

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dg128vfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Version Number	Revision Date	Effective Date	Author	Description of Changes
V02.07	29 Jan 2003	29 Jan 2003		Added 3L40K mask set in section 1.6 Corrected register entries in section 1.5.1 "Detailed Memory Map" Updated description for ROMCTL in section 2.3.31 Updated section 4.3.3 "Unsecuring the Microcontroller" Corrected and updated device-specific information for OSC (section 8.1) & Byteflight (section 15.1) Updated footnote in Table A-4 "Operating Conditions" Changed reference of VDDM to VDDR in section A.1.8 Removed footnote on input leakage current in Table A-6 "5V I/O Characteristics"
V02.08	26 Feb 2003	26 Feb 2003		Added part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E in "Preface" and related part number references Removed mask sets 0L40K and 2L40K from Table 1-3
V02.09	15 Oct 2003	15 Oct 2003		 Replaced references to HCS12 Core Guide by the individual HCS12 Block guides in Table 0-2, section 1.5.1, and section 6; updated Fig.3-1 "Clock Connections" to show the individual HCS12 blocks Corrected PIM module name and document order number in Table 0-2 "Document References" Corrected ECT pulse accumulators description in section 1.2 "Features" Corrected KWP5 pin name in Fig 2-1 112LQFP pin assignments Corrected pull resistor CTRL/reset states for PE7 and PE4-PE0 in Table 2.1 "Signal Properties" Mentioned "S12LRAE" bootloader in Flash section 17 Corrected footnote on clamp of TEST pin under Table A-1 "Absolute Maximum Ratings" Corrected minimum bus frequency to 0.25MHz in Table A-4 "Operating Conditions" Replaced "burst programming" by "row programming" in A.3 "NVM, Flash and EEPROM" Corrected plank check time for EEPROM in Table A-11 "NVM Timing Characteristics"
V02.10	6 Feb 2004	6 Feb 2004		 Added A128 information in "Derivative Differences", 2.1 "Device Pinout", 2.2 "Signal Properties Summary", Fig 23-2 & Fig 23-4 Added lead-free package option (PVE) in Table 0-2 "Derivative Differences for MC9S12DB128" and Fig 0-1 "Order Partnumber Example" Added an "AEC qualified" row in the "Derivative Differences" tables 0-1 & 0-2.
V02.11	3 May 2004	3 May 2004		Added part numbers SC515846, SC515847, SC515848, and SC515849 in "Derivative Differences" tables 0-1 & 0-2, section 2, and section 23. Corrected and added maskset 4L40K in tables 0-1 & 0-2 and section 1.6. Corrected BDLC module availability in DB128 80QFP part in "Derivative Differences" table 0-2.

6.1.1	Device-specific information	85
6.2	HCS12 Module Mapping Control (MMC) Block Description	85
6.2.1	Device-specific information	85
6.3	HCS12 Multiplexed External Bus Interface (MEBI) Block Description	85
6.3.1	Device-specific information	85
6.4	HCS12 Interrupt (INT) Block Description	86
6.5	HCS12 Background Debug Module (BDM) Block Description	86
6.5.1	Device-specific information	
6.6	HCS12 Breakpoint (BKP) Block Description	86
Sect	ion 7 Clock and Reset Generator (CRG) Block Description	
7.1	Device-specific information.	86
Sect	ion 8 Oscillator (OSC) Block Description	
8.1	Device-specific information.	86
Sect	ion 9 Enhanced Capture Timer (ECT) Block Description	
Sect	tion 10 Analog to Digital Converter (ATD) Block Description	
Sect	ion 11 Inter-IC Bus (IIC) Block Description	
Sect	ion 12 Serial Communications Interface (SCI) Block Description	
Sect	ion 13 Serial Peripheral Interface (SPI) Block Description	
Sect	ion 14 J1850 (BDLC) Block Description	
Sect	ion 15 Byteflight (BF) Block Description	
15.1	Device-specific information.	88
Sect	ion 16 Pulse Width Modulator (PWM) Block Description	
Sect	ion 17 Flash EEPROM 128K Block Description	
Sect	ion 18 EEPROM 2K Block Description	
Sect	ion 19 RAM Block Description	

Figure A-10	General External Bus Timing	134
Figure 23-6	112-pin LQFP mechanical dimensions (case no. 987)	138

Section 1 Introduction

1.1 Overview

The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.

1.2 Features

- HCS12 Core
 - 16-bit HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii.20-bit ALU
 - iv. Instruction queue
 - v. Enhanced indexed addressing
 - MEBI (Multiplexed External Bus Interface)
 - MMC (Module Mapping Control)
 - INT (Interrupt control)
 - BKP (Breakpoints)
 - BDM (Background Debug Module)
- CRG (Clock and Reset Generator)
 - Choice of low current Colpitts oscillator or standard Pierce Oscillator
 - PLL
 - COP watchdog
 - real time interrupt
 - clock monitor
- 8-bit and 4-bit ports with interrupt functionality

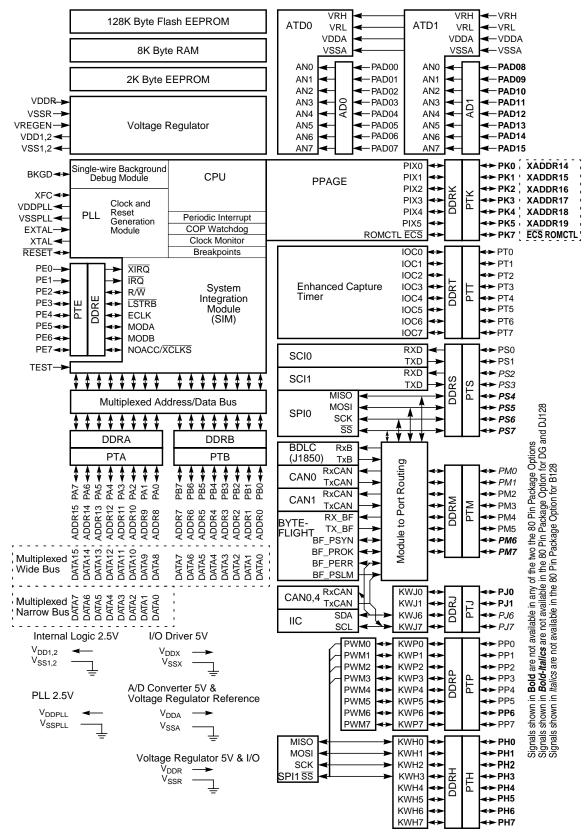


Figure 1-1 MC9S12DT128 Block Diagram

1.5.1 Detailed Register Map

\$0000 - \$000F

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0005	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0006	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0007	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
\$000E	EBICTL	Read: Write:	0	0	0	0	0	0	0	ESTR
\$000F	Reserved	Read: Write:	0	0	0	0	0	0	0	0

\$0010 - \$0014

MMC map 1 of 4 (HCS12 Module Mapping Control)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	Read: Write:	RAM15	RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
¢0011	INITRG	Read:	0	REG14	REG13	REG12	REG11	0	0	0
\$0011	INTRG	Write:		REG14	REGIS	REGIZ	REGII			
\$0012	INITEE	Read:	EE15	EE14	EE13	EE12	EE11	0	0	EEON
\$00 .		Write:								
\$0013	MISC	Read:	0	0	0	0	EXSTR1	EXSTR0	ROMHM	ROMON
φ0013	MISC	Write:					ENSIKI	ENGINU		ROMON
© 004.4	Percentred	Read:	0	0	0	0	0	0	0	0
\$0014	Reserved	Write:								

\$0080 - \$009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0092	ATD0DR1H	Read:	Bit15	14	13	12	11	10	9	Bit8
\$009Z	AIDUDKIN	Write:								
\$0093	ATD0DR1L	Read:	Bit7	Bit6	0	0	0	0	0	0
φ0093	AIDODITIE	Write:								
\$0094	ATD0DR2H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψ003 -	AIDODINZII	Write:								
\$0095	ATD0DR2L	Read:	Bit7	Bit6	0	0	0	0	0	0
φυυυυ	A BOBILE	Write:								
\$0096	ATD0DR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
<i>QUUUU</i>	/	Write:								
\$0097 ATD0DR3L	ATD0DR3L	Read:	Bit7	Bit6	0	0	0	0	0	0
		Write:							_	
\$0098	ATD0DR4H	Read:	Bit15	14	13	12	11	10	9	Bit8
		Write:		2110	-					-
\$0099	ATD0DR4L	Read:	Bit7	Bit6	0	0	0	0	0	0
		Write:	D 1:4 =		4.0	1.0		1.0	-	Dia
\$009A	ATD0DR5H	Read:	Bit15	14	13	12	11	10	9	Bit8
		Write:	D:17	Dito	0	0	0	0	0	
\$009B	ATD0DR5L	Read:	Bit7	Bit6	0	0	0	0	0	0
		Write:	Ditte	4.4	40	10	4.4	10	0	D:40
\$009C	ATD0DR6H	Read:	Bit15	14	13	12	11	10	9	Bit8
		Write:	DH7	DitC	0	0	0	0	0	0
\$009D	ATD0DR6L	Read:	Bit7	Bit6	0	0	0	0	0	0
		Write:	Di+15	14	13	10	11	10	9	Bit8
\$009E	ATD0DR7H	Read: Write:	Bit15	14	13	12	11	10	9	DILO
			Bit7	Bit6	0	0	0	0	0	0
\$009F	ATD0DR7L	Read: Write:	DILI	DILU	0	U	U	U	U	0
		write.[

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A0	PWME	Read: Write:	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
\$00A1	PWMPOL	Read: Write:	PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
\$00A2	PWMCLK	Read: Write:	PCLK7	PCLK6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
\$00A3	PWMPRCLK	Read: Write:	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
\$00A4	PWMCAE	Read: Write:	CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
\$00A5	PWMCTL	Read: Write:	CON67	CON45	CON23	CON01	PSWAI	PFRZ	0	0
¢0046	PWMTST	Read:	0	0	0	0	0	0	0	0
\$00A6	Test Only	Write:							PWME1 PPOL1 PCLK1 PCKA1 CAE1 0	
¢0047	PWMPRSC	Read:	0	0	0	0	0	0	0	0
\$00A7	Test Only	Write:								
\$00A8	PWMSCLA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0280 - \$02BF

CAN4 (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0280	CAN4CTL0	Read: Write:	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
\$0281	CAN4CTL1	Read: Write:	CANE	CLKSRC	LOOPB	LISTEN	0	WUPM	SLPAK	INITAK
\$0282	CAN4BTR0	Read: Write:	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
\$0283	CAN4BTR1	Read: Write:	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
\$0284	CAN4RFLG	Read: Write:	WUPIF	CSCIF	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF
\$0285	CAN4RIER	Read: Write:	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
\$0286	CAN4TFLG	Read: Write:	0	0	0	0	0	TXE2	TXE1	TXE0
\$0287	CAN4TIER	Read: Write:	0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
\$0288	CAN4TARQ	Read: Write:	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
\$0289	CAN4TAAK	Read: Write:	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
\$028A	CAN4TBSEL	Read: Write:	0	0	0	0	0	TX2	TX1	TX0
\$028B	CAN4IDAC	Read: Write:	0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0
\$028C	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028D	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$028E	CAN4RXERR	Read: Write:	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
\$028F	CAN4TXERR	Read: Write:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
\$0290 - \$0293	CAN0IDAR0 - CAN0IDAR3	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0294 - \$0297	CANOIDMR0 - CANOIDMR3	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0298 - \$029B	CAN0IDAR4 - CAN0IDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$029C - \$029F	CANOIDMR4 - CANOIDMR7	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$02A0 -	CAN4RXFG	Read:		FOR	EGROUNI	D RECEIVE	BUFFER	see (Table	1-2)	
\$02AF \$02B0 - \$02BF	CAN4TXFG	Write: Read: Write:		FOR	EGROUND	TRANSMI	T BUFFER	see (Table	e 1-2)	

Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12DT128 and its derivatives are available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1**, **Figure 2-2**, and **Figure 2-3** show the pin assignments for different packages.

Pin Name	Pin Name	Pin Name	Pin Name	Pin Name	Powered		al Pull sistor	Description
Function 1	Function 2	Function 3	Function 4	Function 5	by	CTRL	Reset State	Description
PH6	KWH6		_	_	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt
PH5	KWH5		_	_	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt
PH4	KWH4		_	_	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt
PH3	кwнз	SS1	_	_	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt, SS of SPI1
PH2	KWH2	SCK1	—	—	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt, SCK of SPI1
PH1	KWH1	MOSI1	—	—	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt, MOSI of SPI1
PH0	КЖНО	MISO1	—	—	VDDR	PERH/ PPSH	Disabled	Port H I/O, Interrupt, MISO of SPI1
PJ7	KWJ7	TXCAN4	SCL	TXCAN0	VDDX	PERJ/ PPSJ	Up	Port J I/O, Interrupt, TX of CAN4, SCL of IIC
PJ6	KWJ6	RXCAN4	SDA	RXCAN0	VDDX	PERJ/ PPSJ	Up	Port J I/O, Interrupt, RX of CAN4, SDA of IIC
PJ[1:0]	KWJ[1:0]	_	_	—	VDDX	PERJ/ PPSJ	Up	Port J I/O, Interrupts
PK7	ECS	ROMCTL	_	_	VDDX	PUCR/ PUPKE	Up	Port K I/O, Emulation Chip Select, ROM Control
PK[5:0]	XADDR[19: 14]	_	_	_	VDDX	PUCR/ PUPKE	Up	Port K I/O, Extended Addresses
PM7	BF_PSLM	TXCAN4	_	_	VDDX	PERM/ PPSM	Disabled	Port M I/O, BF slot mismatch pulse, TX of CAN4
РМ6	BF_PERR	RXCAN4	_	_	VDDX	PERM/ PPSM	Disabled	Port M I/O, BF illegal pulse/message format error pulse, RX of CAN4
PM5	BF_PROK	TXCAN0	TXCAN4	SCK0	VDDX	PERM/ PPSM	Disabled	Port M I/O, BF reception ok pulse, TX of CAN0, CAN4, SCK of SPI0
PM4	BF_PSYN	RXCAN0	RXCAN4	MOSI0	VDDX	PERM/ PPSM	Disabled	Port M I/O, BF sync pulse (Rx/Tx) OK pulse o/p, RX of CAN0, CAN4, MOSI of SPI0
PM3	TX_BF	TXCAN1	TXCAN0	<u>SS0</u>	VDDX	PERM/ PPSM	Disabled	Port M I/O, TX of BF, CAN1, CAN0, SS of SPI0
PM2	RX_BF	RXCAN1	RXCAN0	MISO0	VDDX	PERM/ PPSM	Disabled	Port M I/O, RX of BF, CAN1, CAN0, MISO of SPI0

2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5

PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.

2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4

PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.

2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 1 (SPI1).

2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.49 PS7 / SS0 — Port S I/O Pin 7

PS7 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.50 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

VREGEN	Description							
1	Internal Voltage Regulator enabled							
	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V							

Table 4-3 Voltage Regulator VREGEN

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode, No BDM possible
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked.

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 10 Analog to Digital Converter (ATD) Block Description

There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DT128. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module. When the ATD_10B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 11 Inter-IC Bus (IIC) Block Description

Consult the IIC Block User Guide for information about the Inter-IC Bus module.

Section 12 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DT128 device. Consult the SCI Block User Guide for information about each Serial Communications Interface module.

Section 13 Serial Peripheral Interface (SPI) Block Description

There are two Serial Peripheral Interfaces (SPI1 and SPI0) implemented on MC9S12DT128. Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.

Section 14 J1850 (BDLC) Block Description

Consult the BDLC Block User Guide for information about the J1850 module.

Section 15 Byteflight (BF) Block Description

Consult the BF Block User Guide for information about the 10 Mbps Byteflight module.

Appendix A Electrical Characteristics

A.1 General

This introduction is intended to give an overview on several common topics like power supply, current injection etc.

A.1.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate.

P:

Those parameters are guaranteed during production testing on each individual device.

C:

Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors.

T:

Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category.

D:

Those parameters are derived mainly from simulations.

A.1.2 Power Supply

The MC9S12DT128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic.

The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.

The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator.

VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL.

VSS1 and VSS2 are internally connected by metal.

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

A.2.3 ATD accuracy

(Table A-10) specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

V _{REF} =	Conditions are shown in (Table A-4) unless otherwise noted $V_{REF} = V_{RH} - V_{RL} = 5.12V$. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV ATDCLK = 2.0MHz										
Num	С	Rating	Symbol	Min	Тур	Max	Unit				
1	Ρ	10-Bit Resolution	LSB		5		mV				
2	Ρ	10-Bit Differential Nonlinearity	DNL	-1		1	Counts				
3	Ρ	10-Bit Integral Nonlinearity	INL	-2.5	±1.5	2.5	Counts				
4	Ρ	10-Bit Absolute Error ¹	AE	-3	±2.0	3	Counts				
5	Ρ	8-Bit Resolution	LSB		20		mV				
6	Ρ	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts				
7	Ρ	8-Bit Integral Nonlinearity	INL	-1.0	±0.5	1.0	Counts				
8	Ρ	8-Bit Absolute Error ⁽¹⁾	AE	-1.5	±1.0	1.5	Counts				

Table A-10 ATD Conversion Performance

NOTES:

1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

For the following definitions see also Figure A-1.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$\mathsf{DNL}(i) = \frac{\mathsf{V}_i - \mathsf{V}_{i-1}}{\mathsf{1LSB}} - \mathsf{1}$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

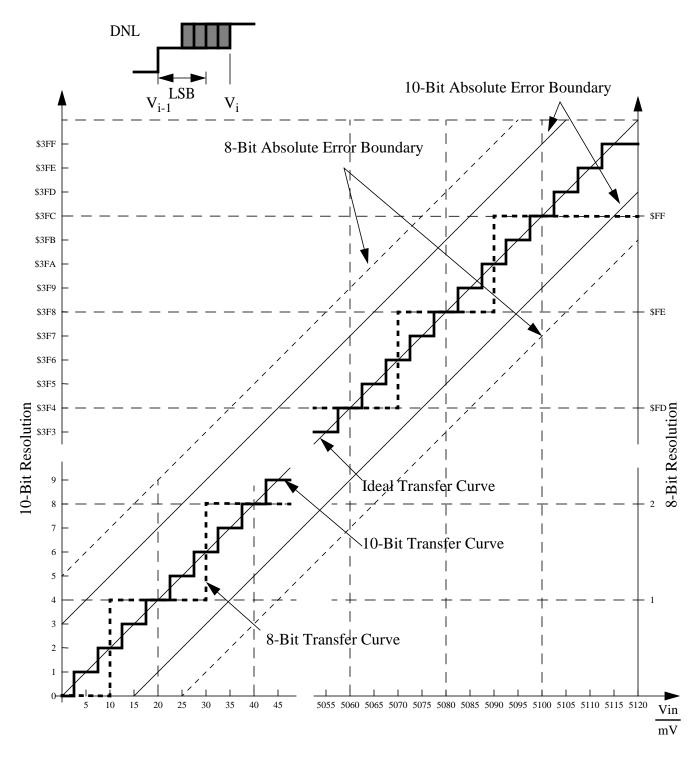
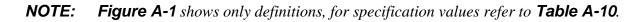



Figure A-1 ATD Accuracy Definitions

Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency $\rm f_{CMFA.}$

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1a	C	Crystal oscillator range (Colpitts)	f _{osc}	0.5	- 76	16	MHz
	-						
1b	С	Crystal oscillator range (Pierce) ¹	fosc	0.5		40	MHz
2	Ρ	Startup Current	iosc	100			μA
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ²	100 ³	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	S
5	Ρ	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Ρ	External square wave input frequency ⁴	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	с	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V
13	Ρ	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}	0.75*V _{DDPLL}			V
	Т	EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}			V _{DDPLL} + 0.3	V
14	Р	EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}			0.25*V _{DDPLL}	V
	Т	EXTAL Pin Input Low Voltage ⁴	VIL,EXTAL	V _{SSPLL} - 0.3			V
15	С	EXTAL Pin Input Hysteresis ⁴	V _{HYS,EXTAL}		250		mV

Table A-15	Oscillator	Characteristics

NOTES:

1. Depending on the crystal a damping series resistor might be necessary

2. $f_{osc} = 4MHz$, C = 22pF.

3. Maximum value is for extreme cases using high Q, low frequency crystals

4. XCLKS =0 during reset

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Condit	ions	s are shown in (Table A-4) unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Ρ	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz
2	D	VCO locking range	f _{VCO}	8		50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	% ¹
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ⁽¹⁾
5	D	Un-Lock Detection	$ \Delta_{unl} $	0.5		2.5	% ⁽¹⁾
6	D	Lock Detector transition from Tracking to Acquisition mode	$ \Delta_{unt} $	6		8	% ⁽¹⁾
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms
8	D	PLLON Acquisition mode stabilization delay ⁽²⁾	t _{acq}		0.3		ms
9	D	PLLON Tracking mode stabilization delay ⁽²⁾	t _{al}		0.2		ms
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz
12	D	Charge pump current acquisition mode	∣i _{ch} ∣		38.5		μA
13	D	Charge pump current tracking mode	∣i _{ch} ∣		3.5		μA
14	С	Jitter fit parameter 1 ⁽²⁾	j ₁			1.1	%
15	С	Jitter fit parameter 2 ⁽²⁾	j ₂			0.13	%

Table A-16 PLL Characteristics

NOTES:

% deviation from target frequency
 f_{OSC} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ.