

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dg128cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.00	18 Jun 2001	18 June 2001		Initial version (parent doc v2.03 dug for dp256).
V01.01	23 July 2001	23 July 2001		Updated version after review
V01.02	23 Sep 2001	23 Sep 2001		Changed Partname, added pierce mode, updated electrical characteristics some minor corrections
V01.03	12 Oct 2001	12 Oct 2001		Replaced Star12 by HCS12
V01.04	27 Feb 2002	27 Feb 2002		Updated electrical spec after MC-Qualification (IOL/IOH), Data for Pierce, NVM reliability New document numbering. Corrected Typos
V01.05	4 Mar 2002	4 Mar 2002		Increased VDD to 2.35V, removed min. oscillator startup Removed Document order number except from Cover Sheet
V01.06	8 July 2002	22 July 2002		Added: Pull-up columns to signal table, example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified: Reduced Wait and Run IDD values Mode of Operation chapter changed leakage current for ADC inputs down to +-1uA Corrected: Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position
V02.00	11 Jan 2002	11 Jan 2002		NEW MASKSET Changed part number from DTB128 to DT128 Functional Changes: ROMCTL changes in Emulation Mode 80 Pin Byteflight package Option available Flash with 2 Bit Backdoor Key Enable Additional CAN0 routing to PJ7,6 Improved BDM with sync and acknowledge capabilities New Part ID number Improvements: Significantly improved NVM reliability data Corrections: Interrupt vector Table
V02.01	01 Feb 2002	01 Feb 2002		Updated Block User Guide versions in preface Updated Appendix A Electrical Characteristics

Derivative Differences and Document References

Derivative Differences

(**Table 0-1**) and (**Table 0-2**) show the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.

Modules	MC9S12DT128E ³ MC9S12DT128 SC515849 ⁴ SC101161DT ⁵ SC102205 ⁶	MC9S12DG128E ³ MC9S12DG128 SC515847 ⁴ SC101161DG ⁵ SC102203 ⁶	MC9S12DJ128E ³ MC9S12DJ128 SC515848 ⁴ SC101161DJ ⁵ SC102204 ⁶	MC9S12A128
# of CANs	3	2	2	0
CAN4	1	1	1	X
CAN1	1	X	X	X
CAN0	1	1	✓	X
J1850/BDLC	×	×	✓	X
IIC	1	✓	✓	1
Byteflight	×	X	X	X
Package	112 LQFP	112 LQFP/80 QFP ²	112 LQFP/80 QFP ²	112 LQFP/80 QFP ²
Package Code	PV	PV/FU	PV/FU	PV/FU
Mask set	1L40K ³ , 3L40K, 0L94R, 4L40K ⁴ , 1L59W ⁵ , 5L40K ⁶ , 2L94R	1L40K ³ , 3L40K, 0L94R, 4L40K ⁴ , 1L59W ⁵ , 5L40K ⁶ , 2L94R	1L40K ³ , 3L40K, 0L94R, 4L40K ⁴ , 1L59W ⁵ , 5L40K ⁶ , 2L94R	3L40K, 0L94R, 2L94R, 1L59W
Temp Options	M, V, C	M, V, C	M, V, C	С
AEC qualified	Yes	Yes	Yes	No
Notes	An errata exists contact Sales Office	An errata exists contact Sales Office	An errata exists contact Sales Office	An errata exists contact Sales Office

Table 0-1 Derivative Differences¹

Table 0-2 Derivative Differences for MC9S12DB128¹

Modules	MC9S12DB128 SC515846 ⁴ SC102202 ⁶	MC9S12DB128 SC515846 ⁴ SC102202 ⁶
# of CANs	2	0
CAN4	1	×
CAN1	X	X
CAN0	✓	X
J1850/BDLC	X	X
liC	X	X
Byteflight	\checkmark	✓
Package	112 LQFP	80 QFP ²

Device User Guide — 9S12DT128DGV2/D V02.17

Section 1 Introduction

1.1 Overview

The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.

1.2 Features

- HCS12 Core
 - 16-bit HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii.20-bit ALU
 - iv. Instruction queue
 - v. Enhanced indexed addressing
 - MEBI (Multiplexed External Bus Interface)
 - MMC (Module Mapping Control)
 - INT (Interrupt control)
 - BKP (Breakpoints)
 - BDM (Background Debug Module)
- CRG (Clock and Reset Generator)
 - Choice of low current Colpitts oscillator or standard Pierce Oscillator
 - PLL
 - COP watchdog
 - real time interrupt
 - clock monitor
- 8-bit and 4-bit ports with interrupt functionality

\$0040 - \$007F

Address

\$007C

\$007D

\$007E

\$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2H (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
	Write:								
TC2H (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
10211(10)	Write:								
TC3H (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
	Write:								
TC3H (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
10311(10)	Write:								

\$0080	- \$009F	-
--------	----------	---

ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$ \$\$\$\$\$		Read:	0	0	0	0	0	0	0	0
\$0080	ATD0CTL0	Write:								
\$0004		Read:	0	0	0	0	0	0	0	0
\$0081	ATD0CTL1	Write:								
\$0082	ATD0CTL2	Read: Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0083	ATD0CTL3	Read: Write:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0084	ATD0CTL4	Read: Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0085	ATD0CTL5	Read: Write:	DJM	DSGN	SCAN	MULT	0	СС	СВ	CA
\$0086	ATD0STAT0	Read: Write:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
		Read:	0	0	0	0	0	0	0	0
\$0087	Reserved	Write:	0	•	0	Ŭ	Ū	U	•	Ū
		Read:	0	0	0	0	0	0	0	0
\$0088	ATD0TEST0	Write:	-	-	-				-	-
		Read:	0	0	0	0	0	0	0	
\$0089	ATD0TEST1	Write:								SC
\$ 000 1	D	Read:	0	0	0	0	0	0	0	0
\$008A	Reserved	Write:								
¢000D	ATD0STAT1	Read:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
\$008B	AID05TAIT	Write:								
\$008C	Reserved	Read:	0	0	0	0	0	0	0	0
ψ000 C	Reserved	Write:								
\$008D	ATD0DIEN	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$008E	Reserved	Read:	0	0	0	0	0	0	0	0
9000E	Reserved	Write:								
\$008F	PORTAD0	Read:	Bit7	6	5	4	3	2	1	BIT 0
φυυυι		Write:								
\$0090	ATD0DR0H	Read:	Bit15	14	13	12	11	10	9	Bit8
40000		Write:								
\$0091	ATD0DR0L	Read:	Bit7	Bit6	0	0	0	0	0	0
	-	Write:								

\$0110 - \$011B EEPROM Control Register (eets2k)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0119	EADDRLO	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$011A	EDATAHI	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$011B	EDATALO	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$011C - \$011F

Reserved for RAM Control Register

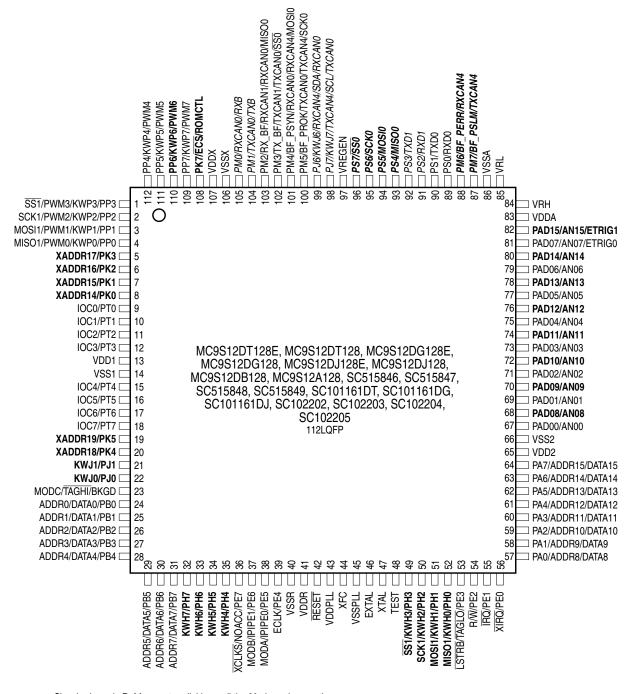
Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$011C -	11C - Reserved	Read:	0	0	0	0	0	0	0	0
\$011F	Reserveu	Write:								

\$0120 - \$013F

ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0120	ATD1CTL0	Read:	0	0	0	0	0	0	0	0
ψ0120	AIDICILO	Write:								
\$0121	ATD1CTL1	Read:	0	0	0	0	0	0	0	0
ψυτζι	AIDICILI	Write:								
\$0122	ATD1CTL2	Read:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
ψ0122	AIDIOILZ	Write:		AITO				LINIO		
\$0123	ATD1CTL3	Read:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
ψ0120	AID TOTES	Write:		000	0+0	020	010	1110	11121	11120
\$0124	ATD1CTL4	Read:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
ψ0121	, abioilei	Write:	ONLOG			11.01		11(02		
\$0125	ATD1CTL5	Read:	DJM	DSGN	SCAN	MULT	0	СС	СВ	CA
ψ0120	/10100	Write:	_							
\$0126	ATD1STAT0	Read:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
\$0120		Write:								
\$0127	Reserved	Read:	0	0	0	0	0	0	0	0
ψ0121	100001100	Write:								
\$0128	ATD1TEST0	Read:	0	0	0	0	0	0	0	0
\$0120	/	Write:								
\$0129	ATD1TEST1	Read:	0	0	0	0	0	0	0	SC
φ0120	/	Write:								
\$012A	Reserved	Read:	0	0	0	0	0	0	0	0
φ01 <u></u> 2/(100001100	Write:								
\$012B	ATD1STAT1	Read:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
Ψ012D		Write:								
\$012C	Reserved	Read:	0	0	0	0	0	0	0	0
ψ0120	100001100	Write:								
\$012D	ATD1DIEN	Read:	Bit 7	6	5	4	3	2	1	Bit 0
Ψ012D		Write:		_	_	•				
\$012E	Reserved	Read:	0	0	0	0	0	0	0	0
WU12L		Write:								
\$012F	PORTAD1	Read:	Bit7	6	5	4	3	2	1	BIT 0
ΨUIZI		Write:								

\$0240 - \$027F


PIM (Port Integration Module)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0259	PTIP	Read:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
φ0209	FIIF	Write:								
\$025A	DDRP	Read: Write:	DDRP7	DDRP7	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0
\$025B	RDRP	Read: Write:	RDRP7	RDRP6	RDRP5	RDRP4	RDRP3	RDRP2	RDRP1	RDRP0
\$025C	PERP	Read: Write:	PERP7	PERP6	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0
\$025D	PPSP	Read: Write:	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSS0
\$025E	PIEP	Read: Write:	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
\$025F	PIFP	Read: Write:	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
\$0260	PTH	Read: Write:	PTH7	PTH6	PTH5	PTH4	PTH3	PTH2	PTH1	PTH0
\$0261	PTIH	Read: Write:	PTIH7	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0
\$0262	DDRH	Read: Write:	DDRH7	DDRH7	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0
\$0263	RDRH	Read: Write:	RDRH7	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
\$0264	PERH	Read: Write:	PERH7	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
\$0265	PPSH	Read: Write:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
\$0266	PIEH	Read: Write:	PIEH7	PIEH6	PIEH5	PIEH4	PIEH3	PIEH2	PIEH1	PIEH0
\$0267	PIFH	Read: Write:	PIFH7	PIFH6	PIFH5	PIFH4	PIFH3	PIFH2	PIFH1	PIFH0
\$0268	PTJ	Read: Write:	PTJ7	PTJ6	0	0	0	0	PTJ1	PTJ0
\$0269	PTIJ	Read: Write:	PTIJ7	PTIJ6	0	0	0	0	PTIJ1	PTIJ0
\$026A	DDRJ	Read: Write:	DDRJ7	DDRJ7	0	0	0	0	DDRJ1	DDRJ0
\$026B	RDRJ	Read: Write:	RDRJ7	RDRJ6	0	0	0	0	RDRJ1	RDRJ0
\$026C	PERJ	Read: Write:	PERJ7	PERJ6	0	0	0	0	PERJ1	PERJ0
\$026D	PPSJ	Read: Write:	PPSJ7	PPSJ6	0	0	0	0	PPSJ1	PPSJ0
\$026E	PIEJ	Read: Write:	PIEJ7	PIEJ6	0	0	0	0	PIEJ1	PIEJ0
\$026F	PIFJ	Read: Write:	PIFJ7	PIFJ6	0	0	0	0	PIFJ1	PIFJ0
\$0270 -	Reserved	Read:	0	0	0	0	0	0	0	0
\$027F		Write:								

\$0280 - \$02BF

CAN4 (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0280	CAN4CTL0	Read: Write:	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
\$0281	CAN4CTL1	Read: Write:	CANE	CLKSRC	LOOPB	LISTEN	0	WUPM	SLPAK	INITAK
\$0282	CAN4BTR0	Read: Write:	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
\$0283	CAN4BTR1	Read: Write:	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
\$0284	CAN4RFLG	Read: Write:	WUPIF	CSCIF	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF
\$0285	CAN4RIER	Read: Write:	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
\$0286	CAN4TFLG	Read: Write:	0	0	0	0	0	TXE2	TXE1	TXE0
\$0287	CAN4TIER	Read: Write:	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
\$0288	CAN4TARQ	Read: Write:	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
\$0289	CAN4TAAK	Read: Write:	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
\$028A	CAN4TBSEL	Read: Write:	0	0	0	0	0	TX2	TX1	TX0
\$028B	CAN4IDAC	Read: Write:	0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0
\$028C	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028D	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028E	CAN4RXERR	Read: Write:	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
\$028F	CAN4TXERR	Read: Write:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
\$0290 - \$0293	CAN0IDAR0 - CAN0IDAR3	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0294 - \$0297	CANOIDMR0 - CANOIDMR3	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0298 - \$029B	CANOIDAR4 - CANOIDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029C - \$029F	CANOIDMR4 - CANOIDMR7	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$02A0 -	CAN4RXFG	Read:		FOR	EGROUNI	D RECEIVE	BUFFER	see (Table	1-2)	
\$02AF \$02B0 - \$02BF	CAN4TXFG	Write: Read: Write:		FOR	EGROUND	TRANSMI	T BUFFER	see (Table	e 1-2)	

Signals shown in **Bold** are not available on all the 80 pin package options Signals shown in **Bold-Italics** are not available on the MC9S12DJ128E, MC9S12DJ128, MC9S12DG128E, MC9S12DG128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 80 pin package options Signals shown in *Italics* are not available on the MC9S12DB128, SC515846, and SC102202 80 pin package options

Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128, MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128 MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG, SC101161DJ, SC102202, SC102203, SC102204, and SC102205

Mnemonic	Pin Number	Nominal	Description	
winemonic	112-pin QFP	Voltage	Description	
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal	
VSSR	40	0V	voltage regulator.	
VDDX	107	5.0V	External power and ground, supply to pin drivers.	
VSSX	106	0V	External power and ground, supply to pin unvers.	
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital	
VSSA	86	0V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.	
VRL	85	0V	Reference voltages for the analog-to-digital converter.	
VRH	84	5.0V	Thereference voltages for the analog-to-digital converter.	
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked	
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.	
VREGEN	97	5V	Internal Voltage Regulator enable/disable	

NOTE: All VSS pins must be connected together in the application.

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter. It also provides the reference for the internal voltage regulator. This allows the supply voltage to the ATD and the reference voltage to be bypassed independently.

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.

NOTE: No load allowed except for bypass capacitors.

2.4.7 VREGEN — On Chip Voltage Regulator Enable

Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally.

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12DT128. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**(Table 4-1)**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

BKGD = MODC	PE6 = MODB	PE5 = MODA	PK7 = ROMCTL	ROMON Bit	Mode Description
0	0	0	x	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.
0	0	1	0	1	Emulation Expanded Narrow, PDM allowed
0	0	1	1	0	Emulation Expanded Narrow, BDM allowed
0	1	0	Х	0	Special Test (Expanded Wide), BDM allowed
0	4	4	0	1	Emulation Expanded Wide DDM allowed
0	I	I	1	0	Emulation Expanded Wide, BDM allowed
1	0	0	Х	1	Normal Single Chip, BDM allowed
1	0	4	0	0	Normal Expanded Nerrow, BDM allowed
1	0	I	1	1	Normal Expanded Narrow, BDM allowed
1	1	0	х	1	Special Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)
1	1	1	0	0	Normal Expanded Wide, BDM allowed
			1	1	- Normai Expanded Wide, BDM allowed

Table 4-1 Mode Selection

For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.

PE7 = XCLKS	Description
1	Colpitts Oscillator selected
0	Pierce Oscillator/external clock selected

Table 4-2 Clock Selection Based on PE7

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the CPU Reference Manual for information on resets and interrupts.

5.2 Vectors

5.2.1 Vector Table

(Table 5-1) lists interrupt sources and vectors in default order of priority.

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	Reset	None	None	-
\$FFFC, \$FFFD	Clock Monitor fail reset	None	COPCTL (CME, FCME)	-
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	-
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	-
\$FFF6, \$FFF7	SWI	None	None	-
\$FFF4, \$FFF5	XIRQ / BF High Priority Sync Pulse	X-Bit	None / BFRIER (XSYNIE)	-
\$FFF2, \$FFF3	IRQ	I-Bit	INTCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFEE, \$FFEF	Enhanced Capture Timer channel 0	I-Bit	TIE (COI)	\$EE
\$FFEC, \$FFED	Enhanced Capture Timer channel 1	I-Bit	TIE (C1I)	\$EC
\$FFEA, \$FFEB	Enhanced Capture Timer channel 2	I-Bit	TIE (C2I)	\$EA
\$FFE8, \$FFE9	Enhanced Capture Timer channel 3	I-Bit	TIE (C3I)	\$E8
\$FFE6, \$FFE7	Enhanced Capture Timer channel 4	I-Bit	TIE (C4I)	\$E6
\$FFE4, \$FFE5	Enhanced Capture Timer channel 5	I-Bit	TIE (C5I)	\$E4
\$FFE2, \$FFE3	Enhanced Capture Timer channel 6	I-Bit	TIE (C6I)	\$E2
\$FFE0, \$FFE1	Enhanced Capture Timer channel 7	I-Bit	TIE (C7I)	\$E0
\$FFDE, \$FFDF	Enhanced Capture Timer overflow	I-Bit	TSCR2 (TOF)	\$DE
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA
\$FFD8, \$FFD9	SPI0	I-Bit	SPICR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCI0	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD0	I-Bit	ATDCTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	ATD1	I-Bit	ATDCTL2 (ASCIE)	\$D0
\$FFCE, \$FFCF	Port J	I-Bit	PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PIEH (PIEH7-0)	\$CC

Table 5-1	Interrupt	Vector	Locations
	mitor apt		

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Т	Thermal Resistance LQFP112, single sided PCB ²	θ _{JA}	-	-	54	°C/W
2	т	Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³	θ_{JA}	-	-	41	°C/W
3	т	Junction to Board LQFP112	θ_{JB}	-	-	31	°C/W
4	т	Junction to Case LQFP112	θ _{JC}	-	-	11	°C/W
5	т	Junction to Package Top LQFP112	Ψ_{JT}	-	-	2	°C/W
6	т	Thermal Resistance QFP 80, single sided PCB	θ_{JA}	-	-	51	°C/W
7	т	Thermal Resistance QFP 80, double sided PCB with 2 internal planes	θ_{JA}	-	-	41	°C/W
8	т	Junction to Board QFP80	θ_{JB}	-	-	27	°C/W
9	Т	Junction to Case QFP80	θ _{JC}	-	-	14	°C/W
10	т	Junction to Package Top QFP80	Ψ_{JT}	-	-	3	°C/W

 Table A-5 Thermal Package Characteristics¹

NOTES:

1. The values for thermal resistance are achieved by package simulations

2. PC Board according to EIA/JEDEC Standard 51-3

3. PC Board according to EIA/JEDEC Standard 51-7

A.1.9 I/O Characteristics

This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Conditions are shown in (Table A-4) unless otherwise noted								
Num	С	Rating	Symbol	Min	Тур	Max	Unit	
1	Р	Run supply currents Single Chip, Internal regulator enabled	I _{DD5}			55	mA	
2	P P	Wait Supply current All modules enabled, PLL on only RTI enabled ⁽¹⁾	I _{DDW}			30 5	mA	
3	C P C C P C P C P	Pseudo Stop Current (RTI and COP disabled) ^{1, 2} -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDPS}		370 400 450 550 600 650 800 850 1200	500 1600 2100 5000	μΑ	
4	0000000	Pseudo Stop Current (RTI and COP enabled) ^{(1), (2)} -40°C 27°C 70°C 85°C 105°C 125°C 140°C	I _{DDPS}		570 600 650 750 850 1200 1500		μΑ	
5	C P C C P C P C P	Stop Current ⁽²⁾ -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDS}		12 25 100 130 160 200 350 400 600	100 1200 1700 5000	μΑ	

Table A-7 Supply Current Characteristics

Device User Guide — 9S12DT128DGV2/D V02.17

NOTES:

- 1. PLL off, Oscillator in Colpitts Mode 2. At those low power dissipation levels $T_J = T_A$ can be assumed

Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency $\rm f_{CMFA.}$

Num	С	Rating	Symbol	Min	Тур	Мах	Unit
1a	C	Crystal oscillator range (Colpitts)	f _{OSC}	0.5	- 76	16	MHz
	-					_	
1b	С	Crystal oscillator range (Pierce) ¹	fosc	0.5		40	MHz
2	Ρ	Startup Current	iosc	100			μA
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ²	100 ³	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	S
5	Ρ	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Ρ	External square wave input frequency ⁴	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	с	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V
13	Ρ	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}	0.75*V _{DDPLL}			V
	Т	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}			V _{DDPLL} + 0.3	V
14	Р	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}			0.25*V _{DDPLL}	V
	т	EXTAL Pin Input Low Voltage ⁴	VIL,EXTAL	V _{SSPLL} - 0.3			V
15	С	EXTAL Pin Input Hysteresis ⁴	V _{HYS,EXTAL}		250		mV

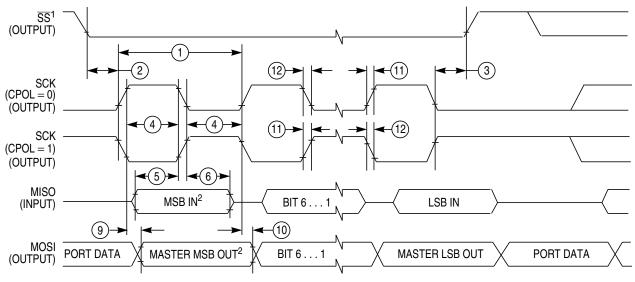
Table A-15	Oscillator	Characteristics

NOTES:

1. Depending on the crystal a damping series resistor might be necessary

2. $f_{osc} = 4MHz$, C = 22pF.

3. Maximum value is for extreme cases using high Q, low frequency crystals


4. XCLKS =0 during reset

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure A-7 SPI Master Timing (CPHA =1)

Table A-18	SPI Master	Mode	Timing	Characteristics ¹
------------	------------	------	--------	------------------------------

Condit	Conditions are shown in (Table A-4) unless otherwise noted, C _{LOAD} = 200pF on all outputs								
Num	С	Rating	Symbol	Min	Тур	Max	Unit		
1	Ρ	Operating Frequency	f _{op}	DC		1/2	f _{bus}		
1	Ρ	SCK Period t _{sck} = 1./f _{op}	t _{sck}	4		2048	t _{bus}		
2	D	Enable Lead Time	t _{lead}	1/2		—	t _{sck}		
3	D	Enable Lag Time	t _{lag}	1/2			t _{sck}		
4	D	Clock (SCK) High or Low Time	t _{wsck}	t _{bus} – 30		1024 t _{bus}	ns		
5	D	Data Setup Time (Inputs)	t _{su}	25			ns		
6	D	Data Hold Time (Inputs)	t _{hi}	0			ns		
9	D	Data Valid (after SCK Edge)	t _v			25	ns		
10	D	Data Hold Time (Outputs)	t _{ho}	0			ns		
11	D	Rise Time Inputs and Outputs	t _r			25	ns		
12	D	Fall Time Inputs and Outputs	t _f			25	ns		

NOTES:

1. The numbers 7, 8 in the column labeled "Num" are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in **(Table A-19)**.

Appendix B Package Information

B.1 General

This section provides the physical dimensions of the MC9S12DT128 packages.

User Guide End Sheet