

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 32-Core
Speed	4000MIPS
Connectivity	USB
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xuf232-512-fb374-c40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2

- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6
- ▶ **Ports** The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3
- Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4
- Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9
- PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7
- ▶ **USB** The USB PHY provides High-Speed and Full-Speed, device, host, and on-thego functionality. Data is communicated through ports on the digital node. A library is provided to implement USB device functionality. Section 10
- ▶ Flash The device has a built-in 2MBflash. Section 8
- JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 11

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

3

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X and available at no cost from xmos.com/downloads. Information on using the tools is provided in the xTIMEcomposer User Guide, X3766.

2 XUF232-512-FB374 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 32 real-time logical cores on 4 xCORE tiles
- Cores share up to 2000 MIPS
 - Up to 4000 MIPS in dual issue mode
- Each logical core has:
 - Guaranteed throughput of between 1/5 and 1/8 of tile MIPS
 - 16x32bit dedicated registers
- 167 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 ${\rightarrow}64$ bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions

▶ Dual USB PHY, fully compliant with USB 2.0 specification

Programmable I/O

- 176 general-purpose I/O pins, configurable as input or output
 - Up to 56 x 1bit port, 22 x 4bit port, 13 x 8bit port, 6 x 16bit port, 4 x 32bit port
 8 xCONNECT links
- Port sampling rates of up to 60 MHz with respect to an external clock
- 128 channel ends (32 per tile) for communication with other cores, on or off-chip

Memory

- 512KB internal single-cycle SRAM (max 128KB per tile) for code and data storage
- 32KB internal OTP (max 8KB per tile) for application boot code
- 2MB internal flash for application code and overlays

Hardware resources

- 24 clock blocks (6 per tile)
- 40 timers (10 per tile)
- 16 locks (4 per tile)

JTAG Module for On-Chip Debug

Security Features

• Programming lock disables debug and prevents read-back of memory contents

-XM()S

AES bootloader ensures secrecy of IP held on external flash memory

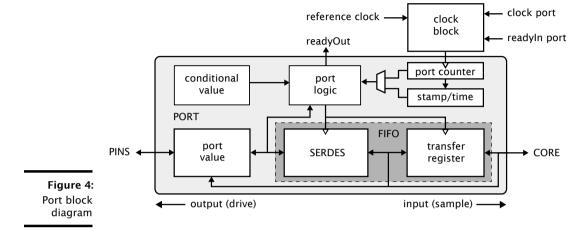
Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C
- Speed Grade
 - 40: 2000 MIPS
- Power Consumption
 - 1140 mA (typical)
- ▶ 374-pin FBGA package 0.8 mm pitch

5

-XMOS [®] -

(continued)


$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Signal	Function		Туре	Properties
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D50	X ₂ L5 ³	32A ¹	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D51	X ₂ L5 ² _{in}	32A ²	I/0	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D52	X ₂ L5 ¹	32A ³	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D53	X ₂ L5 ⁰	32A ⁴	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D54	X ₂ L5 ⁰ _{out}	32A ⁵	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D55	X ₂ L5 ¹ _{out}	32A ⁶	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D56	X ₂ L5 ² _{out}	32A ⁷	I/0	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D57	X ₂ L5 ³ _{out}	32A ⁸	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D58	X ₂ L5 ⁴ _{out}	32A ⁹	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D61	X ₂ L6 ⁴ _{in}	32A ¹⁰	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D62	X ₂ L6 ³ _{in}	32A ¹¹	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D63	X ₂ L6 ² _{in}	32A ¹²	I/O	IO, PD
X2D66 $x_{2}L6_{out}^{0}$ $32A^{15}$ I/O IO, PD X2D67 $x_{2}L6_{out}^{0}$ $32A^{16}$ I/O IO, PD X2D68 $x_{2}L6_{out}^{0}$ $32A^{17}$ I/O IO, PD X2D69 $x_{2}L6_{out}^{0}$ $32A^{18}$ I/O IO, PD X2D69 $x_{2}L6_{out}^{0}$ $32A^{19}$ I/O IO, PD X2D70 $x_{2}L6_{out}^{0}$ $32A^{19}$ I/O IO, PD X3D00 $x_{2}L7_{in}^{2}$ $1A^{0}$ I/O IO, PD X3D01 $x_{2}L4_{out}^{1}$ $4A^{0}$ $8A^{0}$ $16A^{0}$ $32A^{20}$ I/O IO, PD X3D02 $x_{2}L4_{out}^{0}$ $4A^{0}$ $8A^{0}$ $16A^{0}$ $32A^{22}$ I/O IO, PD X3D03 $x_{2}L4_{out}^{0}$ $4A^{0}$ $8A^{0}$ $16A^{0}$ $32A^{22}$ I/O IO, PD X3D03 $x_{2}L4_{out}^{0}$ $4B^{0}$ $8A^{2}$ $16A^{2}$ $32A^{22}$ I/O IO, PD X3D04 $x_{2}L4_{out}^{0}$ $4B^{0}$ $8A^{2}$ $16A^{3}$ $32A^{22}$ I/O	X2D64	X ₂ L6 ¹ _{in}	32A ¹³	I/0	IO, PD
X2D67 X2L6 aut 32A ¹⁶ I/O IO, PD X2D68 X2L6 aut 32A ¹⁷ I/O IO, PD X2D69 X2L6 aut 32A ¹⁸ I/O IO, PD X2D70 X2L6 aut 32A ¹⁸ I/O IO, PD X2D70 X2L6 aut 32A ¹⁹ I/O IO, PD X3D00 X2L7 in 1A ⁰ I/O IO, PD X3D01 X2L7 in 1B ⁰ I/O IO, PD X3D02 X2L4 aut 4A ⁰ 8A ⁰ 16A ⁰ 32A ²⁰ I/O IO, PD X3D03 X2L4 aut 4A ¹ 8A ¹ 16A ¹ 32A ²² I/O IO, PD X3D04 X2L4 aut 4B ⁰ 8A ² 16A ² 32A ²³ I/O IO, PD X3D05 X2L4 aut 4B ⁰ 8A ² 16A ³ 32A ²² I/O IO, PD X3D06 X2L4 aut 4B ³ 8A ³ 16A ³ 32A ²² I/O IO, PD X3D07 X2L4 aut 4B ³ 8A ⁵ 16A ⁵ 32A ²⁵ I/O	X2D65	X ₂ L6 ⁰ _{in}		I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D66	X ₂ L6 ⁰ _{out}	32A ¹⁵	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D67	X ₂ L6 ¹ _{out}	32A ¹⁶	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D68	X ₂ L6 ² _{out}	32A ¹⁷	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X2D69	X ₂ L6 ³ _{out}	32A ¹⁸	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X2D70	X ₂ L6 ⁴ _{out}	32A ¹⁹	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D00	X ₂ L7 ² _{in} 1A ⁰		I/O	IO, PD
X3D03 $X_2L4_{out}^0$ 4A18A116A1 $32A^{21}$ I/OIO, PDX3D04 $X_2L4_{out}^0$ 4B08A216A2 $32A^{22}$ I/OIO, PDX3D05 $X_2L4_{out}^0$ 4B18A316A3 $32A^{23}$ I/OIO, PDX3D06 $X_2L4_{out}^0$ 4B28A416A4 $32A^{24}$ I/OIO, PDX3D07 $X_2L4_{out}^0$ 4B28A416A4 $32A^{24}$ I/OIO, PDX3D08 $X_2L7_{in}^1$ 4B38A516A5 $32A^{25}$ I/OIO, PDX3D09 $X_2L7_{in}^3$ 4A38A716A7 $32A^{27}$ I/OIO, PDX3D101C010PD100, PDIOT, PDX3D111D0100100, PDI/OIOT, PDX3D121E01/OIO, PDI/OIO, PDX3D131F01/OIO, PDX3D144C08B016A8 $32A^{28}$ I/OIO, PDX3D204C28B616A8 $32A^{28}$ I/OIO, PDX3D14X3D131F01/OIO, PDX3D204C28B616A14 $32A^{31}$ I/OIO, PDX3D204C28B616A8 $32A^{28}$ I/OIO, PDX3D20X3D144C08B716A9 $32A^{29}$ I/OIO, PDX3D204C28B616A14 $32A^{31}$ I/OIO, PDX3D214C38B716A15 $32A^{31}$ I/O<	X3D01			I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X3D02	X ₂ L4 ⁰ 4A ⁰ 8A ⁰ 16A	⁰ 32A ²⁰	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D03	X ₂ L4 ⁰ _{out} 4A ¹ 8A ¹ 16A	¹ 32A ²¹	I/O	IO, PD
X3D06 $X_2L4_{0ut}^3$ $4B^2$ $8A^4$ $16A^4$ $32A^{24}$ I/O IO, PD X3D07 $X_2L4_{0ut}^4$ $4B^3$ $8A^5$ $16A^5$ $32A^{25}$ I/O IO, PD X3D08 $X_2L7_{in}^4$ $4A^2$ $8A^6$ $16A^6$ $32A^{26}$ I/O IO, PD X3D09 $X_2L7_{in}^3$ $4A^3$ $8A^7$ $16A^7$ $32A^{27}$ I/O IO, PD X3D10 $1C^0$ I/O IO, PD I/O IO, PD X3D11 $1D^0$ I/O IO, PD X3D12 $1E^0$ I/O IO, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O X3D20 $4C^2$ $8B^6$ $16A^4$ $32A^{29}$ I/O IO, PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD I/O IO, PD X3D24 11^0 I/O IO, PD I/O IO, PD X3D25 $1J^0$ I/O IO, PD I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^1$ I/O IO, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IO, PD	X3D04	X ₂ L4 ¹ _{out} 4B ⁰ 8A ² 16A	² 32A ²²	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D05	X ₂ L4 ² _{out} 4B ¹ 8A ³ 16A	³ 32A ²³	I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D06	X ₂ L4 ³ _{out} 4B ² 8A ⁴ 16A		I/O	IO, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D07	X ₂ L4 ⁴ _{out} 4B ³ 8A ⁵ 16A		I/O	IO, PD
X3D10 $1C^0$ I/O IOT, PD X3D11 $1D^0$ I/O IOT, PD X3D12 $1E^0$ I/O IOT, PD X3D13 $1F^0$ I/O IO, PD X3D14 $4C^0$ $8B^0$ $16A^8$ $32A^{28}$ I/O IO, PD X3D15 $4C^1$ $8B^1$ $16A^9$ $32A^{29}$ I/O IO, PD X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO, PD X3D21 $4C^2$ $8B^6$ $16A^{15}$ $32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD X3D24 $1I^0$ I/O IO, PD X3D25 $1J^0$ I/O IO, PD X3D26 $4E^0$ $8C^0$ $16B^0$ I/O IOT, PD X3D27 $4E^1$ $8C^1$ $16B^1$ I/O IOT, PD	X3D08	X ₂ L7 ⁴ 4A ² 8A ⁶ 16A	⁶ 32A ²⁶	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X3D09	X ₂ L7 ³ _{in} 4A ³ 8A ⁷ 16A	⁷ 32A ²⁷	I/O	IO, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X3D10	1C ⁰		I/O	IOT, PD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X3D11	1D ⁰		I/O	IOT, PD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X3D12	1E ⁰		I/O	IO, PD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X3D13	1F ⁰		I/O	IO, PD
X3D20 $4C^2$ $8B^6$ $16A^{14}$ $32A^{30}$ I/O IO , PD X3D21 $4C^3$ $8B^7$ $16A^{15}$ $32A^{31}$ I/O IO , PD X3D23 $1H^0$ I/O IO , PD $X3D24$ $1I^0$ I/O IO , PD X3D25 $1J^0$ I/O IO , PD $X3D26$ $4E^0$ $8C^0$ $16B^0$ I/O IO , PD X3D26 $4E^1$ $8C^1$ $16B^1$ I/O IOT , PD	X3D14	4C ⁰ 8B ⁰ 16A	⁸ 32A ²⁸	I/O	IO, PD
X3D21 $4C^3 8B^7 16A^{15} 32A^{31}$ I/O IO, PD X3D23 $1H^0$ I/O IO, PD X3D24 $1I^0$ I/O IO, PD X3D25 $1J^0$ I/O IO, PD X3D26 $4E^0 8C^0 16B^0$ I/O IOT, PD X3D27 $4E^1 8C^1 16B^1$ I/O IOT, PD	X3D15	4C ¹ 8B ¹ 16A	⁹ 32A ²⁹	I/O	
X3D23 1H ⁰ I/O IO, PD X3D24 1I ⁰ I/O IO, PD X3D25 1J ⁰ I/O IO, PD X3D26 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X3D27 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD	X3D20	4C ² 8B ⁶ 16A	¹⁴ 32A ³⁰	I/O	IO, PD
X3D24 11 ⁰ I/O IO, PD X3D25 1J ⁰ I/O IO, PD X3D26 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X3D27 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD	X3D21	4C ³ 8B ⁷ 16A	¹⁵ 32A ³¹	I/O	IO, PD
X3D25 1J ⁰ I/O IO, PD X3D26 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X3D27 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD	X3D23	1H ⁰		I/O	IO, PD
X3D26 4E ⁰ 8C ⁰ 16B ⁰ I/O IOT, PD X3D27 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD	X3D24	11 ⁰		I/O	IO, PD
X3D27 4E ¹ 8C ¹ 16B ¹ I/O IOT, PD	X3D25	1J ⁰		I/O	IO, PD
	X3D26	4E ⁰ 8C ⁰ 16B)	I/O	IOT, PD
X3D28 4F ⁰ 8C ² 16B ² I/O IOT, PD	X3D27	4E ¹ 8C ¹ 16B		I/O	IOT, PD
	X3D28	4F ⁰ 8C ² 16B	2	I/O	IOT, PD

Signal	Function	Туре	Properties
X3D29	4F ¹ 8C ³ 16B ³	I/0	IOT, PD
X3D30	4F ² 8C ⁴ 16B ⁴	I/O	IOT, PD
X3D31	4F ³ 8C ⁵ 16B ⁵	I/O	IOT, PD
X3D32	4E ² 8C ⁶ 16B ⁶	I/O	IOT, PD
X3D33	4E ³ 8C ⁷ 16B ⁷	I/O	IOT, PD
X3D40	8D ⁴ 16B ¹²	I/O	IOT, PD
X3D41	8D ⁵ 16B ¹³	I/O	IOT, PD
X3D42	8D ⁶ 16B ¹⁴	I/O	IOT, PD
X3D43	8D ⁷ 16B ¹⁵	I/O	IOT, PD

System pins (4)				
Signal	Function Type Properties			
CLK	PLL reference clock	Input	IO, PD, ST	
DEBUG_N	Multi-chip debug	I/O	IO, PU	
MODE0	Boot mode select	Input	PU	
MODE1	Boot mode select	Input	PU	

	usb pins (10)				
Signal	Function	Туре	Properties		
USB_2_DM	USB Serial Data Inverted, node 2	I/O			
USB_2_DP	USB Serial Data, node 2	I/O			
USB_2_ID	USB Device ID (OTG) - Reserved, node 2	I/O			
USB_2_RTUNE	USB resistor, node 2	I/O			
USB_2_VBUS	USB Power Detect Pin, node 2	I/O			
USB_DM	USB Serial Data Inverted	I/O			
USB_DP	USB Serial Data	I/O			
USB_ID	USB Device ID (OTG) - Reserved	I/O			
USB_RTUNE	USB resistor	I/O			
USB_VBUS	USB Power Detect Pin	I/O			

-XMOS[®]-

ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port.

The port logic can drive its pins high or low, or it can sample the value on its pins, optionally waiting for a particular condition. Ports are accessed using dedicated instructions that are executed in a single processor cycle. xCORE-200 IO pins can be used as *open collector* outputs, where signals are driven low if a zero is output, but left high impedance if a one is output. This option is set on a per-port basis.

Data is transferred between the pins and core using a FIFO that comprises a SERDES and transfer register, providing options for serialization and buffered data.

Each port has a 16-bit counter that can be used to control the time at which data is transferred between the port value and transfer register. The counter values can be obtained at any time to find out when data was obtained, or used to delay I/O until some time in the future. The port counter value is automatically saved as a timestamp, that can be used to provide precise control of response times.

The ports and xCONNECT links are multiplexed onto the physical pins. If an xConnect Link is enabled, the pins of the underlying ports are disabled. If a port is enabled, it overrules ports with higher widths that share the same pins. The pins on the wider port that are not shared remain available for use when the narrower port is enabled. Ports always operate at their specified width, even if they share pins with another port.

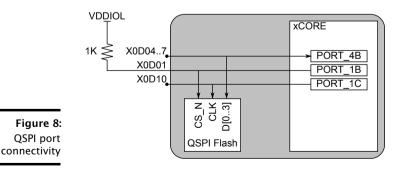
6.4 Clock blocks

xCORE devices include a set of programmable clocks called clock blocks that can be used to govern the rate at which ports execute. Each xCORE tile has six clock blocks: the first clock block provides the tile reference clock and runs at a default frequency of 100MHz; the remaining clock blocks can be set to run at different frequencies. Figure 7 also lists the values of OD, F and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

OD, *F* and *R* must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The *OD*, *F*, and *R* values can be modified by writing to the digital node PLL configuration register.

The MODE pins must be held at a static value during and after deassertion of the system reset. If the USB PHY is used, then either a 24 MHz or 12 MHz oscillator must be used.


If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the xCORE-200 Clock Frequency Control document.

8 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins have a pull-down enabled. The processor must be held in reset until VDDIOL is in spec for at least 1 ms. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock) the processor boots.

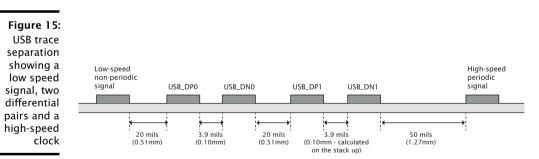
Pin X2D06 must be pulled high with an external pull-up whilst the chip comes out of reset, to ensure that tile 2 will boot from link. X2D04, X2D05, and X2D07 should be kept low whilst the chip comes out of reset.

The device boots from a QSPI flash (IS25LQ016B) that is embedded in the device. The QSPI flash is connected to the ports on Tile 0 as shown in Figure 8. An external 1K resistor must connect X0D01 to VDDIOL. X0D10 should ideally not be connected. If X0D10 is connected, then a 150 ohm series resistor close to the device is recommended. X0D04..X0D07 should be not connected.

possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

12.1 USB connections


USB_VBUS should be connected to the VBUS pin of the USB connector. A 2.2 μ F capacitor to ground is required on the VBUS pin. A ferrite bead may be used to reduce HF noise.

For self-powered systems, a bleeder resistor may be required to stop VBUS from floating when no USB cable is attached.

USB_DP and USB_DN should be connected to the USB connector. USB_ID does not need to be connected.

12.2 USB signal routing and placement

The USB_DP and USB_DN lines are the positive and negative data polarities of a high speed USB signal respectively. Their high-speed differential nature implies that they must be coupled and properly isolated. The board design must ensure that the board traces for USB_DP and USB_DN are tightly matched. In addition, according to the USB 2.0 specification, the USB_DP and USB_DN differential impedance must be 90 Ω .

12.2.1 General routing and placement guidelines

The following guidelines will help to avoid signal quality and EMI problems on high speed USB designs. They relate to a four-layer (Signal, GND, Power, Signal) PCB.

For best results, most of the routing should be done on the top layer (assuming the USB connector and XS2-UF32A-512-FB374 are on the top layer) closest to GND. Reference planes should be below the transmission lines in order to maintain control of the trace impedance.

24

13 DC and Switching Characteristics

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT 3v3	I/O supply voltage	3.135	3.30	3.465	V	
VDDIOT 2v5	I/O supply voltage	2.375	2.50	2.625	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
Cl	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

13.1 Operating Conditions

Figure 17: Operating conditions

13.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	A
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 18: DC characteristics

A All pins except power supply pins.

B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

13.5 Power Consumption

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		90		mA	A, B, C
PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
IDD	Active VDD current		1140	1400	mA	A, G
I(ADDPLL)	PLL_AVDD current		5	7	mA	Н
I(VDD33)	VDD33 current		53.4		mA	I
I(USB_VDD)	USB_VDD current		16.6		mA	J

Figure 22: xCORE Tile currents

A Use for budgetary purposes only.

- B Assumes typical tile and I/O voltages with no switching activity.
- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- H PLL_AVDD = 1.0 V
- I HS mode transmitting while driving all 0's data (constant JKJK on DP/DM). Loading of 10 pF. Transfers do not include any interpacket delay.
- J HS receive mode; no traffic.

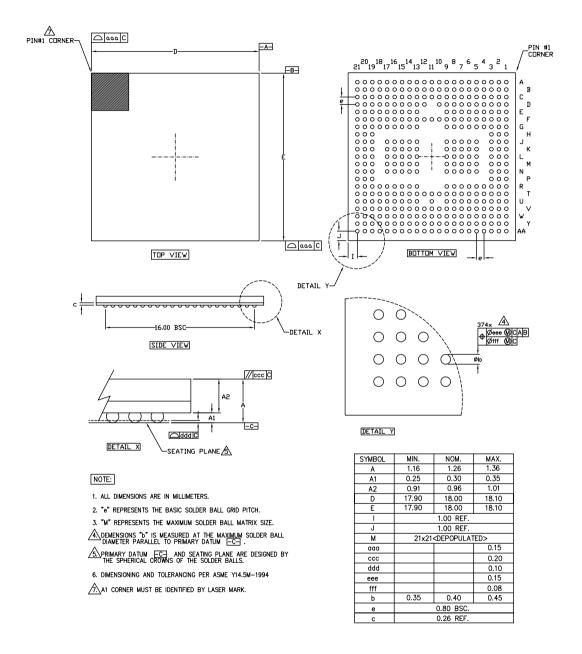
The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-UF Power Consumption document,

1	3.6	Clock

Figure 23: Clock

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f	Frequency	3.25	24	100	MHz	
SR	Slew rate	0.10			V/ns	
TJ(LT)	Long term jitter (pk-pk)			2	%	А
f(MAX)	Processor clock frequency			500	MHz	В

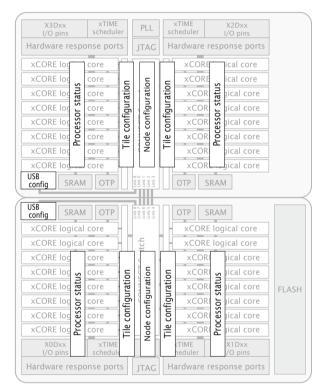

A Percentage of CLK period.

B Assumes typical tile and I/O voltages with nominal activity.

Further details can be found in the XS1-UF Clock Frequency Control document,

-XM()S

14 Package Information


-XMOS

XS2-UF32A-512-FB374

Appendices

A Configuration of the XUF232-512-FB374

The device is configured through banks of registers, as shown in Figure 29.

The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register

The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0B. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

B.1 RAM base address: 0x00

This register contains the base address of the RAM. It is initialized to 0x00040000.

0x00: RAM base address

00:	Bits	Perm	Init	Description
se	31:2	RW		Most significant 16 bits of all addresses.
ss	1:0	RO	-	Reserved

B.2 Vector base address: 0x01

Base address of event vectors in each resource. On an interrupt or event, the 16 most significant bits of the destination address are provided by this register; the least significant 16 bits come from the event vector.

0x01: Vector base address

-	Bits	Perm	Init	Description
2	31:18	RW		The event and interrupt vectors.
5	17:0	RO	-	Reserved

B.3 xCORE Tile control: 0x02

Register to control features in the xCORE tile

37

0	x0C:
RAM	size

	Bits	Perm	Init	Description
0x0C:	31:2	RO		Most significant 16 bits of all addresses.
A size	1:0	RO	-	Reserved

B.12 Debug SSR: 0x10

This register contains the value of the SSR register when the debugger was called.

Bits	Perm	Init	Description
31:11	RO	-	Reserved
10	DRW		Address space indentifier
9	DRW		Determines the issue mode (DI bit) upon Kernel Entry after Exception or Interrupt.
8	RO		Determines the issue mode (DI bit).
7	DRW		When 1 the thread is in fast mode and will continually issue.
6	DRW		When 1 the thread is paused waiting for events, a lock or another resource.
5	RO	-	Reserved
4	DRW		1 when in kernel mode.
3	DRW		1 when in an interrupt handler.
2	DRW		1 when in an event enabling sequence.
1	DRW		When 1 interrupts are enabled for the thread.
0	DRW		When 1 events are enabled for the thread.

0x10: Debug SSR

B.13 Debug SPC: 0x11

This register contains the value of the SPC register when the debugger was called.

0x11:	Bits	Perm	Init	Description
Debug SPC	31:0	DRW		Value.

B.14 Debug SSP: 0x12

This register contains the value of the SSP register when the debugger was called.

B.25 Data breakpoint control register: 0x70 ... 0x73

This set of registers controls each of the four data watchpoints.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
_	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
:	15:3	RO	-	Reserved
a t	2	DRW	0	When 1 the breakpoints will be be triggered on loads.
l	1	DRW	0	Determines the break condition: $0 = A AND B$, $1 = A OR B$.
r	0	DRW	0	When 1 the instruction breakpoint is enabled.

0x70 .. 0x73: Data breakpoint control register

B.26 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

0x80 .. 0x83: Resources breakpoint mask

burces kpoint	Bits	Perm	Init	Description
mask	31:0	DRW		Value.

B.27 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 .. 0x93: Resources breakpoint value

irces point	Bits	Perm	Init	Description
alue	31:0	DRW		Value.

B.28 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

-XMOS

XS2-UF32A-512-FB374

Bits	Perm	Init	Description
31	CRO		Disables write permission on this register
30:15	RO	-	Reserved
14	CRO		Disable access to XCore's global debug
13	RO	-	Reserved
12	CRO		lock all OTP sectors
11:8	CRO		lock bit for each OTP sector
7	CRO		Enable OTP reduanacy
6	RO	-	Reserved
5	CRO		Override boot mode and read boot image from OTP
4	CRO		Disable JTAG access to the PLL/BOOT configuration registers
3:1	RO	-	Reserved
0	CRO		Disable access to XCore's JTAG debug TAP

0x07: Security configuration

C.8 Debug scratch: 0x20 .. 0x27

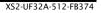
A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27: Debug scratch

0x27: Debug	Bits	Perm	Init	Description
ratch	31:0	CRW		Value.

C.9 PC of logical core 0: 0x40

Value of the PC of logical core 0.


0x40 PC of logical core 0

9 x40: gical	Bits	Perm	Init	Description
ore 0	31:0	CRO		Value.

-XMOS

C.10 PC of logical core 1: 0x41

Value of the PC of logical core 1.

D.18 Static link configuration: 0xA0 .. 0xA7

These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order.

Bits	Perm	Init	Description
31	RW	0	Enable static forwarding.
30:9	RO	-	Reserved
8	RW	0	The destination processor on this node that packets received in static mode are forwarded to.
7:5	RO	-	Reserved
4:0	RW	0	The destination channel end on this node that packets received in static mode are forwarded to.

0xA0 .. 0xA7: Static link configuration

F USB PHY Configuration

The USB PHY is connected to the ports shown in section 10.

The USB PHY is peripheral 1. The control registers are accessed using 32-bit reads and writes (use write_periph_32(device, 1, ...) and read_periph_32(device, \rightarrow 1, ...) for reads and writes).

Number	Perm	Description			
0x00	WO	UIFM reset			
0x04	RW	UIFM IFM control			
0x08	RW	UIFM Device Address			
0x0C	RW	UIFM functional control			
0x10	RW	UIFM on-the-go control			
0x14	RO	UIFM on-the-go flags			
0x18	RW	UIFM Serial Control			
0x1C	RW	UIFM signal flags			
0x20	RW	UIFM Sticky flags			
0x24	RW	UIFM port masks			
0x28	RW	UIFM SOF value			
0x2C	RO	UIFM PID			
0x30	RO	UIFM Endpoint			
0x34	RW	UIFM Endpoint match			
0x38	RW	OTG Flags mask			
0x3C	RW	UIFM power signalling			
0x40	RW	UIFM PHY control			

Figure 34: Summary

F.1 UIFM reset: 0x00

A write to this register with any data resets all UIFM state, but does not otherwise affect the phy.

0x00: UIFM reset	Bits	Perm	Init	Description
	31:0	WO		Value.

F.2 UIFM IFM control: 0x04

General settings of the UIFM IFM state machine.

Bits	Perm	Init	Description		
31:7	RO	-	Reserved		
6	RO	0	1 if UIFM is in UTMI+ RXRCV mode.		
5	RO	0	1 if UIFM is in UTMI+ RXDM mode.		
4	RO	0	1 if UIFM is in UTMI+ RXDP mode.		
3	RW	0	Set to 1 to switch UIFM to UTMI+ TXSE0 mode.		
2	RW	0	Set to 1 to switch UIFM to UTMI+ TXDATA mode.		
1	RW	1	Set to 0 to switch UIFM to UTMI+ TXENABLE mode.		
0	RW	0	Set to 1 to switch UIFM to UTMI+ FSLSSERIAL mode.		

F.7 UIFM Serial Control: 0x18

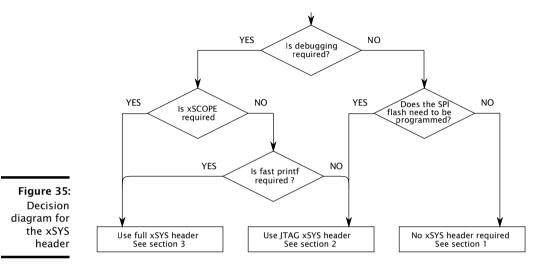
0x18: UIFM Serial Control

F.8 UIFM signal flags: 0x1C

Set of flags that monitor line and error states. These flags normally clear on the next packet, but they may be made sticky by using PER_UIFM_FLAGS_STICKY, in which they must be cleared explicitly.

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6	RW	0	Set to 1 when the UIFM decodes a token successfully (e.g. it passes CRC5, PID check and has matching device address).
5	RW	0	Set to 1 when linestate indicates an SEO symbol.
4	RW	0	Set to 1 when linestate indicates a K symbol.
3	RW	0	Set to 1 when linestate indicates a J symbol.
2	RW	0	Set to 1 if an incoming datapacket fails the CRC16 check.
1	RW	0	Set to the value of the UTMI_RXACTIVE input signal.
0	RW	0	Set to the value of the UTMI_RXERROR input signal

0x1C: UIFM signal flags


F.9 UIFM Sticky flags: 0x20

These bits define the sticky-ness of the bits in the UIFM IFM FLAGS register. A 1 means that bit will be sticky (hold its value until a 1 is written to that bitfield), or normal, in which case signal updates to the UIFM IFM FLAGS bits may be over-written by subsequent changes in those signals.

-XMOS⁻

G JTAG, xSCOPE and Debugging

If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 35 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail.

G.1 No xSYS header

The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging.

G.2 JTAG-only xSYS header

The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB.

Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect:

- ▶ TDI to pin 5 of the xSYS header
- TMS to pin 7 of the xSYS header
- TCK to pin 9 of the xSYS header
- DEBUG_N to pin 11 of the xSYS header