

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12dt128mpve

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device User Guide — 9S12DT128DGV2/D V02.17

A.8	External Bus Timing
A.8.1	General Multiplexed Bus Timing133

Appendix B Package Information

B.1	General	137
B.2	112-pin LQFP package	138
B.3	80-pin QFP package	139

Device User Guide — 9S12DT128DGV2/D V02.17

Figure A-10	General External Bus Timing	134
Figure 23-6	112-pin LQFP mechanical dimensions (case no. 987)	138

- Port S[3:2]

PS3:2 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- PAD[15:8] (ATD1 channels)

Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!

Document References

The Device User Guide provides information about the MC9S12DT128 device made up of standard HCS12 blocks and the HCS12 processor core.

This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

See **Table 0-3** for names and versions of the referenced documents throughout the Device User Guide.

User Guide	Version	Document Order Number
HCS12 CPU Reference Manual	V02	S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide	V04	S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide	V03	S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide	V01	S12INTV1/D
HCS12 Background Debug Module (BDM) Block Guide	V04	S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide	V01	S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4/D
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide	V01	S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide	V02	S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide	V02	S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide	V02	S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide	V01	S12PWM8B8CV1/D
128K Byte Flash (FTS128K) Block User Guide	V02	S12FTS128KV2/D
2K Byte EEPROM (EETS2K) Block User Guide	V01	S12EETS2KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide	V01	S12BDLCV1/D
Motorola Scalable CAN (MSCAN) Block User Guide	V02	S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide	V01	S12VREGV1/D
Port Integration Module (PIM_9DTB128) Block User Guide	V02	S12DTB128PIMV2/D
Byteflight (BF) Block User Guide	V01	S12BFV1/D

Table 0-3 Document References

Device User Guide — 9S12DT128DGV2/D V02.17

- Digital filtering
- Programmable rising or falling edge trigger
- Memory
 - 128K Flash EEPROM
 - 2K byte EEPROM
 - 8K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- Three 1M bit per second, CAN 2.0 A, B software compatible modules
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Two Synchronous Serial Peripheral Interface (SPI)
 - Byteflight
- Byte Data Link Controller (BDLC)

- SAE J1850 Class B Data Communications Network Interface
 - Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)
 - Compatible with I2C Bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- 112-Pin LQFP and 80-Pin QFP package options
 - I/O lines with 5V input and drive capability
 - 5V A/D converter inputs
 - Operation at 50MHz equivalent to 25MHz Bus Speed
 - Development support
 - − Single-wire background debugTM mode
 - On-chip hardware breakpoints

1.3 Modes of Operation

User modes

- Normal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (**Freescale use only**)
 - Special Peripheral Mode (**Freescale use only**)

Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

\$0100 - \$010F

Flash Control Register (fts128k2)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0100	FCLKDIV	Read: Write:	FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
¢0101	ESEC	Read:	KEYEN1	KEYEN0	NV5	NV4	NV3	NV2	SEC1	SEC0
φυτυτ	FSEC	Write:								
\$0102	FTSTMOD	Read: Write:	0	0	0	WRALL	0	0	0	0
\$0103	FCNFG	Read: Write:	CBEIE	CCIE	KEYACC	0	0	0	BKSEL1	BKSEL0
\$0104	FPROT	Read: Write:	FPOPEN	NV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
¢0105	ESTAT	Read:	CREIE	CCIF	PVIOL	ACCERR	0	BLANK	0	0
φ0105	FSTAT	Write:	CDEIF							
\$0106	FCMD	Read: Write:	0	CMDB6	CMDB5	0	0	CMDB2	0	CMDB0
0 0407	Reserved for	Read:	0	0	0	0	0	0	0	0
\$0107	Factory Test	Write:								
\$0108	FADDRHI	Read: Write:	0	Bit 14	13	12	11	10	9	Bit 8
\$0109	FADDRLO	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$010A	FDATAHI	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$010B	FDATALO	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$010C -	Reserved	Read:	0	0	0	0	0	0	0	0
\$010F	Reserved	Write:								

\$0110 - \$011B

EEPROM Control Register (eets2k)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0110	ECLKDIV	Read: Write:	EDIVLD	PRDIV8	EDIV5	EDIV4	EDIV3	EDIV2	EDIV1	EDIV0
\$0111	Reserved	Read:	0	0	0	0	0	0	0	0
ψυττι	Reserved	Write:								
¢0112	Reserved for	Read:	0	0	0	0	0	0	0	0
φυτιζ	Factory Test	Write:								
¢0112		Read:			0	0	0	0	0	0
φ0113	ECINFG	Write:	OBEIE	COLE						
¢0114	EPROT	Read:		NV6	NV5	NV4	EPDIS	EP2	EP1	EDO
Φ 0114		Write:	EFOFEN							EFU
¢0115	FOTAT	Read:	CREIE	CCIF			0		0	0
φ0115	ESTAI	Write:	CDEIF		FVIOL	ACCERK	ACCERR	DLAINN		
¢0116	ECMD	Read:	0	CMDB6		0	0	CMDB3	0	
φυτιο	ECINID W	Write:		CIVIDBO	CIVIDBS			CIVIDBZ		CIVIDBU
¢0117	Reserved for	Read:	0	0	0	0	0	0	0	0
φυτιγ	Factory Test	Write:								
¢0110		Read:	0	0	0	0	0	0	Dit 0	
φυιιο	EADDRHI	Write:							DIL 9	DILO

\$0360 - \$03FF

Reserved

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0360 - Beconved	Basarvad	Read:	0	0	0	0	0	0	0	0
\$03FF	Reserved	Write:								

1.6 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **(Table 1-3)** shows the assigned part ID number.

Device	Mask Set Number	Part ID ¹
MC9S12DT128	1L40K	\$0111
MC9S12DT128	3L40K	\$0113
MC9S12DT128	4L40K	\$0114
MC9S12DT128	0L94R	\$0110
MC9S12DT128	1L59W	\$0115
MC9S12DT128	5L40K	\$0115
MC9S12DT128	2L94R	\$0115

Table 1-3 Assigned Part ID Numbers

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to HCS12 Module Mapping Control (MMC) Block Guide for further details.

Register name	Value
MEMSIZ0	\$13
MEMSIZ1	\$80

Table 1-4 Memory size registers

2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]

PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1.

2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]

PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.

2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]

PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0.

2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]

PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.

2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] - Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] - Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.12 PE7 / NOACC / XCLKS - Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus.

The $\overline{\text{XCLKS}}$ is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of $\overline{\text{RESET}}$. If the input is a logic low the EXTAL pin is configured for an external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is an oscillator circuit on EXTAL and XTAL.

2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 - PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 0 or 4 (CAN0, CAN4) or the serial data pin SDA of the IIC module.

2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.31 PK7 / ECS / ROMCTL - Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output ($\overline{\text{ECS}}$). While configurating MCU expanded modes, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the state of this pin is latched to the ROMON bit. For a complete list of modes refer to **4.2 Chip Configuration Summary**.

2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus.

2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7

PM7 is a general purpose input or output pin. It can be configured as the slot mismatch output pulse pin of Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 4 (CAN4).

2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6

PM6 is a general purpose input or output pin. It can be configured as the illegal pulse or message format error output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 4 (CAN4).

2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5

PM5 is a general purpose input or output pin. It can be configured as the reception OK output pulse pin of Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

Mnomonio	Pin Number	Nominal	Description				
witternottic	112-pin QFP	Voltage	Description				
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal				
VSSR	40	0V	voltage regulator.				
VDDX	107	5.0V	External power and ground, supply to pip drivers				
VSSX	106	0V					
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital				
VSSA	86	0V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.				
VRL	85	0V	Peteroneo voltagos for the analog to digital convertor				
VRH	84	5.0V					
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked				
VSSPLL	45	0V	Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.				
VREGEN	97	5V	Internal Voltage Regulator enable/disable				

NOTE: All VSS pins must be connected together in the application.

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12DT128. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**(Table 4-1)**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

BKGD = MODC	PE6 = MODB	PE5 = MODA	PK7 = ROMCTL	ROMON Bit	Mode Description									
0	0	0	x	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.									
0	0	1	0	1	Emulation Expanded Narrow, RDM allowed									
0 0	0		I I	1	0	- Emulation Expanded Narrow, BDW allowed								
0	1	0	X	0	Special Test (Expanded Wide), BDM allowed									
0 1	1	1	1	1	1	1	1	0	1	Emulation Expanded Wide, PDM allowed				
	1	I		1	1	0	- Emulation Expanded wide, BDW allowed							
1	0	0	Х	1	Normal Single Chip, BDM allowed									
1	0	4	0	0	Normal Expanded Norrow, DDM allowed									
	0	I	1	1	- Normal Expanded Narrow, BDM allowed									
1	1	0	x	1	Special Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)									
1	1	1	0	0	Normal Expanded Wide, BDM allowed									
1	1	Т	I	I	Т	1		1		1	1	1	1	- Normai Expanded Wide, bDivi allowed

Table 4-1 Mode Selection

For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.

Table 4-2	Clock Selection Based on PE7	
	Description	

$PE7 = \overline{XCLKS}$	Description
1	Colpitts Oscillator selected
0	Pierce Oscillator/external clock selected

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the CPU Reference Manual for information on resets and interrupts.

5.2 Vectors

5.2.1 Vector Table

(Table 5-1) lists interrupt sources and vectors in default order of priority.

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	Reset	None	None	_
\$FFFC, \$FFFD	Clock Monitor fail reset	None	COPCTL (CME, FCME)	-
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	-
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	-
\$FFF6, \$FFF7	SWI	None	None	_
\$FFF4, \$FFF5	XIRQ / BF High Priority Sync Pulse	X-Bit	None / BFRIER (XSYNIE)	_
\$FFF2, \$FFF3	IRQ	I-Bit	INTCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFEE, \$FFEF	Enhanced Capture Timer channel 0	I-Bit	TIE (COI)	\$EE
\$FFEC, \$FFED	Enhanced Capture Timer channel 1	I-Bit	TIE (C1I)	\$EC
\$FFEA, \$FFEB	Enhanced Capture Timer channel 2	I-Bit	TIE (C2I)	\$EA
\$FFE8, \$FFE9	Enhanced Capture Timer channel 3	I-Bit	TIE (C3I)	\$E8
\$FFE6, \$FFE7	Enhanced Capture Timer channel 4	I-Bit	TIE (C4I)	\$E6
\$FFE4, \$FFE5	Enhanced Capture Timer channel 5	I-Bit	TIE (C5I)	\$E4
\$FFE2, \$FFE3	Enhanced Capture Timer channel 6	I-Bit	TIE (C6I)	\$E2
\$FFE0, \$FFE1	Enhanced Capture Timer channel 7	I-Bit	TIE (C7I)	\$E0
\$FFDE, \$FFDF	Enhanced Capture Timer overflow	I-Bit	TSCR2 (TOF)	\$DE
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA
\$FFD8, \$FFD9	SPI0	I-Bit	SPICR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCI0	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD0	I-Bit	ATDCTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	ATD1	I-Bit	ATDCTL2 (ASCIE)	\$D0
\$FFCE, \$FFCF	Port J	I-Bit	PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PIEH (PIEH7-0)	\$CC

Device User Guide — 9S12DT128DGV2/D V02.17

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	_	- 3 3	
	Series Resistance	R1	0	Ohm
Machine Nu pc ne	Storage Capacitance	С	200	pF
	Number of Pulse per pin positive negative	_	- 3 3	
	Minimum input voltage limit		value Onit 1500 Ohm 100 pF - 3 3 0 200 pF - 3 3 - - 3 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - - - - -	
	Maximum input voltage limit		7.5	V

Table A-2 ESD and Latch-up Test Conditions

Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	с	Latch-up Current at 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	с	Latch-up Current at 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation

A.3.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.

The failure rates for data retention and program/erase cycling are specified at the operating conditions noted.

The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.

Condit	Conditions are shown in (Table A-4) unless otherwise noted						
Num	С	Rating	Symbol	Min	Тур	Max	Unit
	Flash Reliability Characteristics						
1	с	Data retention after 10,000 program/erase cycles at an average junction temperature of $T_{Javg} \le 85^{\circ}C$		15	100 ²	_	Vears
2	с	Data retention with <100 program/erase cycles at an average junction temperature $T_{Javg} \le 85^{\circ}C$	1 YELREI	20	100 ²	—	
3	с	Number of program/erase cycles $(-40^{\circ}C \le T_{J} \le 0^{\circ}C)$	n _{FL}	10,000	_	_	Cyclos
4	с	Number of program/erase cycles $(0^{\circ}C \le T_{J} \le 140^{\circ}C)$		10,000	100,000 ³	_	Cycles
		EEPROM Reliability Ch	naracteristic	s			
5	с	Data retention after up to 100,000 program/erase cycles at an average junction temperature of $T_{Javg} \le 85^{\circ}C$	teeneet	15	100 ²	_	Vears
6	с	Data retention with <100 program/erase cycles at an average junction temperature $T_{Javg} \le 85^{\circ}C$	^t EEPRET	20	100 ²		Tears
7	с	Number of program/erase cycles $(-40^{\circ}C \le T_{J} \le 0^{\circ}C)$	N _{EEP}	10,000	_	_	Cyclos
8	с	Number of program/erase cycles $(0^{\circ}C < T_{J} \le 140^{\circ}C)$		100,000	300,000 ³	_	Cycles

Table A-12 NVM Reliability Characteristics¹

NOTES:

1. T_{Javg} will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive application.

 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please refer to Engineering Bulletin EB618.

3. Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature can be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please refer to Engineering Bulletin EB619.

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Condit	Conditions are shown in (Table A-4) unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit	
1	Р	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz	
2	D	VCO locking range	f _{VCO}	8		50	MHz	
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	% ¹	
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ⁽¹⁾	
5	D	Un-Lock Detection	Δ _{unl}	0.5		2.5	% ⁽¹⁾	
6	D	Lock Detector transition from Tracking to Acquisition mode	Δ _{unt}	6		8	% ⁽¹⁾	
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms	
8	D	PLLON Acquisition mode stabilization delay ⁽²⁾	t _{acq}		0.3		ms	
9	D	PLLON Tracking mode stabilization delay ⁽²⁾	t _{al}		0.2		ms	
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V	
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz	
12	D	Charge pump current acquisition mode	i _{ch}		38.5		μA	
13	D	Charge pump current tracking mode	i _{ch}		3.5		μA	
14	С	Jitter fit parameter 1 ⁽²⁾	j ₁			1.1	%	
15	С	Jitter fit parameter 2 ⁽²⁾	j ₂			0.13	%	

Table A-16 PLL Characteristics

NOTES:

% deviation from target frequency
 f_{OSC} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ.

A.6 MSCAN

Table A-17 MSCAN Wake-up Pulse Characteristics

Conditions are shown in (Table A-4) unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μs
2	Ρ	MSCAN Wake-up dominant pulse pass	t _{WUP}	5			μs

A.7.2 Slave Mode

Figure A-8 and Figure A-9 illustrate the slave mode timing. Timing values are shown in (Table A-19).

Figure A-8 SPI Slave Timing (CPHA = 0)

Figure A-9 SPI Slave Timing (CPHA =1)

B.2 112-pin LQFP package

User Guide End Sheet