

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LFSOP (0.173", 4.40mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f0g08auja-fh

■SIO

• SIO1 : 8-bit asynchronous/synchronous serial interface

Mode 0 : Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■AD Converter:

- AD converter input port with $10 \times /20 \times$ amplifier (1channel)
- AD converter input port (7channel)

12-/8-bit resolution selectable AD converter

• Selectable reference voltage source for an AD converter (Selectable from VDD, Internal Reference Voltage Generator Circuit(VREF).)

■Internal Reference Voltage Generator Circuit(VREF)

• Generates 2.0V/4.0V for AD converter.

■Comparator

Comparator input pin (1 channel)

Comparator output pin (1 channel)

Comparator output set high when (comparator input level) < 1.22V

Comparator output set low when (comparator input level) > 1.22V

■Clock Output Function

• Generates clocks with a clock rate of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 of the source oscillation clock that is selected as the system clock.

■Watchdog Timer

- Generates an internal reset on an overflow occurring in the timer running on the low-speed RC oscillator clock (approx. 30kHz) or subclock.
- Operating mode at standby is selectable from 3 modes (continue counting/suspend operation/suspend counting with the count value retained)

■Interrupts

- 15 sources, 10 vectors
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address is given priority.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/BT
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	HPWM2
8	0003BH	H or L	SIO1
9	00043H	H or L	ADC
10	0004BH	H or L	P0/VCPWM

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: Up to 128levels (the stack is allocated in RAM.)
- ■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
24 bits ÷ 16 bits
16 bits ÷ 8 bits
25 tCYC execution time
26 tCYC execution time
27 tCYC execution time
28 tCYC execution time
29 tcYC execution time
21 tcYC execution time

■Oscillation Circuits

• Internal oscillation circuits

Low-speed RC oscillation circuit:
 Medium-speed RC oscillation circuit:
 For system clock (approx.30kHz)
 Hi-speed RC oscillation circuit1:
 Hi-speed RC oscillation circuit2:
 For system clock (8MHz)
 For High speed PWM (40MHz)

■System Clock Divider Function

- Can run on low consumption current.
- Minimum instruction cycle selectable from 375ns, 750ns, 1.5μs, 3.0μs, 6.0μs, 12.0μs, 24.0μs, 48.0μs, and 96.0μs (at 8MHz main clock)

■Internal Reset Circuit

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level is 1.67V.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level can be selected from 7 levels (1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V and 4.28V), through option configuration.

■Development Tools

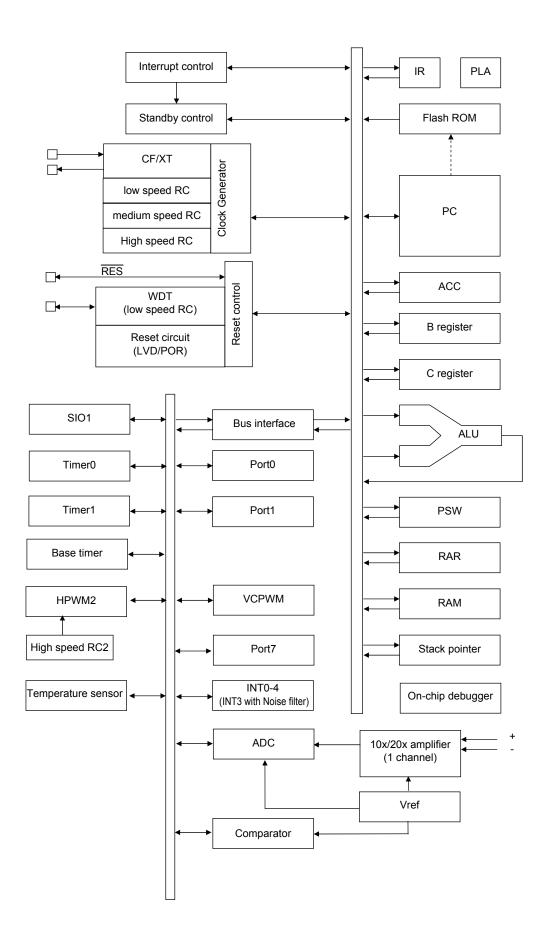
• On-chip debugger: TCB87 Type C (1-wire interface cable) + LC87F0G08A

■Programming Boards

Package	Programming boards
SSOP24(225mil)	W87F0GS

■Flash Programmer

Maker		Model	Supported version	Device
Flash Support Group, Inc. (FSG)	Single Programmer AF9709C		Rev 03.28 or later	87F008SU
Flash Support Group, Inc. (FSG) + Our company (Note 1)	Onboard	AF9101/AF9103(Main unit) (FSG models)		
	Single/Gang Programmer	SIB87 Type C(Inter Face Driver) (Our company model)	(Note 2)	-
	Single/Gang Programmer	SKK Type B / SKK Type C	Application Version	
Our company	Onboard Single/Gang Programmer	SKK-DBG Type C	1.08 or later Chip Data Version 2.46 or later	LC87F0G08


For information about AF-Series:

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87 Type C) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.

System Block Diagram

Pin Description

Pin Name	I/O			Desc	ription			Option
V _{SS} 1	-	- power supply pir	1					No
V _{DD} 1	-	+ power supply pi	n					No
V _{SS} 2	-	- power supply pir	1					No
VREF	I/O	Reference voltage	e output(2.0V/4.0	V) or External in	put			No
OWP0	I/O	On-chip debugger	r pin					No
Port 0	I/O	• 7-bit I/O port	•					Yes
P00 to P06		I/O specifiable inPull-up resistors		on and off in 1-bit	units.			
		P03: AD conver P04: AD conver P05: Timer 1 PV P06: Timer 1 PV	ter input port (AN ter input port (AN ter input port (AN VML output / Sys	I2) / Comparator I3) / VCPWM0 o I4) / VCPWM1 o stem clock outpu	input (CPIM) utput utput	ational amplifier		
Port 1	I/O	• 8-bit I/O port						Yes
P10 to P15		I/O specifiable in Pull-up resistors		on and off in 1-bi	units.			
		P12: SIO1 clock P13: INT4 input capture in; P14: INT4 input capture in; P15: INT3 input AD conver P16: INT2 input timer 0L ca	input/bus input/out input/output //HOLD release ir out/ AD converte //HOLD release ir out/ AD converte (with noise filter) ter input port (AN //HOLD release ir apture input/HPV put/INT1 input/H	nput/timer 1 ever r input port (AN7 nput/timer 1 ever r input port (AN6 timer 0 event inp N5) nput/timer 0 ever VM2 output	t input/timer 0L of time of ti	capture input/ tim capture input/ tim ure input/	er 0H	
			Rising	Falling	Rising & Falling	H level	L level	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable	
	1	INT4	enable	enable	enable	disable	disable	

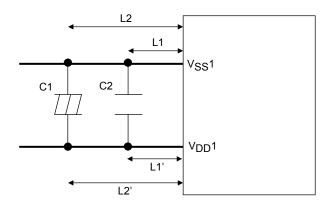
Continued on next page.

Continued from preceding page.

Pin Name	I/O		Description						
Port 7 P70	I/O	Pin functi	fiable esistors can be	turned on and of	f. er 0L capture inpu	ıt/AD converter iı	nput port (AN9)	No	
		Interrupt ac	cknowledge typ	e					
			Rising	Falling	Rising & Falling	H level	L level		
		INT0	enable	enable	disable	enable	enable		
RES	I	External re	eset input/interna	al reset output pi	n			Yes Internal pullup ON/OFF	
CF1/XT1	I/O	Pin functi 1-bit I/O p	Ceramic oscillator/32.768kHz crystal oscillator input pin Pin functions 1-bit I/O port I/O specifiable						
CF2/XT2	I/O	1	oscillator/32.76 ions port	8kHz crystal osc	illator output pin			No	
OWP0	I/O	On-chip de						No	

Recommended Unused Pin Connections

Dord Nove o	Recommended Unused Pin Connections					
Port Name	Board	Software				
P00 to P07	Open	Output low				
P10 to P17	Open	Output low				
P70	Open	Output low				
CF1/XT1	Open	General I/O port output low				
CF2/XT2	Open	General I/O port output low				
OWP0	Pulled low with a $100k\Omega$ resistor	-				


On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "Rd87 On-chip Debugger Installation Manual"

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the V_{DD}1 and V_{SS}1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as equal as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should be approximately 0.1µF.

Allowable Operating Conditions at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = 0$ V

Parameter	Symbol	Pin/Remarks	Conditions			Speci	fication	
				V _{DD} [V]	min	typ	max	unit
Operating	VDD(1)	VDD1	0.245μs ≤ tCYC ≤ 200μs		2.7		5.5	
supply voltage	VDD(2)		0.367μs ≤ tCYC ≤ 200μs		2.0		5.5	
(Note 2-1)	VDD(3)		$0.735 \mu s \le tCYC \le 200 \mu s$		1.8		5.5	
Memory sustaining supply voltage	VHD	VDD1	RAM and register contents sustained in HOLD mode.		1.6			V
High level input voltage	VIH(1)	Port 0,1 P70		1.8 to 5.5	0.3V _{DD} +0.7		V _{DD}	V
	VIH(4)	CF1,CF2, RES		1.8 to 5.5	0.75V _{DD}		V_{DD}	
Low level	VIL(1)	Port 0,1		4.0 to 5.5	V_{SS}		0.1V _{DD} +0.4	
input voltage		P70		1.8 to 4.0	V_{SS}		0.2V _{DD}	
	VIL(4)	CF1,CF2, RES		1.8 to 5.5	V_{SS}		0.25V _{DD}	
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time	(Note 2-2)			2.0 to 5.5	0.367		200	μS
(Note 2-2)				1.8 to 5.5	0.735		200	
External	FEXCF	CF1	CF2 pin open	2.7 to 5.5	0.1		12	
system clock frequency			System clock frequency division ratio=1/1 External system clock duty=50 ± 5%	2.2 to 5.5	0.1		8	MHz
Oscillation frequency	FmCF(1)	CF1,CF2	When 12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1,CF2	When 8MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		8		
	FmCF(3)	CF1,CF2	When 4MHz ceramic oscillation See Fig. 1.	1.8 to 5.5		4		
	FmFRC(1)		Internal high-speed RC oscillation Ta=-10°C to +85°C (Note 2-4)	1.8 to 5.5	7.76	8.0	8.24	MHz
	FmFRC(2)		Internal high-speed RC oscillation Ta=-40°C to +85°C (Note 2-4)	1.8 to 5.5	7.60	8.0	8.40	
	FmRC		Internal medium-speed RC oscillation	1.8 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation (Note 2-5)	1.8 to 5.5	27	30	33	kHz
	FsX'tal	XT1,XT2	32.768kHz crystal oscillation See Fig. 2.	1.8 to 5.5		32.768		kHz
	FmPWMRC		Internal high-speed RC oscillation for HPWM2	2.7 to 5.5	38	40	42	MHz
Oscillation	tmsCF	CF1,CF2	When oscillation circuit is		See Tab	le 1		
Stabilization Time	tmsFRC (Note 2-4)		switched from "oscillation stopped" to "oscillation	1.8 to 5.5			100	μS
	tmsPWMR C		enabled" .	1.8 to 5.5			100	μο
	tmsRC		• See Fig. 3.	1.8 to 5.5		0	ļ	
	tmsSRC (Note2-5)			1.8 to 5.5			1	ms
	tmsX'tal	XT1,XT2			See Tab	le 2		

- Note 2-1: VDD must be held greater than or equal to 2.7V in the flash ROM onboard programming mode.
- Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.
- Note 2-3: See Tables 1 and 2 for the oscillation constants.
- Note 2-4: An oscillation stabilization time of $100\mu s$ or longer must be provided before switching the system clock source after the state of the high-speed RC oscillation circuit is switched from "oscillation stopped" to "oscillation enabled".
- Note 2-5: An oscillation stabilization time of 1ms or longer must be provided before switching the system clock source after the state of the low-speed RC oscillation circuit is switched from "oscillation stopped" to "oscillation enabled".

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

SIO1 Serial I/O Characteristics (Note 4-1)

			0	Pin/	O v differen			Spec	cification	
	ŀ	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	ж	Frequency	tSCK(1)	SCK1(P12)	SCK1(P12) • See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(1)			1.8 to 5.5	1			10)(0
Serial clock	nl	High level pulse width	tSCKH(1)				1			tCYC
Serial	ck	Frequency	tSCK(2)	SCK1(P12)	CMOS output type selected See Fig. 5.		2			
	Output clock	Low level pulse width	tSCKL(2)			1.8 to 5.5	1/2			tSCK
	O	High level pulse width	tSCKH(2)					1/2		ISON
Serial input	Da	ta setup time	tsDI(1)	SI1(P11), SB1(P11)	Specified with respect to rising edge of SIOCLK. See Fig. 5.	404.55	0.05			
Serial	Da	ta hold time	thDI(1)			1.8 to 5.5	0.05			
Serial output	Ou	tput delay time	tdDO(1)	SO1(P10), SB1(P11)	Specified with respect to falling edge of SIOCLK Specified as the time up to the beginning of output change in open drain output mode. See Fig. 5.	1.8 to 5.5			(1/3)tCYC +0.08	μѕ

Note 4-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Danamatan	Comment of	Pin/Remarks	Conditions			Spec	cification	
Parameter	Symbol Pin/Remarks	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P16), INT4(P13, P14)	Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled.	1.8 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P15) when noise filter time constant is 1/1	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P15) when noise filter time constant is 1/32	Interrupt source flag can be set.Event inputs for timer 0 are enabled.	1.8 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P15) when noise filter time constant is 1/128	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	1.8 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}\mathbf{1} = V_{SS}\mathbf{2} = \mathbf{0}V$

<12bits AD Converter Mode/Ta = -40°C to +85°C >

Barranta	0	Dis /Daniel	0			Specifica	ation					
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit				
Resolution	N	AN2(P02)		1.8 to 5.5		12		bit				
Absolute accuracy	ET	AN3(P03) AN4(P04)	` ,	` '	` '	` '	(Note 6-1)	1.8 to 5.5			±16	LSB
Conversion time	TCAD	AN5(P15)	See conversion time	2.7 to 5.5	32		115					
	AN6(P14) AN7(P13)	calculation method.	2.2 to 5.5	134		215	μS					
AN7(P13) AN9(P70)	` '	(Note 6-2)	1.8 to 5.5	400		430						
Analog input	VAIN(1)		When V _{DD} is selected	1.8 to 5.5	V _{SS}		V_{DD}					
voltage range	VAIN(2)	<u> </u>	When internal VREF=4V is selected. VREF≤VDD	4.3 to 5.5	V _{SS}		VREF	V				
		When internal VREF=2V is selected VREF≤V _{DD}	2.3 to 3.6	V _{SS}		VREF						
Analog port	IAINH	1	VAIN=V _{DD}	1.8 to 5.5			1					
input current	IAINL		VAIN=V _{SS}	1.8 to 5.5	-1			μА				

<8bits AD Converter Mode/Ta = -40°C to +85°C >

Danamatan	O. mah al	Pin/Remarks	0			Specifica	ation						
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit					
Resolution	N	AN2(P02)		1.8 to 5.5		8		bit					
Absolute accuracy	ET	AN3(P03) AN4(P04)	, ,	` ′	` ,	, ,	` ′	(Note 6-1)	1.8 to 5.5			±1.5	LSB
Conversion time	sion time TCAD AN5(P15) AN6(P14)	See conversion time calculation	2.7 to 5.5	20		90							
AN6(P14) AN7(P13) AN9(P70)	method.	2.2 to 5.5	80		135	μS							
	` ,	(Note 6-2)	1.8 to 5.5	245		265							
Analog input	VAIN(1)		When V _{DD} is selected	1.8 to 5.5	V_{SS}		V_{DD}						
voltage range	VAIN(2)	(Note 6-3)	When internal VREF=4V is selected. VREF≤VDD	4.3 to 5.5	V _{SS}		VREF	V					
		When internal VREF=2V is selected. VREF≤VDD	2.3 to 3.6	V _{SS}		VREF							
Analog port	IAINH	1	VAIN=V _{DD}	1.8 to 5.5			1						
input current	IAINL]	VAIN=V _{SS}	1.8 to 5.5	-1			μА					

<Conversion time calculation method>

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

< Recommended Operating Conditions >

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
CF-8MHz	2.7V to 5.5V	1/1	375ns	1/8	52.25μs	32.25μs	
CF-OIVITIZ	2.2V to 5.5V	1/1	375ns	1/32	208.25μs	128.25µs	
	2.7V to 5.5V	1/1	750ns	1/8	104.5μs	64.5μs	
CF-4MHz	2.2V to 5.5V	1/1	750ns	1/16	208.5μs	128.5µs	
	1.8V to 5.5V	1/1	750ns	1/32	416.5μs	256.5μs	

- Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy. The absolute accuracy is measured when no change occurs in the I/O state of the pins that are adjacent to the analog input channel during AD conversion processing.
- Note 6-2: The conversion time refers to the interval from the time a conversion starting instruction is issued till the time the complete digital value against the analog input value is loaded in the result register.

The conversion time is twice the normal value when one of the following conditions occurs:

- The first AD conversion executed in the 12-bit AD conversion mode after a system reset
- The first AD conversion executed after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode

Note 6-3: See section 8, " $10 \times /20 \times$ amplifier characteristics", for analog channel 0 ($10 \times /20 \times$ amplifier output).

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Reference Voltage Generator Circuit (VREF) Characteristics

at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
VREF=2V voltage	VREF2VO	VREF		1.8 to 2.0	V _{DD} -0.1		V_{DD}	
accuracy		(Note 7-2)		2.0 to 5.5	1.90		2.02	
				2.3 to 5.5	1.98		2.02	.,
VREF=4V voltage	VREF4VO			1.8 to 4.0	V _{DD} -0.1		V_{DD}	V
accuracy				4.0 to 5.5	3.90		4.04	
				4.3 to 5.5	3.96		4.04	
VREFoutput current	VREFIO			1.8 to 5.5	V _{SS}		0.5	mA
Operation stabilization time (Note 7-1)	tVREFW			1.8 to 5.5			5	ms

Note 7-1: Refers to the interval between the time VR12ON and VR24ON are set to 1 and the time operation gets stabilized.

Note 7-2: An external 4.7μF capacitor must be connected to the VREF pin to stabilize the VREF voltage.

10x/20x Amplifier Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0$ V

Parameter	O. mah al	Pin/Remarks		Conditions			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions		V _{DD} [V]	min	typ	max	unit
20x Amplifier gain	APGAIN20 See Fig7	P00/APIM P01/APIP		=-40 to +85°C DIR=0 & GAIN20=1.			20		
20x Amplifier offset	VAPIO20		P00 2)AP • P01	1=0V,P00≤0V or 0=0V,P01≥0V DIR=1 & GAIN20=1. 1=0V,P00≥0V or 1=0V,P01≤0V		200		600	mV
20x Amplifier	VAPIM20-1	P00/APIM	4)	P01/APIP=0V		-0.17		0	
input voltage	VAPIP20-1	P01/APIP	1)	P00/APIM=0V		0		0.17	V
range	VAPIM20-2	P00/APIM	٥)	P01/APIP=0V		0		0.17	
	VAPIP20-2	P01/APIP	2)	P00/APIM=0V		-0.17		0	V
10x Amplifier gain	APGAIN10 See Fig7	P00/APIM P01/APIP		=-40 to +85°C DIR=0 & GAIN20=0.			10		
10x Amplifier offset	VAPIO10		P00 4)AP • P01	1=0V,P00≤0V or 0=0V,P01≥0V DIR=1 & GAIN20=0. 1=0V,P00≥0V or 0=0V,P01≤0V	4.3 to 5.0	100		300	mV
10x Amplifier	VAPIM10-3	P00/APIM	2)	P01/APIP=0V		-0.24		0	
input voltage	VAPIP10-3	P01/APIP	3)	P00/APIM=0V		0		0.24	V
range	VAPIM10-4	P00/APIM	4)	P01/APIP=0V		0		0.24	
	VAPIP10-4	P01/APIP	4)	P00/APIM=0V		-0.24		0	V
Amplifier input	IAPINL	P00/APIM	P00//	APIM=V _{SS} -0.2V		-1			
port input current	IAPINH	P01/APIP	P01//	APIP=V _{DD}				1	μΑ
Operation stabilization time (Note 8-1)	tAPW							20	μS

Note 8-1: Refers to the interval between the time APON is set to 1 and the time operation gets stabilized.

VAPFUL = (VREFAD - VAPIO) / APGAIN

(VREFAD can be selected from internal-VREF4V, internal-VREF2V and V_{DD} .)

Note: VAPFUL must not exceed VAPIP or VAPIM.

<Amplifier input vaoltage calculation method:See Fig7>

Comparator Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Danamatan	0	Dia/Damada	O and division a			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Comparator threshold voltage (Note 9-1)	VCMVT	P02/CPIM		2.5 to 5.5	1.12	1.22	1.32	V
Input voltage range	VCMIN			2.5 to 5.5	V _{SS}		V_{DD}	V
Offset voltage	VOFF		Within input voltage range	2.5 to 5.5		±10	±30	mV
Response time	tRT		Within input voltage range Input amplitude =100mV Overdrive=50mV	2.5 to 5.5		200	600	ns
Operation stabilization time (Note 9-2)	tCMW			2.5 to 5.5			1.0	μs

Note 9-1: Comparator output=High level when (P02/CPIM voltage) < VCMVT Comparator output=Low level when (P02/CPIM voltage) > (VCMVT +VOFF)

Note 9-2: Refers to the interval between the time CPON is set to 1 and the time operation gets stabilized.

Temperature Sensor Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = 0$ V

<4-diode mode>

Danamatan	O: wash al	Dia/Damanda	O and ditions		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Output voltage	VOTMP4(1)		Ta=-40°C	5.0	3.23	3.25	3.27		
	VOTMP4(2)		Ta=+25°C	5.0	2.75	2.77	2.80	V	
	VOTMP4(3)		Ta=+85°C	5.0	2.28	2.31	2.34		
sensitivity	Vsen4		Ta=-40 to +85°C	3.5 to 5.5	-7.63	-7.54	-7.45	mV/°C	
Absolute accuracy (Note 10-1)	ETTMP4	Vref=4[V]	Ta=(60±10) °C (Note 10-3)	3.5 to 5.5		±2.5	±5	°C	
(Note 10-2)			Ta=-40 to +85°C	3.5 to 5.5		±5	±10		

<2-diode mode>

Parameter	Cumbal	Pin/Remarks	Conditions			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Output voltage	VOTMP2(1)		Ta=-40°C	3.3	1.61	1.63	1.64	
	VOTMP2(2)		Ta=+25°C	3.3	1.37	1.39	1.40	V
	VOTMP2(3)		Ta=+85°C	3.3	1.14	1.16	1.17	
sensitivity	Vsen2		Ta=-40 to +85°C	2.0 to 5.5	-3.81	-3.77	-3.72	mV/°C
Absolute accuracy (Note 10-1)	ETTMP2	Vref=2[V]	Ta=(60±10) °C (Note 10-4)	2.0 to 5.5		±2.5	±5	°C
(Note 10-2)			Ta=-40 to +85°C	2.0 to 5.5		±5	±10	

Note 10-1: There are cases when the absolute accuracy specification value is exceeded when a large current flows through the ports.

Note 10-2: Including error of AD Converter.

Note 10-3: When using the Temperature sensor 60°C 2-diodes reference register D2TL/ D2TH.

Note 10-4: When using the Temperature sensor 60°C 4-diodes reference register D4TL/ D4TH.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C,~V_{SS}1 = V_{SS}2 = 0V$

Danamatan	O. mah al	Pin /	Conditions			Specific	cation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=8MHz ceramic oscillation mode System clock set to 8MHz mode Internal low-/medium-speed RC oscillation	2.2 to 5.5		3.8	5.2	
(Note 13-1) (Note 13-2)			stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	2.2 to 3.6		2.2	2.9	
	IDDOP(2)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz mode Internal low-/medium-speed RC oscillation	1.8 to 5.5		2.1	3.5	
			stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	1.8 to 3.6		1.1	1.7	
	IDDOP(3)		FsX'tal=32.768kHz crystal oscillation mode Internal low-speed RC oscillation stopped System clock set to internal medium-speed RC	1.8 to 5.5		0.23	0.39	mA
			oscillation mode Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2	1.8 to 3.6		0.13	0.19	
	IDDOP(4)		FsX'tal=32.768kHz crystal oscillation mode Internal low-/medium-speed RC oscillation stopped	1.8 to 5.5		2.7	3.6	
			System clock set to internal high-speed RC oscillation mode Frequency division ratio set to 1/1	1.8 to 3.6		1.7	2.3	
	IDDOP(5)		External oscillation FsX'tal/FmCF stopped System clock set to internal low-speed RC oscillation mode	1.8 to 5.5		10	42	
			Internal medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	1.8 to 3.6		6	21	
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz mode Internal low-/medium-speed RC oscillation	1.8 to 5.5		46	101	μА
			stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2	1.8 to 3.6		16	40	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin /	Conditions	T		Specific	cation	
	-,	Remarks		V _{DD[} V]	min	Тур	max	unit
HALT mode consumption current	IDDHALT(1)	V _{DD} 1	HALT mode FmCF=8MHz ceramic oscillation mode System clock set to 8MHz mode	2.2 to 5.5		2.0	3.2	
(Note 13-1) (Note 13-2)			Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	2.2 to 3.6		1.0	1.6	
	IDDHALT(2)		HALT mode • FmCF=4MHz ceramic oscillation mode • System clock set to 4MHz mode	1.8 to 5.5		1.2	2.4	
			Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	1.8 to 3.6		0.5	1.0	
	IDDHALT(3)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low-speed RC oscillation stopped	1.8 to 5.5		0.12	0.25	m/A
			System clock set to internal medium-speed RC oscillation mode Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2	1.8 to 3.6		0.06	0.11	
	IDDHALT(4)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low-/medium-speed RC oscillation	1.8 to 5.5		1.1	1.7	
			stopped System clock set to internal high-speed RC oscillation mode Frequency division ratio set to 1/1	1.8 to 3.6		0.7	1.0	
	IDDHALT(5)		HALT mode External oscillation FsX'tal/FmCF stopped System clock set to internal low-speed RC	1.8 to 5.5		3.8	37	
			oscillation mode Internal medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/1	1.8 to 3.6		2.4	17	μΑ
	IDDHALT(6)		HALT mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 32.768kHz mode	1.8 to 5.5		42	97	
			Internal low-/medium-speed RC oscillation stopped Internal high-speed RC oscillation stopped Frequency division ratio set to 1/2	1.8 to 3.6		13	38	
HOLD mode	IDDHOLD(1)	V _{DD} 1	HOLD mode	1.8 to 5.5		0.023	33.2	
consumption				1.8 to 3.6		0.012	14.2	
urrent Note 13-1)	IDDHOLD(2)		HOLD mode	1.8 to 5.5		1.09	26.9	
Note 13-1) Note 13-2)		<u> </u>	LVD option selected	1.8 to 3.6		0.86	11.8	
imer HOLD	IDDHOLD(3)	V _{DD} 1	Timer HOLD mode	1.8 to 5.5		39	94	μΑ
node			FsX'tal=32.768kHz crystal oscillation mode	1.8 to 3.6		12	36	
consumption	IDDHOLD(4)	1	Timer HOLD mode • FmSRC=30kHz internal low-speed RC	1.8 to 5.5		0.63	34	
(Note 13-1) (Note 13-2)			oscillation mode	1.8 to 3.6		0.53	15	

Note 13-1: The consumption current value includes none of the currents that flow into the output transistors and internal pull-up resistors.

Note 13-2: Unless otherwise specified, the consumption current for the LVD circuit is not included.

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

■MURATA Manufacturing Co., Ltd.

Nominal	_			Circuit (Constant		Operating	Oscillation Stabilization Time		
Frequency	Туре	Oscillator Name	C1	C2	Rf	Rd	Voltage Range [V]	typ	max	Remarks
			[pF]	[pF]	[Ω]	[Ω]		[ms]	[ms]	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	680	2.6 to 5.5	0.02	0.3	C1 and C2
8MHz	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1k	2.1 to 5.5	0.02	0.3	integrated
4MHz	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	1.8 to 5.5	0.03	0.45	type

Characteristics of a Sample Subsystem Clock Oscillation Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a SANYO-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit that Uses a Crystal Oscillator

■EPSON TOYOCOM

Nominal	T	O a illata a Na a a		Circuit (Constant		Operating	Oscillation Stabilization Time		Deved
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage Range [V]	typ [ms]	max [ms]	Remarks
32.768kHz	SMD	MC-306	9	9	Open	330k	1.8 to 5.5	1.4	4.0	Applicable CL value = 7.0pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 3):

- Till the oscillation gets stabilized after the instruction for starting the subclock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is released.

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

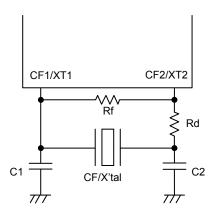
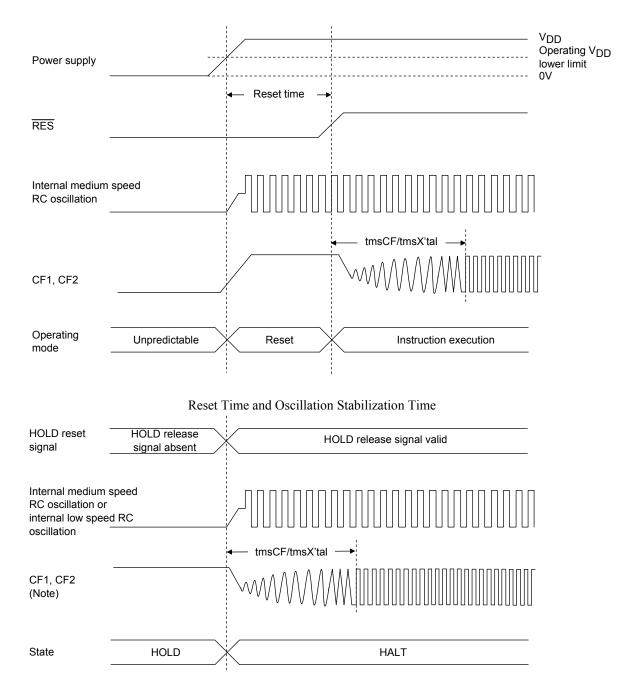
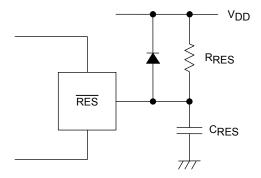



Figure 1 CF/XT Oscillator Circuit


Figure 2 AC Timing Measurement Point

HOLD Release Signal and Oscillation Stabilization Time

Note: When an external oscillation circuit is selected.

Figure 3 Oscillation Stabilization Time

Note:

The external circuit for reset may vary depending on the usage of POR and LVD. See "Reset Function" in the user's manual.

Figure 4 Sample Reset Circuit

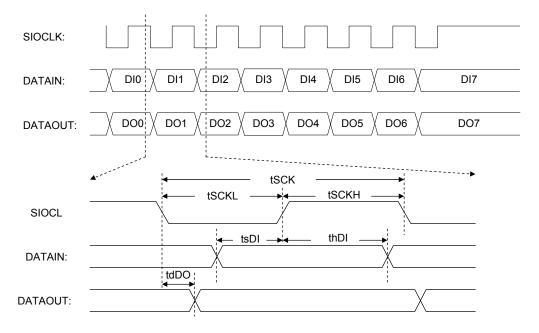


Figure 5 Serial I/O Waveform

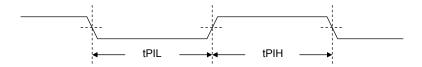


Figure 6 Pulse Input Timing Signal Waveform

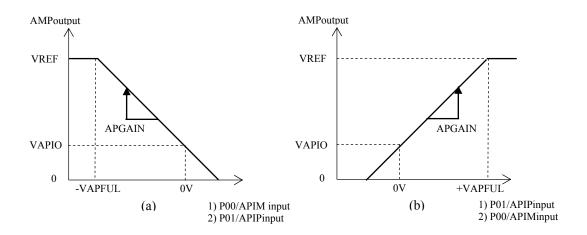


Figure 7 10×/20× Amplifier Characteristics

- (a) 1) When P01/APIP is 0V, P00/APIM \leq 0V.
 - 2) When P00/APIM is 0V, P01/APIP \leq 0V.
- (b) 1) When P00/APIM is 0V, P01/APIP \geq 0V.
 - 2) When P01/APIP is 0V, P00/APIM \geq 0V.

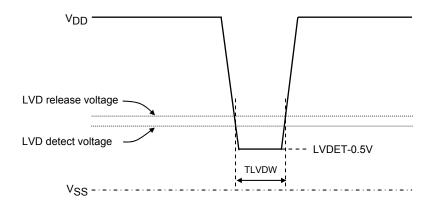


Figure 10 Minimum Low Voltage Detection Width (Example of Voltage Sag/Fluctuation Waveform)

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC87F0G08AUJA-AH	SSOP24(225mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC87F0G08AUJA-FH	SSOP24(225mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LC87F0G08AUJA-ZH	SSOP24(225mil) (Pb-Free / Halogen Free)	1400 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa