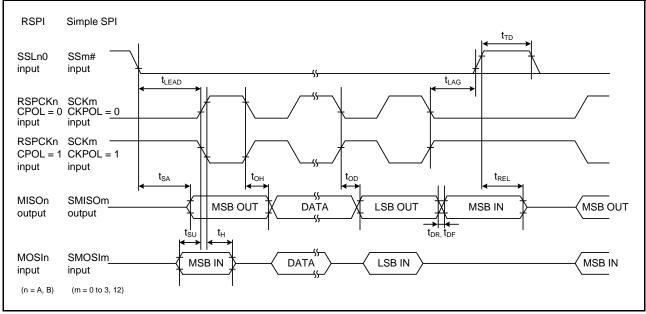


Figure 5.34 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1)

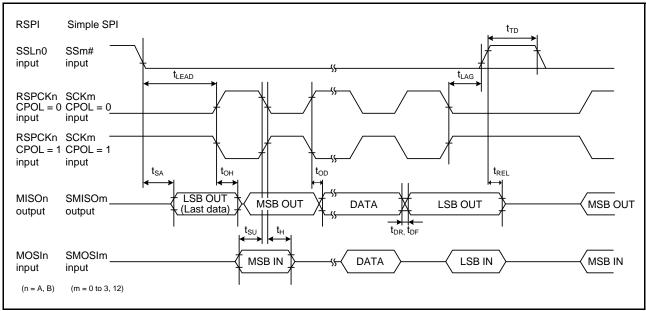


Figure 5.35 RSPI Timing (Slave, CPHA = 1) and Simple SPI Timing (Slave, CKPH = 0)

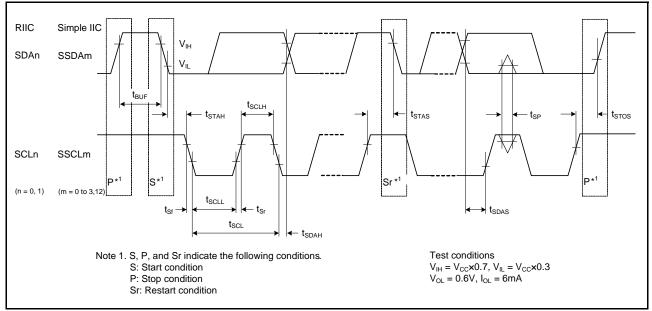


Figure 5.36 RIIC Bus Interface Input/Output Timing and Simple IIC Bus Interface Input/Output Timing

5.6 D/A Conversion Characteristics

Table 5.25 D/A Conversion Characteristics

Note: Common standard values for conditions not given in the table are listed as "Condition 1" to "Condition 3" below.

Condition 1: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0

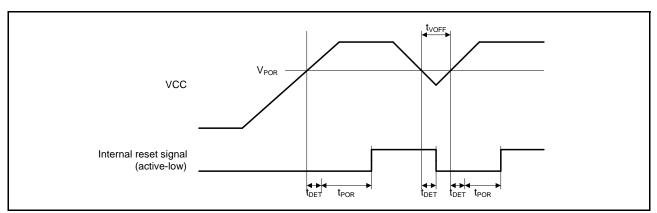
Condition 2: VCC = PLLVCC = VCC_USB = 2.7 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VCC_USB = 3.0 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

 $T_a = T_{opr}$. T_a is common to conditions 1 to 3.

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	10	10	10	Bit	
Conversion time	—	—	3.0	μs	20-pF capacitive load
Absolute accuracy	—	±2.0	±4.0	LSB	2-MΩ resistive load
	—	—	±3.0	LSB	4-MΩ resistive load
	—	_	±2.0	LSB	10-MΩ resistive load
RO output resistance	—	3.6	—	kΩ	

Table 5.27 Power-on Reset Circuit and Voltage Detection Circuit Characteristics (2)


Condition: VCC = PLLVCC = 4.0 to 5.5 V, VCC_USB = 3.0 to 3.6 V, VSS = PLLVSS = VSS_USB = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = VREF = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0

-		-
	=	long
a		opi

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V _{POR}	3.6	3.8	4.0	V	Figure 5.41
	Voltage detection circuit (LVD0)	V _{DET0}	4.0	4.2	4.4		Figure 5.42
	Voltage detection circuit (LVD1)*1	V _{DET1_8}	4.59	4.77	4.95		Figure 5.43
		V _{DET1_9}	4.05	4.23	4.41		
		V _{DET1_A}	4.32	4.50	4.68		
	Voltage detection circuit (LVD2)*2	V _{DET2_8}	4.59	4.77	4.95		Figure 5.44
		V _{DET2_9}	4.05	4.23	4.41		
		V _{DET2_A}	4.32	4.50	4.68		
Internal reset time	Power-on reset (POR)	t _{POR}		9.7		ms	Figure 5.41
	Voltage detection circuit (LVD0)	t _{LVD0}		9.7			Figure 5.42
	Voltage detection circuit (LVD1)	t _{LVD1}		0.9			Figure 5.43
	Voltage detection circuit (LVD2)	t _{LVD2}		0.9			Figure 5.44
Minimum VCC down time*3		t _{VOFF}	200	—	—	μs	Figure 5.41 to
Response delay time		t _{DET}			200	μs	Figure 5.44
LVD operation stabilization time (after LVD is enabled)		Td _(E-A)			3	μs	Figure 5.41 to
Hysteresis width (LVD1 and LVD2)		V _{LVH}		80		mV	Figure 5.44

Note 1. # in symbol $V_{DET1_{\#}}$ indicates the value of the LVDLVLR.LVD1LVL[3:0] bits.

Note 2. # in symbol V_{DET2} indicates the value of the LVDLVLR.LVD2LVL[3:0] bits. Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, V_{DET1} , and V_{DET2} for the POR/ LVD.

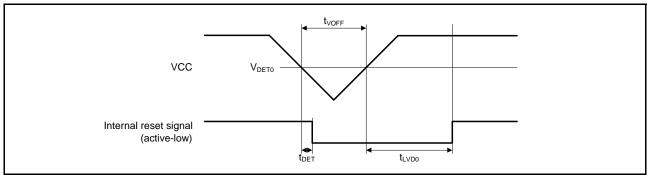


Figure 5.40 Voltage Detection Circuit Timing (VDET0)

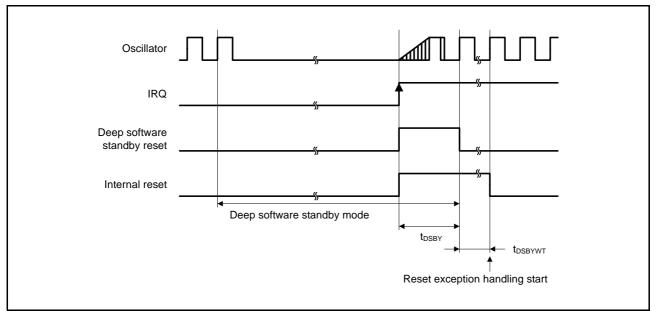
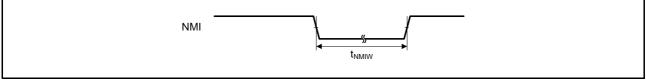


Figure 6.9 Deep Software Standby Mode Cancellation Timing

6.3.4 Control Signal Timing


Table 6.10 Control Signal Timing

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V, AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0,

Ta = T_{opr}

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
NMI pulse width	t _{NMIW}	200	—	—	ns	$t_{Pcyc} \times 2 \le 200$ ns, Figure 6.10
		2			t _{Pcyc}	t _{Pcyc} × 2 > 200ns, Figure 6.10
IRQ pulse width	t _{IRQW}	200	_	_	ns	$t_{Pcyc} \times 2 \le 200$ ns, Figure 6.11
		2			t _{Pcyc}	$t_{Pcyc} \times 2 > 200$ ns, Figure 6.11

Note 1. t_{Pcyc}: PCLK cycle

Figure 6.10 NMI Interrupt Input Timing

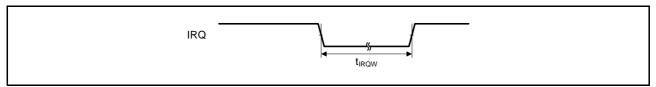


Figure 6.11 IRQ Interrupt Input Timing

6.3.5 Timing of On-Chip Peripheral Modules

Table 6.11 Timing of On-Chip Peripheral Modules (1)

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V, AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, To - T

Ta = T_{opr}

Item			Symbol	Min.	Max.	Unit*1	Test Conditions
I/O ports	Input data pulse width		t _{PRW}	1.5	—	t _{Pcyc}	Figure 6.12
MTU3	Input capture input pulse width	Single-edge setting	t _{TICW}	3	—	t _{PAcyc}	Figure 6.13
		Both-edge setting	-	5	—		
	Timer clock pulse width	Single-edge setting	t _{TCKWH,} t _{TCKWL}	3	—	t _{PAcyc}	Figure 6.14
		Both-edge setting	-	5	—		
		Phase counting mode		5	—		
POE3	POE# input pulse width		t _{POEW}	1.5	—	t _{Pcyc}	Figure 6.16
GPT	Input capture input pulse width	Single-edge setting	t _{GTICW}	3	—	t _{PAcyc}	Figure 6.15
External trigger input pulse width		Both-edge setting		5	—		
		Single-edge setting	t _{otetw}	3	—	t _{PAcyc}	Figure 6.18
		Both-edge setting	-	5	—		
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure 6.17
		Clock synchronous	-	6	—		
	Input clock pulse width	t _{SCKW}	0.4	0.6	t _{Scyc}		
	Input clock rise time	t _{SCKr}	—	20	ns		
	Input clock fall time	t _{SCKf}	—	20	ns		
	Output clock cycle	Asynchronous	t _{Scyc}	16	—	t _{Pcyc}	
Outpu		Clock synchronous		4	—		
	Output clock pulse width	t _{SCKW}	0.4	0.6	t _{Scyc}		
	Output clock rise time	Output clock rise time			20	ns	
-	Output clock fall time	t _{SCKf}	—	20	ns		
	Transmit data delay time	Clock synchronous	t _{TXD}	_	40	ns	Figure 6.18
	Receive data setup time	Clock synchronous	t _{RXS}	40	—	ns	
	Receive data hold time Clock synchronous		t _{RXH}	40	—	ns	
A/D converter	12-bit A/D converter trigger input pulse width		t _{TRGW}	1.5	—	t _{Pcyc}	Figure 6.19

Note 1. t_{Pcyc}: PCLK cycle, t_{PAcye}: PCLKA cycle

Table 6.13 Timing of On-Chip Peripheral Modules (3)

Conditions: VCC = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = 0 V, AVCC0 = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, Ta = T_{opr}

	Item	Symbol	Min.	Max.	Unit*1	Test Conditions
Simple	SCK clock cycle output (master)	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 6.20
SPI	SCK clock cycle input (slave)		8	65536		
	SCK clock high pulse width	t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width	t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time	t _{SPCKR} , t _{SPCKF}	—	20	ns	
	Data input setup time	t _{SU}	40	—	ns	Figure 6.21 to
	Data input hold time	t _H	40	—	ns	Figure 6.24
	SS input setup time	t _{LEAD}	6	—	t _{Pcyc}	
	SS input hold time	t _{LAG}	6	—	t _{Pcyc}	
	Data output delay time	t _{OD}	—	40	ns	
	Data output hold time	t _{OH}	-10	—	ns	
	Data rise/fall time	t _{DR} , t _{DF}	—	20	ns	
	SS input rise/fall time	t _{SSLr} , t _{SSLf}	—	20	ns	
	Slave access time	t _{SA}	—	5	t _{Pcyc}	Figure 6.23 and
	Slave output release time	t _{REL}	—	5	t _{Pcyc}	Figure 6.24

Note 1. t_{Pcyc}: PCLK cycle

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applicables on use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong roug Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice