

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dg128cfuer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Version Number	Revision Date	Effective Date	Author	Description of Changes
V02.02	08 Mar 2002	08 Mar 2002		Changed XCLKS to PE7 in Table 2-2 Updated device part numbers in Figure 2-1 Updated BDM clock in Figure 3-1 Removed SIM description in overview & n _{UPOSC} spec in Table A-15 Updated electrical spec of VDD & VDDPLL (Table A-4), IOL/IOH (Table A-6), C _{INS} (Table A-9), C _{IN} (Table A-6 & A-15), Updated interrupt pulse timing variables in Table A-6 Updated device part numbers in Figure 2-1 Added document numbers on cover page and Table 0-2
V02.03	14 Mar 2002	14 Mar 2002		Cleaned up Fig. 1-1, 2-1 Updated Section 1.5 descriptions Corrected PE assignment in Table 2-2, Fig. 2-5,6,7. Corrected NVM sizes in Sections 16, 17 Added I _{REF} spec for 1ATD in Table A-8 Added Blank Check in A.3.1.5 and Table A-11 Updated CRG spec in Table A-15
V02.04	16 Aug 2002	16 Aug 2002		Added: Pull-up columns to signal table, Example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Device specific info on CRG Modified: Reduced Wait and Run IDD values Mode of Operation chapter Changed leakage current for ADC inputs down to +-1uA Minor modification of PLL frequency/ voltage gain values Corrected: Pin names/functions on 80 pin packages Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position
V02.05	12 Sep 2002	12 Sep 2002		Corrected: Register address mismatches in 1.5.1
V02.06	06 Nov 2002	06 Nov 2002		Removed document order no. from Revision History pages Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0/1/4, BDLC, IIC and/or Byteflight Added 2L40K mask set in section 1.6 Added OSC User Guide in Preface, "Document References" Added oscillator clock connection to BDM in S12_CORE in fig 3-1 Corrected several register and bit names in "Local Enable" column of Table 5.1 Interrupt Vector Locations Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock Added new section: "Oscillator (OSC) Block Description" Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz

Device User Guide — 9S12DT128DGV2/D V02.17

Figure A-10	General External Bus Timing	134
Figure 23-6	112-pin LQFP mechanical dimensions (case no. 987)	138

List of Tables

Table 0-1	Derivative Differences1	19
Table 0-2	Derivative Differences for MC9S12DB1281	19
Table 0-3	Document References	23
Table 1-1	Device Memory Map	30
\$0000 - \$00	0FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)	32
\$0010 - \$00	14 MMC map 1 of 4 (HCS12 Module Mapping Control)	32
\$0015 - \$00	16 INT map 1 of 2 (HCS12 Interrupt)	33
\$0017 - \$00	17MMC map 2 of 4 (HCS12 Module Mapping Control)	33
\$0018 - \$00	19Reserved	33
\$001A - \$00	01B Device ID Register ((Table 1-3))	33
\$001C - \$00	01D MMC map 3 of 4 (HCS12 Module Mapping Control, (Table 1-4))	33
\$001E - \$00	01EMEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)	33
\$001F - \$00	01FINT map 2 of 2 (HCS12 Interrupt)	34
\$0020 - \$00	27 Reserved	34
\$0028 - \$00	2F BKP (HCS12 Breakpoint)	34
\$0030 - \$00	31 MMC map 4 of 4 (HCS12 Module Mapping Control)	34
\$0032 - \$00	33 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)	34
\$0034 - \$00	3F CRG (Clock and Reset Generator)	35
\$0040 - \$00	PFECT (Enhanced Capture Timer 16 Bit 8 Channels)	35
\$0080 - \$00	9F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)	38
\$00A0 - \$00	OC7 PWM (Pulse Width Modulator 8 Bit 8 Channel)	39
\$00C8 - \$00	OCF SCI0 (Asynchronous Serial Interface)	41
\$00D0 - \$00	D7 SCI1 (Asynchronous Serial Interface)	41
\$00D8 - \$00	DF SPI0 (Serial Peripheral Interface)	42
\$00E0 - \$00	DE7 IIC (Inter IC Bus)	42
\$00E8 - \$00	EF BDLC (Byte Level Data Link Controller J1850)	43
\$00F0 - \$00	0F7 SPI1 (Serial Peripheral Interface)	43
\$00F8 - \$00)FF Reserved	43
\$0100 - \$01	0F Flash Control Register (fts128k2)	44
\$0110 - \$01	1B EEPROM Control Register (eets2k)	44
\$011C - \$01	11F Reserved for RAM Control Register	45
\$0120 - \$01	3F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)	45
\$0140 - \$01	7F CAN0 (Motorola Scalable CAN - MSCAN)	46

Device User Guide — 9S12DT128DGV2/D V02.17

- Port H

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

- Port J[1:0]

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+\$026C.

– Port K

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefore care must be taken not to clear this bit.

• Port M[7:6]

PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

– Port P6

PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.

- Port S[7:4]

PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- PAD[15:8] (ATD1 channels)

Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!

• Pins not available in 80 pin QFP package for MC9S12DB128, SC515846, and SC102202

- Port H

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

– Port J[7:6, 1:0]

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[7:6, 1:0] by clearing the bits PERJ7, PERJ6, PERJ1 and PERJ0 at Base+\$026C.

– Port K

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefore care must be taken not to clear this bit.

– Port M[1:0]

PM1:0 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

– Port P6

PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.

Section 1 Introduction

1.1 Overview

The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.

1.2 Features

- HCS12 Core
 - 16-bit HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii.20-bit ALU
 - iv. Instruction queue
 - v. Enhanced indexed addressing
 - MEBI (Multiplexed External Bus Interface)
 - MMC (Module Mapping Control)
 - INT (Interrupt control)
 - BKP (Breakpoints)
 - BDM (Background Debug Module)
- CRG (Clock and Reset Generator)
 - Choice of low current Colpitts oscillator or standard Pierce Oscillator
 - PLL
 - COP watchdog
 - real time interrupt
 - clock monitor
- 8-bit and 4-bit ports with interrupt functionality

Figure 1-1 MC9S12DT128 Block Diagram

1.5.1 Detailed Register Map

\$0000 - \$000F

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
¢0004	Percented	Read:	0	0	0	0	0	0	0	0
φ0004		Write:								
\$0005	Received	Read:	0	0	0	0	0	0	0	0
φ0003	iteseiveu	Write:								
\$0006	Reserved	Read:	0	0	0	0	0	0	0	0
φ0000	Received	Write:								
\$0007 Reserved	Read:	0	0	0	0	0	0	0	0	
4 0001		Write:								
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
		Read:		0	0		0	0		
\$000D	RDRIV	Write:	RDPK	-	-	RDPE	-	-	RDPB	RDPA
¢ооог	FDIOTI	Read:	0	0	0	0	0	0	0	готр
2000E	EBICIL	Write:								FOIR
¢000F	December	Read:	0	0	0	0	0	0	0	0
φυυυΓ	Reserved	Write:								

\$0010 - \$0014

MMC map 1 of 4 (HCS12 Module Mapping Control)

Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Read:			DAM12	DAM12		0	0		
	Write:	KAIWI 5	NAM14	NAMITS	NAMIZ	NAMIT				
	Read:	0	PEC14	PEC13	REG12	REG11	0	0	0	
INTRO	Write:		REG14	REGIS	REGIZ	REGIT				
	Read:					FF11	0	0		
	Write:	LLIJ		LLIJ					LLON	
MISC	Read:	0	0	0	0	EVOTD1	EVETDO			
MISC	Write:					ENGINI	ENSIRU		ROMON	
Peserved	Read:	0	0	0	0	0	0	0	0	
IVE36I VEU	Write:									
	Name INITRM INITRG INITEE MISC Reserved	Name Read: INITRM Read: Write: INITRG Read: Write: INITEE Read: Write: MISC Read: Write: Reserved Read: Write:	NameBit 7INITRMRead: Write:RAM15INITRGRead: Write:0INITEERead: Write:0INITEERead: Write:0MISCRead: Write:0ReservedRead: Write:0	NameBit 7Bit 6INITRMRead: Write:RAM15RAM14INITRGRead: Write:0REG14INITEERead: Write:EE15EE14MISCRead: Write:00ReservedRead: Write:00	NameBit 7Bit 6Bit 5INITRMRead: Write:RAM15RAM14RAM13INITRGRead: Write:0REG14REG13INITEERead: Write:EE15EE14EE13MISCRead: Write:000ReservedRead: Write:000	NameBit 7Bit 6Bit 5Bit 4INITRMRead: Write:RAM15RAM14RAM13RAM12INITRGRead: Write:0REG14REG13REG12INITEERead: Write:EE15EE14EE13EE12MISCRead: Write:0000ReservedRead: Write:0000	NameBit 7Bit 6Bit 5Bit 4Bit 3INITRMRead: Write:RAM15RAM14RAM13RAM12RAM11INITRGRead: Write:0REG14REG13REG12REG11INITEERead: Write:EE15EE14EE13EE12EE11MISCRead: Write:00000ReservedRead: Write:00000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

\$0080 - \$009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0002		Read:	Bit15	14	13	12	11	10	9	Bit8
φ009Z	AIDUDKIN	Write:								
¢0002		Read:	Bit7	Bit6	0	0	0	0	0	0
40093	AIDUDKIL	Write:								
¢0001		Read:	Bit15	14	13	12	11	10	9	Bit8
4009 4	AIDODINZII	Write:								
\$0005		Read:	Bit7	Bit6	0	0	0	0	0	0
	AIDUDINZE	Write:								
\$0096 ATD0DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8	
	Write:									
\$0097		Read:	Bit7	Bit6	0	0	0	0	0	0
DUGI AIDUDISL	Write:									
\$0002		Read:	Bit15	14	13	12	11	10	9	Bit8
φ0000	AI DODICHI	Write:								
\$0099		Read:	Bit7	Bit6	0	0	0	0	0	0
φ0000		Write:								
\$009A	ATD0DR5H	Read:	Bit15	14	13	12	11	10	9	Bit8
φ000/ (A BOBILON	Write:								
\$009B		Read:	Bit7	Bit6	0	0	0	0	0	0
4000D	, II DODITOL	Write:								
\$009C	ATD0DR6H	Read:	Bit15	14	13	12	11	10	9	Bit8
40000		Write:								
\$009D		Read:	Bit7	Bit6	0	0	0	0	0	0
Ψ000D	ALDODITOL	Write:								
\$009E	ATD0DR7H	Read:	Bit15	14	13	12	11	10	9	Bit8
WOOD		Write:								
\$009F		Read:	Bit7	Bit6	0	0	0	0	0	0
φυσση	, a Dobla E	Write:								

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

							-	-		
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A0	PWME	Read: Write:	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
\$00A1	PWMPOL	Read: Write:	PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
\$00A2	PWMCLK	Read: Write:	PCLK7	PCLK6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
\$00A3	PWMPRCLK	Read:	0	PCKB2	PCKB1	DCKBO	0	DCKA2	PCKA1	PCKA0
		Write:				T ONDO				
\$00A4	PWMCAE	Read: Write:	CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
\$0045		Read:			CON23				0	0
900A0	FWWCTL	Write:	CONOT	CON45	001123	CONUT	FOWAI	FFNZ		
¢0046	PWMTST	Read:	0	0	0	0	0	0	0	0
φυυλο	Test Only	Write:								
¢0047	PWMPRSC	Read:	0	0	0	0	0	0	0	0
\$00A7	Test Only	Write:								
\$00A8	PWMSCLA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A9	PWMSCLB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00AA	PWMSCNTA Test Only	Read: Write:	0	0	0	0	0	0	0	0
\$004B	PWMSCNTB	Read:	0	0	0	0	0	0	0	0
ΨŪŪAD	Test Only	Write:								
\$00AC	PWMCNT0	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:	0	0	0	0	0	0	0	0
\$00AD	PWMCNT1	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Pood:	U Bit 7	0	5	0	0	0	1	U Bit O
\$00AE	PWMCNT2	Write	0	0	0		0	0	0	0
		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00AF	PWMCNT3	Write:	0	0	0	0	0	0	0	0
		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B0	PWMCNT4	Write:	0	0	0	0	0	0	0	0
* ** *		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B1	PWMCN15	Write:	0	0	0	0	0	0	0	0
¢0000		Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B2	PWWCNT6	Write:	0	0	0	0	0	0	0	0
¢00B3		Read:	Bit 7	6	5	4	3	2	1	Bit 0
φ00D3		Write:	0	0	0	0	0	0	0	0
\$00B4	PWMPER0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B5	PWMPER1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B6	PWMPER2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B7	PWMPER3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B8	PWMPER4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00B9	PWMPER5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BA	PWMPER6	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BB	PWMPER7	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BC	PWMDTY0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BD	PWMDTY1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BE	PWMDTY2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00BF	PWMDTY3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C0	PWMDTY4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00C1	PWMDTY5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0300 - \$035F

Byteflight

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0215	REEIDDMD	Read:								
φ0313	DITIDITIMIT	Write:	,	0	<u> </u>	0		<u> </u>	~	1
¢0246	Deserved	Read:	0	0	0	0	0	0	0	0
\$0316	Reserved	Write:								
\$0317	Reserved	Read:	0	0	0	0	0	0	0	0
<i>QUUUU</i>		Write:								-
\$0318	Reserved	Read:	0	0	0	0	0	0	0	0
		Pood	0	0	0	0	0	0	0	0
\$0319	Reserved	Write:	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	0	0	0	0
\$031A	Reserved	Write:	-	-	-	-	-	-	-	-
¢004 D	Decembrad	Read:	0	0	0	0	0	0	0	0
Ф031D	Reserved	Write:								
\$031C	Reserved	Read:	0	0	0	0	0	0	0	0
Q 0010	10001100	Write:	_		_	-	_	_		-
\$031D	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:	0	0	0	0	0	0	0	0
\$031E	Reserved	Keau.	0	0	0	0	0	0	0	0
	Read:	0	0	0	0	0	0	0	0	
\$031F	Reserved	Write:	0	Ŭ	Ū	•	Ŭ	Ŭ	Ŭ	•
\$ 0000		Read:	107	IDO	IDE	15.4	IDO	IDO	154	IDO
\$0320	BEIIDENI	Write:	יטו	ID6	ID5	ID4	ID3	ID2		IDU
\$0321	BETLEN	Read:						LEN2		
φ00 <u>2</u> 1	DITEEN	Write:								
\$0322 -	BFTDATA0-	Read:	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
\$032D	BFTDATA11	Write:								
\$032E - \$032E	Reserved	Read:								
φ032F		Read								
\$0330	BFRIDENT	Write:	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
\$0331	BERI EN	Read:						LEN2		
φ0001	DIREEN	Write:								
\$0332 -	BFRDATA0-	Read:	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA 0
\$033D	BFRDAIA11	Write:								
\$033E- \$033E	Reserved	Read: Write								
\$ 00001		Read:								
\$0340	BFFIDENT	Write:	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
\$0341	BEELEN	Read:					I EN3	LEN2		
φ00+1	DITEEN	Write:								
\$0342 -	BFFDATA0-	Read:	DATA 7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
\$034D	BFFDAIA11	Write:		-	-		-			-
\$034E - \$034F	Reserved	Kead:								
\$0350 -	BEBUECTI 0 -	Read				ABTAK		0	0	
\$035F	BFBUFCTL15	Write:	IFLG	IENA	LOCK		ABTRQ			CFG

Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 Bondout

2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]

PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1.

2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]

PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.

2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]

PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0.

2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]

PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.

2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] - Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] - Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.12 PE7 / NOACC / XCLKS - Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus.

The $\overline{\text{XCLKS}}$ is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of $\overline{\text{RESET}}$. If the input is a logic low the EXTAL pin is configured for an external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is an oscillator circuit on EXTAL and XTAL.

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value C_{DC} .

Figure 2-5 Colpitts Oscillator Connections (PE7=1)

* Rs can be zero (shorted) when used with higher frequency crystals. Refer to manufacturer's data.

Figure 2-6 Pierce Oscillator Connections (PE7=0)

Figure 2-7 External Clock Connections (PE7=0)

Mnomonio	Pin Number	Nominal	Description				
witternottic	112-pin QFP	Voltage	Description				
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal				
VSSR	40	0V	voltage regulator.				
VDDX	107	5.0V	External power and ground, supply to pip drivers				
VSSX	106	0V					
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital				
VSSA	86	0V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.				
VRL	85	0V	Peteroneo voltagos for the analog to digital convertor				
VRH	84	5.0V					
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked				
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.				
VREGEN	97	5V	Internal Voltage Regulator enable/disable				

NOTE: All VSS pins must be connected together in the application.

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode or via a .sequence of BDM commands. Unsecuring is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.

Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks.

4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.

Device User Guide — 9S12DT128DGV2/D V02.17

\$FFCA, \$FFCB	Modulus Down Counter underflow	I-Bit	MCCTL (MCZI)	\$CA				
\$FFC8, \$FFC9	Pulse Accumulator B Overflow	I-Bit	PBCTL (PBOVI)	\$C8				
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	PLLCR (LOCKIE)	\$C6				
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	PLLCR (SCMIE)	\$C4				
\$FFC2, \$FFC3	BDLC	I-Bit	DLCBCR1 (IE)	\$C2				
\$FFC0, \$FFC1	IIC Bus	I-Bit	IBCR (IBIE)	\$C0				
\$FFBE, \$FFBF	SPI1	I-Bit	SPICR1 (SPIE, SPTIE)	\$BE				
\$FFBC, \$FFBD	Reserved							
\$FFBA, \$FFBB	EEPROM	I-Bit	ECNFG (CCIE, CBEIE)	\$BA				
\$FFB8, \$FFB9	FLASH	I-Bit	FCNFG (CCIE, CBEIE)	\$B8				
\$FFB6, \$FFB7	CAN0 wake-up	I-Bit	CANRIER (WUPIE)	\$B6				
\$FFB4, \$FFB5	CAN0 errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$B4				
\$FFB2, \$FFB3	CAN0 receive	I-Bit	CANRIER (RXFIE)	\$B2				
\$FFB0, \$FFB1	CAN0 transmit	I-Bit	CANTIER (TXEIE[2:0])	\$B0				
\$FFAE, \$FFAF	CAN1 wake-up	I-Bit	CANRIER (WUPIE)	\$AE				
\$FFAC, \$FFAD	CAN1 errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$AC				
\$FFAA, \$FFAB	CAN1 receive	I-Bit	CANRIER (RXFIE)	\$AA				
\$FFA8, \$FFA9	CAN1 transmit	I-Bit	CANTIER (TXEIE[2:0])	\$A8				
\$FFA6, \$FFA7	BF Receive FIFO not empty	I-Bit	BFRIER (RCVFIE)	\$A6				
\$FFA4, \$FFA5	BF receive	I-Bit	BFBUFCTL[15:0] (IENA)	\$A4				
\$FFA2, \$FFA3	BF Synchronization	I-Bit	BFRIER (SYNAIE, SYNNIE)	\$A2				
\$FFA0, \$FFA1	BF general	I-Bit	BFBUFCTL[15:0] (IENA), BFGIER (OVRNIE, ERRIE, SYNEIE, SYNLIE, ILLPIE, LOCKIE, WAKEIE) BFRIER (SLMMIE)	\$A0				
\$FF98, \$FF9F		Rese	erved					
\$FF96, \$FF97	CAN4 wake-up	I-Bit	CANRIER (WUPIE)	\$96				
\$FF94, \$FF95	CAN4 errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$94				
\$FF92, \$FF93	CAN4 receive	I-Bit	CANRIER (RXFIE)	\$92				
\$FF90, \$FF91	CAN4 transmit	I-Bit	CANTIER (TXEIE[2:0])	\$90				
\$FF8E, \$FF8F	Port P Interrupt	I-Bit	PIEP (PIEP7-0)	\$8E				
\$FF8C, \$FF8D	PWM Emergency Shutdown	I-Bit	PWMSDN (PWMIE)	\$8C				
\$FF80 to \$FF8B		Rese	erved					

5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B, E and K out of reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204) Colpitts Oscillator

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Conditions are shown in (Table A-4) unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Run supply currents Single Chip, Internal regulator enabled	I _{DD5}			55	mA
2	P P	Wait Supply current All modules enabled, PLL on only RTI enabled ⁽¹⁾	I _{DDW}			30 5	mA
3	C P C C P C P C P C P	Pseudo Stop Current (RTI and COP disabled) ^{1, 2} -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDPS}		370 400 450 550 600 650 800 850 1200	500 1600 2100 5000	μΑ
4	0000000	Pseudo Stop Current (RTI and COP enabled) ^{(1), (2)} -40°C 27°C 70°C 85°C 105°C 125°C 140°C	I _{DDPS}		570 600 650 750 850 1200 1500		μΑ
5	C P C C P C P C P C P	Stop Current ⁽²⁾ -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDS}		12 25 100 130 160 200 350 400 600	100 1200 1700 5000	μΑ

Table A-7 Supply Current Characteristics

Appendix B Package Information

B.1 General

This section provides the physical dimensions of the MC9S12DT128 packages.