E·XFL

onsemi - LC87F0G08AUJA-AH Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LFSOP (0.173", 4.40mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f0g08auja-ah

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Function Details

■Flash ROM

- Capable of on-board programming with a wide range of supply voltages : 2.2 to 5.5V
- Block-erasable in 128 byte units
- Writes data in 2-byte units
- 8192 × 8 bits

■RAM

• 256×9 bits

■Bus Cycle Time

- 83.3ns (12MHz, V_{DD} =2.7V to 5.5V, Ta=-40°C to 85°C)
- 125ns (8MHz, VDD=2.0V to 5.5V, Ta=-40°C to 85°C)
- 250ns (4MHz, V_{DD}=1.8V to 5.5V, Ta=-40°C to 85°C)

Note : The bus cycle time here refers to the ROM read speed.

■Minimum Instruction Cycle Time (tCYC)

- 250ns (12MHz, V_{DD}=2.7V to 5.5V, Ta=-40°C to 85°C)
- 375ns (8MHz, V_{DD}=2.0V to 5.5V, Ta=-40°C to 85°C)
- 750ns (4MHz, V_{DD}=1,8V to 5.5V, Ta=-40°C to 85°C)

■Potrs

• Normal withstand voltage I/O ports whose I/O direction can be designated in 1-bit units

	18(P0n, P1n, P70, CF1, CF2)
• Reset pins	$1(\overline{\text{RES}})$
• Power supply pins	3(V _{SS} 1, V _{SS} 2, V _{DD} 1)
Reference voltage outputs	1(VREF)
 Dedicated debugger port 	1(OWP0)

■Timers

- Timer 0 : 16-bit timer/counter with 2 capture registers.
 - Mode 0 : 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) \times 2 channels Mode 1 : 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers)
 - + 8-bit counter (with two 8-bit capture registers)
 - Mode 2 : 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
 - Mode 3 : 16-bit counter (with two 16-bit capture registers)
- Timer 1 : 16-bit timer/counter that supports PWM/toggle outputs
 - Mode 0 : 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/
 - counter with an 8-bit prescaler (with toggle outputs)
 - Mode 1 : 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Mode 2 : 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
 - (toggle outputs also possible from lower-order 8 bits)
 - Mode 3 : 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (lower-order 8 bits may be used as a PWM output)

• Base timer

- (1) The clock is selectable from the subclock (32.768kHz crystal oscillation), the low speed RC, system clock, and timer 0 prescaler output.
- (2) with an 8-bit programmable prescaler
- (3) Interrupts programmable in 5 different time schemes

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
- 1) Oscillation is not halted automatically.
- 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) Having the watchdog timer or LVD function generate a reset
 - (3) Having an interrupt generated
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC and crystal oscillators automatically stop operation.
 - Note: The low-speed RC oscillator is controlled directly by the watchdog timer; its oscillation in the standby mode is also controlled by the watchdog timer.
 - 2) There are four ways of resetting the HOLD mode:
 - (1) Setting the reset pin to the lower level
 - (2) Having the watchdog timer or LVD function generate a reset
 - (3) Having an interrupt source established at one of the INT0, INT1, INT2 and INT4 pins
 - * INT0 and INT1 can be used in the level sense mode only.
 - (4) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer. (when X'tal oscillation or low-speed RC oscillation is selected).
 - 1) The CF, low-speed, and medium-speed RC oscillators automatically stop operation.
 - Note: The low-speed RC oscillator is controlled directly by the watchdog timer; its oscillation in the standby mode is also controlled by the watchdog timer.
 - Note: If the base timer is run with low-speed RC oscillation selected as the base timer input clock source and the X'tal HOLD mode is entered, the low-speed RC oscillator retains the state that is established when the X'tal HOLD mode is entered.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Having the watchdog timer or LVD function generate a reset
 - (3) Having an interrupt source established at one of the INT0, INT1, INT2, and INT4 pins
 - * INT0 and INT1 can be used in the level sense mode only.
 - (4) Having an interrupt source established at port 0
 - (5) Having an interrupt source established in the base timer circuit
- ■VCPWM: Frequency tunable 12-bit PWM × 2ch
- ■High speed PWM (HPWM2)
 - 8-/10- bits PWM ×1ch
 - 1) The PWM clock is selectable from system clock and Hi-speed RC2 (40MHz)
 - 2) The PWM type is selectable from 8 bits(Normal mode) and 10 bits(additive puls mode).
- ■Temperature sensor
 - Senseor voltage can be comapred by the AD converter.
- ■On-chip Debugger Function
 - Supports software debugging with the IC mounted on the target board.
 - Provides 1 channel of on-chip debugger pin. OWP0
- ■Data Security Function
 - Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.
- ■Package Form
 - SSOP24 (225mil): Lead-free and halogen-free type

■Development Tools

• On-chip debugger: TCB87 Type C (1-wire interface cable) + LC87F0G08A

■Programming Boards

Package	Programming boards
SSOP24(225mil)	W87F0GS

■Flash Programmer

Maker		Model	Supported version	Device
Flash Support Group, Inc. (FSG)	Single Programmer	AF9709C	Rev 03.28 or later	87F008SU
Flash Support Group, Inc.	Onboard	AF9101/AF9103(Main unit) (FSG models)		
(FSG) + Our company (Note 1)	FSG) Single/Gang + Programmer company	SIB87 Type C(Inter Face Driver) (Our company model)	(Note 2)	-
	Single/Gang Programmer	SKK Type B / SKK Type C	Application Version	
Our company	Onboard Single/Gang Programmer	SKK-DBG Type C	1.08 or later Chip Data Version 2.46 or later	LC87F0G08

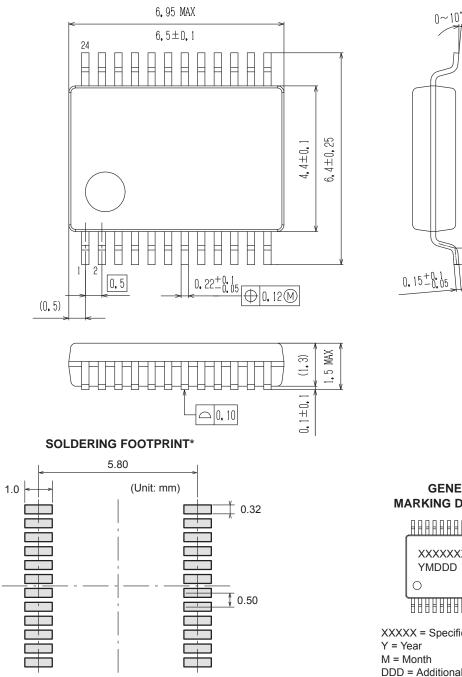
For information about AF-Series :

Flash Support Group, Inc.

TEL: +81-53-459-1050

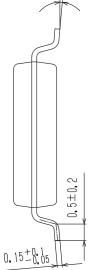
E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87 Type C) together can give a PC-less, standalone on-board-programming capabilities.

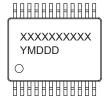

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.

Package Dimensions

unit : mm

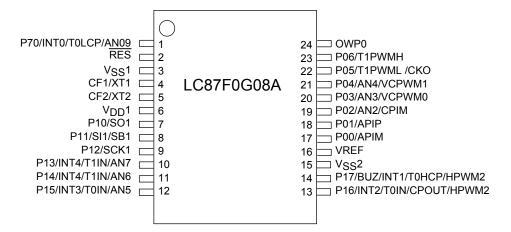

SSOP24 (225mil)

CASE 565AR **ISSUE A**



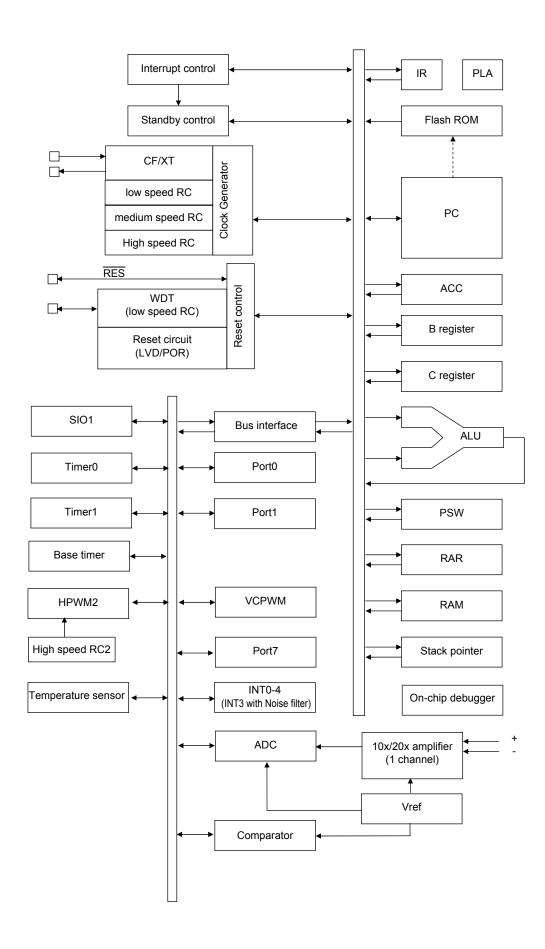
NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC **MARKING DIAGRAM***

XXXXX = Specific Device Code DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, "G" or microdot " ■", may or may not be present.


Pin Assignment

SSOP24(225mil) "Lead-/Halogen-free Type"

SSOP24	NAME	SSOP24	NAME
1	P70/INT0/T0LCP/AN09	13	P16/INT2/T0IN/CPOUT/HPWM2
2	RES	14	P17/BUZ/INT1/T0HCP/HPWM2
3	V _{SS} 1	15	V _{SS} 2
4	CF1/XT1	16	VREF
5	CF2/XT2	17	P00/APIM
6	V _{DD} 1	18	P01/APIP
7	P10/SO1	19	P02/AN2/CPIM
8	P11/SI1/SB1	20	P03/AN3/VCPWM0
9	P12/SCK1	21	P04/AN4/VCPWM1
10	P13/INT4/T1IN/AN7	22	P05/T1PWML/CKO
11	P14/INT4/T1IN/AN6	23	P06/T1PWMH
12	P15/INT3/T0IN/AN5	24	OWP0

System Block Diagram

Pin Name	I/O		Description					
Port 7	I/O	• 1-bit I/O	port		i			No
P70		 I/O speci 						
		• Pull-up r	esistors can be t	turned on and of	f.			
		Pin funct	tions					
		P70 : IN1	Γ0 input/HOLD r	elease input/time	er 0L capture inpu	ut/AD converter i	nput port (AN9)	
		Interrupt a	cknowledge type	e				
			Rising	Falling	Rising &	H level	L level	
			Rising	i anng	Falling	TTIEVEI	LIEVEI	
		INT0	enable	enable	disable	enable	enable	
RES	I	External re	eset input/interna	al reset output pi	n			Yes
								Internal pullup
	1/0	Ceramic	oscillator/32 76	8kHz crystal osc	illator input pin			ON/OFF No
CF1/XT1	I/O	- Cordinio	00011101102.10					110
		 Pin funct 						
		• 1-bit I/O	•					
		 I/O speci (only Nct) 	n-open drain)					
CF2/XT2	I/O			8kHz crystal osc	illator output pin			No
		 Pin funct 						
		Pin funct I-bit I/O						
		 I-bit I/O I/O speci 						
OWP0	I/O		ebugger pin					No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
		1	CMOS	Programmable
P00 to P06	1 bit	2	Nch-open drain	Programmable
D40 to D47	4 64	1	CMOS	Programmable
P10 to P17	P10 to P17 1 bit		Nch-open drain	Programmable
CF1/XT1	-	No	Nch-open drain when general I/O port is selected.	No
CF2/XT2	-	No	CMOS / Nch-open drain when general I/O port is selected.(programmable)	No
P70	-	No	Nch-open drain	Programmable

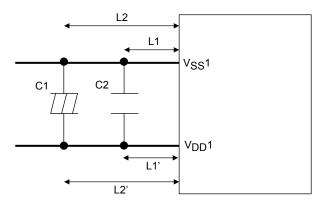
User Option Table

Option Name	Option Type	Flash Version	Option Selected in Units of	Option Selection
				CMOS
	P00 to P06	enable	1 bit	Nch-open drain
Port output form				CMOS
Port output form Program start address Protected area (Note1) Reset pin Low-voltage detection reset function	P10 to P17	enable	1 bit	Nch-open drain
•	-	enable	-	00000h or 01E00h When protected area 1) is selected 00000h When either of protected area 2), 3) or
				4) is selected
	t form P00 to P06 P10 to P17 tart area Internal pullup ON/OFF e detection Internal pullup ON/OFF Detect function Detect level			1) 1800h-1FFFh
address Protected area (Note1) Reset pin Low-voltage detection		enable	_	2) 0000h-1DFFh,1F00h-1FFFh
				3) 0000h-1CFFh,1F00h-1FFFh
				4) 0000h-1AFFh,1F00h-1FFFh
Depot nin	Internal nullun ON/OFF	enable		ON
Reset pin	Internal pullup ON/OFF	enable	-	OFF
	Data at function	a sector		Enable: Use
Low-voltage detection		enable	-	Disable: Not Used
	Detect level	enable	-	7-level
Power-on reset function	Power-On reset level	enable	-	1-level

Note1: onboard programming inhbited address

Recommended (Jnused Pin Connections	
Port Name	Recomm	nended Unused Pin Connections
Port Name	Board	Software
P00 to P07	Open	Output low
P10 to P17	Open	Output low
P70	Open	Output low
CF1/XT1	Open	General I/O port output low
CF2/XT2	Open	General I/O port output low
OWP0	Pulled low with a $100k\Omega$ resistor	-

Recommended Unused Pin Connections


On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "Rd87 On-chip Debugger Installation Manual"

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the $V_{DD}1$ and $V_{SS}1$ pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as equal as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should be approximately $0.1 \mu F$.

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, Vg	SS1 = VSS2 = 0V
--	-----------------

Parameter	Symbol	Pin/Remarks	Conditions			Speci	fication	-
	Gymbol			V _{DD} [V]	min	typ	max	unit
Operating	VDD(1)	VDD1	$0.245 \mu s \leq tCYC \leq 200 \mu s$		2.7		5.5	
supply voltage	VDD(2)	J	$0.367 \mu s \leq tCYC \leq 200 \mu s$		2.0		5.5	
(Note 2-1)	VDD(3)		$0.735 \mu s \leq tCYC \leq 200 \mu s$		1.8		5.5	
Memory sustaining supply voltage	VHD	VDD1	RAM and register contents sustained in HOLD mode.		1.6			v
High level input voltage	VIH(1)	Port 0,1 P70		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	v
	VIH(4)	CF1,CF2, RES		1.8 to 5.5	0.75V _{DD}		V _{DD}	
Low level	VIL(1)	Port 0,1		4.0 to 5.5	VSS		0.1V _{DD} +0.4	
input voltage		P70		1.8 to 4.0	V _{SS}		0.2V _{DD}	
	VIL(4)	CF1,CF2, RES		1.8 to 5.5	VSS		0.25V _{DD}	
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time	(Note 2-2)			2.0 to 5.5	0.367		200	μS
(Note 2-2)				1.8 to 5.5	0.735		200	
External	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
system clock frequency			 System clock frequency division ratio=1/1 External system clock duty=50 ± 5% 	2.2 to 5.5	0.1		8	MHz
Oscillation frequency	FmCF(1)	CF1,CF2	When 12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1,CF2	When 8MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		8		
	FmCF(3)	CF1,CF2	When 4MHz ceramic oscillation See Fig. 1.	1.8 to 5.5		4		
	FmFRC(1)		Internal high-speed RC oscillation Ta=-10°C to +85°C (Note 2-4)	1.8 to 5.5	7.76	8.0	8.24	MHz
	FmFRC(2)		Internal high-speed RC oscillation Ta=-40°C to +85°C (Note 2-4)	1.8 to 5.5	7.60	8.0	8.40	
	FmRC		Internal medium-speed RC oscillation	1.8 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation (Note 2-5)	1.8 to 5.5	27	30	33	kHz
	FsX'tal	XT1,XT2	32.768kHz crystal oscillation See Fig. 2.	1.8 to 5.5		32.768		kHz
	FmPWMRC		Internal high-speed RC oscillation for HPWM2	2.7 to 5.5	38	40	42	MHz
Oscillation	tmsCF	CF1,CF2	When oscillation circuit is		See Tab	ole 1		
Stabilization Time	tmsFRC (Note 2-4)		switched from "oscillation stopped" to "oscillation	1.8 to 5.5			100	
	tmsPWMR C		enabled".	1.8 to 5.5			100	μS
	tmsRC		• See Fig. 3.	1.8 to 5.5		0		
	tmsSRC (Note2-5)			1.8 to 5.5			1	ms
	tmsX'tal	XT1,XT2			See Tab	ole 2		

Note 2-1: VDD must be held greater than or equal to 2.7V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Note 2-4: An oscillation stabilization time of 100µs or longer must be provided before switching the system clock source after the state of the high-speed RC oscillation circuit is switched from "oscillation stopped" to "oscillation enabled".

Note 2-5: An oscillation stabilization time of 1ms or longer must be provided before switching the system clock source after the state of the low-speed RC oscillation circuit is switched from "oscillation stopped" to "oscillation enabled".

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Descentes	O maked	Dia (Demender			Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Port 0,1, Port 7, RES	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	1.8 to 5.5			1	
	I _{IH} (2)	CF1	V _{IN} =V _{DD}	1.8 to 5.5			15	
Low level input current	l _{IL} (1)	Port 0,1, Port 7, RES	Output disabled Pull-up resistor off V _{IN} =V _{SS} (Including output Tr's off leakage current)	1.8 to 5.5	-1			μA
	I _{IL} (2)	CF1	V _{IN} =V _{SS}	1.8 to 5.5	-15			
High level output V _{OH} (1) P	Port 0,1,	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			v	
voltage	V _{OH} (2)	CF2	I _{OH} =-0.2mA	1.8 to 5.5	V _{DD} -0.4			v
Low level output	V _{OL} (1)	Port 0,1,	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	P70,CF1,CF2	I _{OL} =1.0mA	1.8 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Port 0,1,	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	P70		1.8 to 4.5	18	50	230	kΩ
	Rpu(3)	RES		1.8 to 5.5	300	400	500	
Hysteresis voltage	VHYS(1)	Port 0,1,		2.7 to 5.5		0.1V _{DD}		V
		P70 RES		1.8 to 5.5		0.07V _{DD}		
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	1.8 to 5.5		10		pF

Electrical Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = 0$ V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AD Converter Characteristics at $V_{SS}\mathbf{1}=V_{SS}\mathbf{2}=\mathbf{0}V$

<12bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

Devenueter	0		Quaditiana		Specification				
Parameter Symbol		Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN2(P02)		1.8 to 5.5		12		bit	
Absolute accuracy	ET	AN3(P03) AN4(P04)	(Note 6-1)	1.8 to 5.5			±16	LSB	
Conversion time	TCAD	AN5(P15)	See conversion time	2.7 to 5.5	32		115		
		AN6(P14) AN7(P13)	calculation method.	2.2 to 5.5	134		215	μS	
		AN7(P13) AN9(P70)	(Note 6-2)	1.8 to 5.5	400		430		
Analog input	VAIN(1)	/	When V _{DD} is selected	1.8 to 5.5	V _{SS}		V _{DD}		
voltage range	VAIN(2)	(Note 6-3)	When internal VREF=4V is selected. VREF≤VDD	4.3 to 5.5	V _{SS}		VREF	V	
			When internal VREF=2V is selected VREF≤VDD	2.3 to 3.6	V _{SS}		VREF		
Analog port	IAINH		VAIN=V _{DD}	1.8 to 5.5			1		
input current	IAINL		VAIN=V _{SS}	1.8 to 5.5	-1			μA	

<8bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

Decemeter	Sympol	Pin/Remarks	0			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN2(P02)		1.8 to 5.5		8		bit
Absolute accuracy	ET	AN3(P03) AN4(P04)	(Note 6-1)	1.8 to 5.5			±1.5	LSB
Conversion time	TCAD	AN5(P15)	See conversion time calculation	2.7 to 5.5	20		90	
		AN6(P14) AN7(P13)	method.	2.2 to 5.5	80		135	μS
		AN7(P13) AN9(P70)	(Note 6-2)	1.8 to 5.5	245		265	
Analog input	VAIN(1)		When V _{DD} is selected	1.8 to 5.5	V _{SS}		V _{DD}	
voltage range	VAIN(2)	(Note 6-3)	When internal VREF=4V is selected.	4.3 to 5.5	V _{SS}		VREF	V
			When internal VREF=2V is selected.	2.3 to 3.6	V _{SS}		VREF	
Analog port	IAINH		VAIN=V _{DD}	1.8 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	1.8 to 5.5	-1			μA

<Conversion time calculation method>

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

Deventer	Symbol	Pin/Remarks		Conditions			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions		V _{DD} [V]	min	typ	max	unit
20x Amplifier gain	APGAIN20 See Fig7	P00/APIM P01/APIP	-	40 to +85°C DIR=0 & GAIN20=1.			20		
20x Amplifier offset	VAPIO20		P00 2)AP • P01	=0V,P00≤0V or =0V,P01≥0V DIR=1 & GAIN20=1. =0V,P00≥0V or =0V,P01≤0V		200		600	mV
20x Amplifier	VAPIM20-1	P00/APIM		P01/APIP=0V		-0.17		0	
input voltage	VAPIP20-1	P01/APIP	1)	P00/APIM=0V		0		0.17	V
range	VAPIM20-2	P00/APIM	0)	P01/APIP=0V		0		0.17	
	VAPIP20-2	P01/APIP	2)	P00/APIM=0V		-0.17		0	V
10x Amplifier gain	APGAIN10 See Fig7	P00/APIM P01/APIP		40 to +85°C DIR=0 & GAIN20=0.			10		
10x Amplifier offset	VAPIO10		P00 4)AP • P01	H=0V,P00≤0V or H=0V,P01≥0V DIR=1 & GAIN20=0. H=0V,P00≥0V or H=0V,P01≤0V	4.3 to 5.0	100		300	mV
10x Amplifier	VAPIM10-3	P00/APIM	- 3)	P01/APIP=0V		-0.24		0	v
input voltage	VAPIP10-3	P01/APIP	3)	P00/APIM=0V		0		0.24	V
range	VAPIM10-4	P00/APIM	4)	P01/APIP=0V		0		0.24	v
	VAPIP10-4	P01/APIP	4)	P00/APIM=0V		-0.24		0	V
Amplifier input	IAPINL	P00/APIM	P00//	APIM=V _{SS} -0.2V		-1			
port input current	IAPINH	P01/APIP	P01//	APIP=V _{DD}				1	μA
Operation stabilization time (Note 8-1)	tAPW							20	μS

10x/20x Amplifier Characteristics at Ta = -40° C to $+85^{\circ}$ C, $V_{SS}1 = V_{SS}2 = 0$ V

Note 8-1: Refers to the interval between the time APON is set to 1 and the time operation gets stabilized.

<Amplifier input vaoltage calculation method:See Fig7>

VAPFUL = (VREFAD - VAPIO) / APGAIN

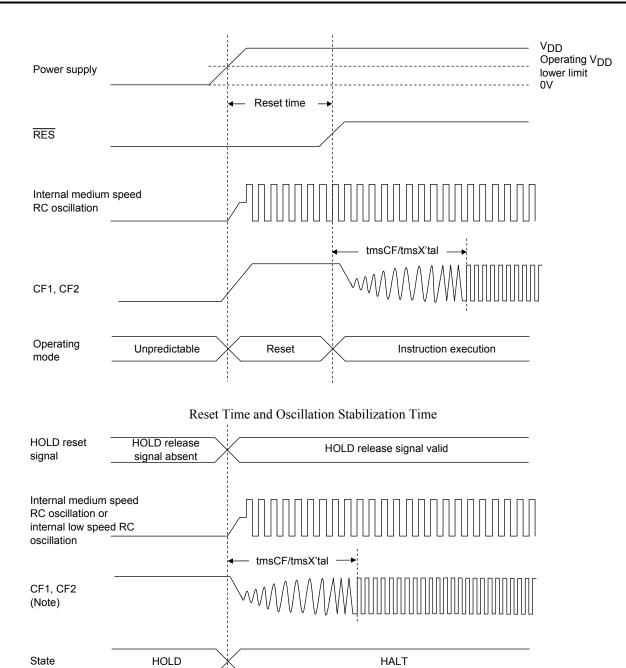
(VREFAD can be selected from internal-VREF4V, internal-VREF2V and V_{DD}.) Note: VAPFUL must not exceed VAPIP or VAPIM.

ole: VAPFUL must not exceed VAPIP of VAPIM.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1$ = $V_{SS}2$ = 0V

Doromotor	Symbol	Pin /	Pin /		Spe			Specification		
Parameter	Remarks		Conditions	V _{DD} [V]	min	typ	max	unit		
Normal mode consumption current	IDDOP(1)	V _{DD} 1	 FmCF=8MHz ceramic oscillation mode System clock set to 8MHz mode Internal low-/medium-speed RC oscillation 	2.2 to 5.5		3.8	5.2			
(Note 13-1) (Note 13-2)			stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	2.2 to 3.6		2.2	2.9			
	IDDOP(2)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz mode Internal low-/medium-speed RC oscillation	1.8 to 5.5		2.1	3.5			
			stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	1.8 to 3.6		1.1	1.7			
	IDDOP(3)		 FsX'tal=32.768kHz crystal oscillation mode Internal low-speed RC oscillation stopped System clock set to internal medium-speed RC 	1.8 to 5.5		0.23	0.39	mA		
			 Optimized set to internal includin speed records oscillation mode Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2 	1.8 to 3.6		0.13	0.19			
	IDDOP(4)		FsX'tal=32.768kHz crystal oscillation mode Internal low-/medium-speed RC oscillation stopped	1.8 to 5.5		2.7	3.6			
			 stopped System clock set to internal high-speed RC oscillation mode Frequency division ratio set to 1/1 	1.8 to 3.6		1.7	2.3			
	IDDOP(5)		External oscillation FsX'tal/FmCF stopped System clock set to internal low-speed RC oscillation mode	1.8 to 5.5		10	42			
			 Internal medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	1.8 to 3.6		6	21			
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz mode Internal low-/medium-speed RC oscillation	1.8 to 5.5		46	101	μA		
			 Internal low-medium-speed RC oscillation Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2 	1.8 to 3.6		16	40			

Continued on next page.


Parameter	Symbol	Pin /	Conditions		ļ	Specifi	cation	
Farameter	Symbol	Remarks	Conditions	V _{DD[} V]	min	Тур	max	unit
HALT mode consumption current	IDDHALT(1)	V _{DD} 1	HALT mode • FmCF=8MHz ceramic oscillation mode • System clock set to 8MHz mode	2.2 to 5.5		2.0	3.2	
(Note 13-1) (Note 13-2)			 Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	2.2 to 3.6		1.0	1.6	
	IDDHALT(2)		HALT mode • FmCF=4MHz ceramic oscillation mode • System clock set to 4MHz mode	1.8 to 5.5		1.2	2.4	
			 Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	1.8 to 3.6		0.5	1.0	m 4
	IDDHALT(3)		HALT mode • FsX'tal=32.768kHz crystal oscillation mode • Internal low-speed RC oscillation stopped	1.8 to 5.5		0.12	0.25	mA
			 System clock set to internal medium-speed RC oscillation mode Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2 	1.8 to 3.6		0.06	0.11	
	IDDHALT(4)		HALT mode • FsX'tal=32.768kHz crystal oscillation mode • Internal low-/medium-speed RC oscillation	1.8 to 5.5		1.1	1.7	
			 stopped System clock set to internal high-speed RC oscillation mode Frequency division ratio set to 1/1 	1.8 to 3.6		0.7	1.0	
	IDDHALT(5)		HALT mode • External oscillation FsX'tal/FmCF stopped • System clock set to internal low-speed RC oscillation mode	1.8 to 5.5		3.8	37	
			 Internal medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1 	1.8 to 3.6		2.4	17	μA
	IDDHALT(6)		HALT mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 32.768kHz mode	1.8 to 5.5		42	97	
			 Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2 	1.8 to 3.6		13	38	
HOLD mode	IDDHOLD(1)	V _{DD} 1	HOLD mode	1.8 to 5.5		0.023	33.2	
consumption current		4		1.8 to 3.6		0.012	14.2	
(Note 13-1)	IDDHOLD(2)		HOLD mode	1.8 to 5.5		1.09	26.9	
(Note 13-2)			LVD option selected	1.8 to 3.6		0.86	11.8	
Timer HOLD mode	IDDHOLD(3)	V _{DD} 1	Timer HOLD mode • FsX'tal=32.768kHz crystal oscillation mode	1.8 to 5.5		39	94	μA
consumption	IDDHOLD(4)	-	Timer HOLD mode	1.8 to 3.6		12	36	
current			FmSRC=30kHz internal low-speed RC	1.8 to 5.5		0.63	34	
(Note 13-1) (Note 13-2)			oscillation mode	1.8 to 3.6		0.53	15	

Note 13-1: The consumption current value includes none of the currents that flow into the output transistors and internal pull-up resistors.

Note 13-2: Unless otherwise specified, the consumption current for the LVD circuit is not included.

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, V_{SS}	$l = V_{SS2} = 0V$
--	--------------------

Demonster	Cumbral Dia/Damarka		Conditions		Specification			
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Onboard programming current	IDDFW(1)	V _{DD} 1	Excluding power dissipation in the microcontroller block	2.2 to 5.5		5	10	mA
Programming	tFW(1)		Erasing time	0.0 45 5 5		20	30	ms
time	tFW(2)		Programming time	2.2 to 5.5		40	60	μS

HOLD Release Signal and Oscillation Stabilization Time

Note: When an external oscillation circuit is selected.

Figure 3 Oscillation Stabilization Time

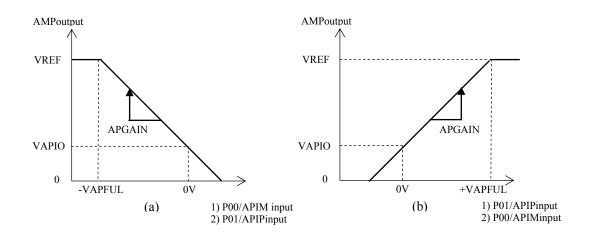


Figure 7 $10 \times / 20 \times$ Amplifier Characteristics

- (a) 1) When P01/APIP is 0V, P00/APIM \leq 0V. 2) When P00/APIM is 0V, P01/APIP \leq 0V.
- (b) 1) When P00/APIM is 0V, P01/APIP \ge 0V. 2) When P01/APIP is 0V, P00/APIM \ge 0V.

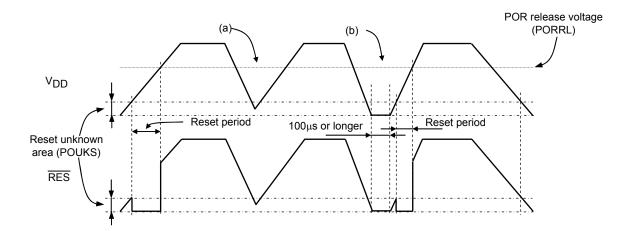


Figure 8 Example of POR Only (LVD Deselected) Mode Waveforms (at Reset Pin with RRES Pull-up Resistor Only)

- \bullet The POR function generates a reset only when the power voltage goes up from the $V_{\mbox{\scriptsize SS}}$ level.
- No stable reset will be generated if power is turned on again when the power level does not go down to the V_{SS} level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit as shown below.
- A reset is generated only when the power level goes down to the V_{SS} level as shown in (b) and power is turned on again after this condition continues for 100 μ s or longer.

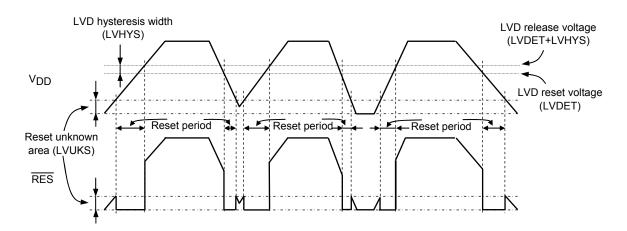


Figure 9 Example of POR + LVD Mode Waveforms (at Reset Pin with RRES Pull-up Resistor Only)

• Resets are generated both when power is turned on and when the power level lowers.

• A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.

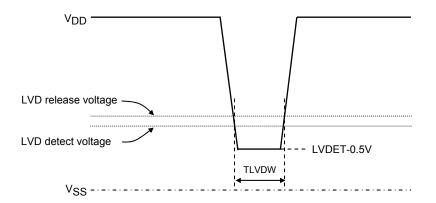


Figure 10 Minimum Low Voltage Detection Width (Example of Voltage Sag/Fluctuation Waveform)

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC87F0G08AUJA-AH	SSOP24(225mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC87F0G08AUJA-FH	SSOP24(225mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC87F0G08AUJA-ZH	SSOP24(225mil) (Pb-Free / Halogen Free)	1400 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa