

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	49
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8345vfge

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-1 56F8345 Signals Identified by Functional Group¹ (128-Pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

56F8345 Technical Data, Rev. 17

Table 2-2 Signal and Package Information for the 128-Pin LQFP

Signal Name	Pin No.	Туре	State During Reset	Signal Description							
HOME1	12	Schmitt Input	Input, pull-up enabled	Home — Quadrature Decoder 1, HOME input							
(<i>TB3</i>)		Schmitt Input/ Output	chabled	TB3 — Timer B, Channel 3							
(SS 1)		Schmitt Input									SPI 1 Slave Select — In the master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave. To activate the SPI function, set the HOME_ALT bit in the SIM_GPS register. See Part 6.5.8 for details.
(GPIOC3)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as input or output pin.							
		Output		In the 56F8345, the default state after reset is HOME1.							
				In the 56F8145, the default state is not one of the functions offered and must be reconfigured.							
				To deactivate the internal pull-up resistor, clear bit 3 in the GPIOC_PUR register.							
PWMA0	58	Output	In reset,	PWMA0 - 5 — These are six PWMA output pins.							
PWMA1	60		disabled,								
PWMA2	61		pull-up is enabled								
PWMA3	63										
PWMA4	64										
PWMA5	66										
ISA0	104	Schmitt Input	Input, pull-up enabled	ISA0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMA.							
(GPIOC8)		Schmitt		Port C GPIO — These GPIO pins can be individually							
ISA1 (GPIOC9)	105	Input/ Output		In the 56F8345, these pins default to ISA functionality.							
<i>ISA2</i> (GPIOC10)	106			In the 56F8145, the default state is not one of the functions offered and must be reconfigured.							
				To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOC_PUR register. See Part 6.5.6 for details.							

Figure 3-3 Connecting a Ceramic Resonator

Note: The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the **56F8300 Peripheral User's Manual**.

3.2.3 External Clock Source

The recommended method of connecting an external clock is illustrated in **Figure 3-4**. The external clock source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an external clock source as well.

Note: When using an external clocking source with this configuration, the input "CLKMODE" should be high and COHL bit in the OSCTL register should be set to 1.

Figure 3-4 Connecting an External Clock Signal Register

3.3 Registers

When referring to the register definitions for the OCCS in the **56F8300 Peripheral User Manual**, use the register definitions **without** the internal Relaxation Oscillator, since the 56F8345/56F8145 devices do NOT contain this oscillator.

Part 4 Memory Map

4.1 Introduction

The 56F8345 and 56F8145 devices are 16-bit motor-control chips based on the 56800E core. These parts use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function							
FLEXCAN	29	0-2	P:\$3A	FLEXCAN Message Buffer Interrupt							
GPIOF	30	0-2	P:\$3C	GPIO F							
GPIOE	31	0-2	P:\$3E	GPIO E							
GPIOD	32	0-2	P:\$40	GPIO D							
GPIOC	33	0-2	P:\$42	GPIO C							
GPIOB	34	0-2	P:\$44	GPIO B							
GPIOA	35	0-2	P:\$46	GPIO A							
				Reserved							
SPI1	38	0-2	P:\$4C	SPI 1 Receiver Full							
SPI1	39	0-2	P:\$4E	SPI 1 Transmitter Empty							
SPI0	40	0-2	P:\$50	SPI 0 Receiver Full							
SPI0	41	0-2	P:\$52	SPI 0 Transmitter Empty							
SCI1	42	0-2	P:\$54	SCI 1 Transmitter Empty							
SCI1	43	0-2	P:\$56	SCI 1 Transmitter Idle							
				Reserved							
SCI1	45	0-2	P:\$5A	SCI 1 Receiver Error							
SCI1	46	0-2	P:\$5C	SCI 1 Receiver Full							
DEC1	47	0-2	P:\$5E	Quadrature Decoder #1 Home Switch or Watchdog							
DEC1	48	0-2	P:\$60	Quadrature Decoder #1 INDEX Pulse							
DEC0	49	0-2	P:\$62	Quadrature Decoder #0 Home Switch or Watchdog							
DEC0	50	0-2	P:\$64	Quadrature Decoder #0 INDEX Pulse							
				Reserved							
TMRD	52	0-2	P:\$68	Timer D, Channel 0							
TMRD	53	0-2	P:\$6A	Timer D, Channel 1							
TMRD	54	0-2	P:\$6C	Timer D, Channel 2							
TMRD	55	0-2	P:\$6E	Timer D, Channel 3							
TMRC	56	0-2	P:\$70	Timer C, Channel 0							
TMRC	57	0-2	P:\$72	Timer C, Channel 1							
TMRC	58	0-2	P:\$74	Timer C, Channel 2							
TMRC	59	0-2	P:\$76	Timer C, Channel 3							

Table 4-5 Interrupt Vector Table Contents¹ (Continued)

Table 4-12 Quad Timer B Registers Address Map (Continued)
(TMRB_BASE = \$00 F080)
Quad Timer B is NOT available in the 56F8145 device

Register Acronym	Address Offset	Register Description						
TMRB3_HOLD	\$34	Hold Register						
TMRB3_CNTR	\$35	Counter Register						
TMRB3_CTRL	\$36	Control Register						
TMRB3_SCR	\$37	Status and Control Register						
TMRB3_CMPLD1	\$38	Comparator Load Register 1						
TMRB3_CMPLD2	\$39	Comparator Load Register 2						
TMRB3_COMSCR	\$3A	Comparator Status and Control Register						

Table 4-13 Quad Timer C Registers Address Map (TMRC_BASE = \$00 F0C0)

Register Acronym	Address Offset	Register Description						
TMRC0_CMP1	\$0	Compare Register 1						
TMRC0_CMP2	\$1	Compare Register 2						
TMRC0_CAP	\$2	Capture Register						
TMRC0_LOAD	\$3	Load Register						
TMRC0_HOLD	\$4	Hold Register						
TMRC0_CNTR	\$5	Counter Register						
TMRC0_CTRL	\$6	Control Register						
TMRC0_SCR	\$7	Status and Control Register						
TMRC0_CMPLD1	\$8	Comparator Load Register 1						
TMRC0_CMPLD2	\$9	Comparator Load Register 2						
TMRC0_COMSCR	\$A	Comparator Status and Control Register						
		Reserved						
TMRC1_CMP1	\$10	Compare Register 1						
TMRC1_CMP2 \$11		Compare Register 2						
TMRC1_CAP	\$12	Capture Register						
TMRC1_LOAD	\$13	Load Register						
TMRC1_HOLD	\$14	Hold Register						
TMRC1_CNTR	\$15	Counter Register						
TMRC1_CTRL	\$16	Control Register						
TMRC1_SCR	\$17	Status and Control Register						
TMRC1_CMPLD1	\$18	Comparator Load Register 1						

Table 4-13 Quad Timer C Registers Address Map (Continued) (TMRC_BASE = \$00 F0C0)

Register Acronym	Address Offset	Register Description						
TMRC1_CMPLD2	\$19	Comparator Load Register 2						
TMRC1_COMSCR	\$1A	Comparator Status and Control Register						
		Reserved						
TMRC2_CMP1	\$20	Compare Register 1						
TMRC2_CMP2	\$21	Compare Register 2						
TMRC2_CAP	\$22	Capture Register						
TMRC2_LOAD	\$23	Load Register						
TMRC2_HOLD	\$24	Hold Register						
TMRC2_CNTR	\$25	Counter Register						
TMRC2_CTRL	\$26	Control Register						
TMRC2_SCR	\$27	Status and Control Register						
TMRC2_CMPLD1	\$28	Comparator Load Register 1						
TMRC2_CMPLD2	\$29	Comparator Load Register 2						
TMRC2_COMSCR	\$2A	Comparator Status and Control Register						
		Reserved						
TMRC3_CMP1	\$30	Compare Register 1						
TMRC3_CMP2	\$31	Compare Register 2						
TMRC3_CAP	\$32	Capture Register						
TMRC3_LOAD	\$33	Load Register						
TMRC3_HOLD	\$34	Hold Register						
TMRC3_CNTR	\$35	Counter Register						
TMRC3_CTRL	\$36	Control Register						
TMRC3_SCR	\$37	Status and Control Register						
TMRC3_CMPLD1	\$38	Comparator Load Register 1						
TMRC3_CMPLD2	\$39	Comparator Load Register 2						
TMRC3_COMSCR	\$3A	Comparator Status and Control Register						

Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = \$00 F100) Quad Timer D is NOT available in the 56F8145 device

Register Acronym	Address Offset	Register Description
TMRD0_CMP1	\$0	Compare Register 1
TMRD0_CMP2	\$1	Compare Register 2

56F8345 Technical Data, Rev. 17

-

Table 4-38 FlexCAN Registers Address	Map
(FC_BASE = \$00 F800)	•
FlexCAN is NOT available in the 56F8145	device

Т

Register Acronym	Address Offset	Register Description							
FCMCR	\$0	Module Configuration Register							
		Reserved							
FCCTL0	\$3	Control Register 0 Register							
FCCTL1	\$4	Control Register 1 Register							
FCTMR	\$5	Free-Running Timer Register							
FCMAXMB	\$6	Maximum Message Buffer Configuration Register							
		Reserved							
FCRXGMASK_H	\$8	Receive Global Mask High Register							
FCRXGMASK_L	\$9	Receive Global Mask Low Register							
FCRX14MASK_H	\$A	Receive Buffer 14 Mask High Register							
FCRX14MASK_L	\$B	Receive Buffer 14 Mask Low Register							
FCRX15MASK_H	\$C	Receive Buffer 15 Mask High Register							
FCRX15MASK_L	\$D	Receive Buffer 15 Mask Low Register							
		Reserved							
FCSTATUS	\$10	Error and Status Register							
FCIMASK1	\$11	Interrupt Masks 1 Register							
FCIFLAG1	\$12	Interrupt Flags 1 Register							
FCR/T_ERROR_CNTRS	\$13	Receive and Transmit Error Counters Register							
		Reserved							
		Reserved							
		Reserved							
FCMB0_CONTROL	\$40	Message Buffer 0 Control / Status Register							
FCMB0_ID_HIGH	\$41	Message Buffer 0 ID High Register							
FCMB0_ID_LOW	\$42	Message Buffer 0 ID Low Register							
FCMB0_DATA	\$43	Message Buffer 0 Data Register							
FCMB0_DATA	\$44	Message Buffer 0 Data Register							
FCMB0_DATA	\$45	Message Buffer 0 Data Register							
FCMB0_DATA	\$46	Message Buffer 0 Data Register							
		Reserved							
FCMSB1_CONTROL	\$48	Message Buffer 1 Control / Status Register							

5.6 Register Descriptions

A register address is the sum of a base address and an address offset. The base address is defined at the system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.

Register Acronym	Base Address +	Register Name	Section Location
IPR0	\$0	Interrupt Priority Register 0	5.6.1
IPR1	\$1	Interrupt Priority Register 1	5.6.2
IPR2	\$2	Interrupt Priority Register 2	5.6.3
IPR3	\$3	Interrupt Priority Register 3	5.6.4
IPR4	\$4	Interrupt Priority Register 4	5.6.5
IPR5	\$5	Interrupt Priority Register 5	5.6.6
IPR6	\$6	Interrupt Priority Register 6	5.6.7
IPR7	\$7	Interrupt Priority Register 7	5.6.8
IPR8	\$8	Interrupt Priority Register 8	5.6.9
IPR9	\$9	Interrupt Priority Register 9	5.6.10
VBA	\$A	Vector Base Address Register	5.6.11
FIMO	\$B	Fast Interrupt 0 Match Register	5.6.12
FIVAL0	\$C	Fast Interrupt 0 Vector Address Low Register	5.6.13
FIVAH0	\$D	Fast Interrupt 0 Vector Address High Register	5.6.14
FIM1	\$E	Fast Interrupt 1 Match Register	5.6.15
FIVAL1	\$F	Fast Interrupt 1 Vector Address Low Register	5.6.16
FIVAH1	\$10	Fast Interrupt 1 Vector Address High Register	5.6.17
IRQP0	\$11	IRQ Pending Register 0	5.6.18
IRQP1	\$12	IRQ Pending Register 1	5.6.19
IRQP2	\$13	IRQ Pending Register 2	5.6.20
IRQP3	\$14	IRQ Pending Register 3	5.6.21
IRQP4	\$15	IRQ Pending Register 4	5.6.22
IRQP5	\$16	IRQ Pending Register 5	5.6.23
		Reserved	
ICTL	\$1D	Interrupt Control Register	5.6.30

Table 5-3 ITCN Register Summary (ITCN_BASE = \$00F1A0)

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	IPR0	R	0	0	вкрт		STPC		0	0	0	0	0	0	0	0	0	0
ΨŬ		W					0110											
\$1	IPR1	к W			0	0	0 0		0	0	0 0		RX_REG IPL		TX_RI	EG IPL	TRBI	JF IPL
¢o		R	FMO		FMO		EMER		1.00				0 0			וסו כ		
\$2	IPR2	W	FMCE	SE IPL	FMC		FME		LOC	K IPL	LVI	IPL			IRQI	3 IPL	IRQ	A IPL
\$3	IPR3	R W	GP IF	IOD PL	GP IF	IOE PL	GP II	PIOF PL	FCMSGBUF IPL FCWKUP IPL		FCERR IPL		FCBOFF IPL		0 0			
\$4	IPR4	R W	SPIO. IF	_RCV PL	SPI1_ IF	_XMIT PL	SPI1 II	_RCV PL	0	0	0	0	GPIOA IPL		GPIC	B IPL	GPIC	OC IPL
\$5	IPR5	R W	DEC1_>	(IRQ IPL	DEC1_H	IRQ IPL	SCI1	_RCV PL	SCI1_ IF	RERR PL	0	0	SCI1_1 IPL	TIDL	SCI1_ IF	_XMIT PL	SPI0. II	_XMIT PL
\$6	IPR6	R W	TMR	C0 IPL	TMRI	03 IPL	TMRI	D2 IPL	TMR	D1 IPL	TMR	00 IPL	0	0	DEC0_>	(IRQ IPL	DEC0	_HIRQ PL
\$7	IPR7	R W	TMR	A0 IPL	TMR	33 IPL	TMRI	B2 IPL	TMR	31 IPL	TMR	30 IPL	TMRC3	BIPL	TMRO	C2 IPL	TMR	C1 IPL
\$8	IPR8	R W	SCI0_F	RCV IPL	SCI0_R	ERR IPL	0	0	SCI0_T	IDL IPL	SCI0_X	MIT IPL	TMRA3	IPL	TMR	A2 IPL	TMR	A1 IPL
\$9	IPR9	R W	PWMA	_F IPL	PWME	5_F IPL	PWN	IA_RL PL	PWMB	_RL IPL	ADCA_	ZC IPL	ABCB_Z	CIPL	ADCA_	CC IPL	ADCB_	_CC IPL
\$A	VBA	R	0	0	0			1			VECTO	R BASE /	ADDRESS			1		
		R	0	0	0	0	0	0	0	0	0							
\$B	FIM0	W	, , , , , , , , , , , , , , , , , , ,			~	Ŭ	Ŭ		Ŭ	~			FAST	INTERRU	JPT 0		
\$C	FIVAL0	R W							l VE	AST INT	ERRUPT	LOW						
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0		FAST VECTOF	INTERR ADDRE	UPT 0 SS HIGI	ł
\$E	FIM1	R W	0	0	0	0	0	0	0	0	0			FAST	INTERRI	JPT 1		
\$F	FIVAL1	R W							i VE	AST INT	ERRUPT DRESS	T1 LOW						
\$10	FIVAH1	R W	0	0	0	0	0	0	0	0	0	0	0		FAST VECTOF		UPT 1 SS HIGI	4
¢44		R	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	PE	NDING [16:2]	Ŭ	Ŭ					1
\$11	IRQPU	W																
\$12	IRQP1	R								PENDIN	IG [32:17]						
		R								PENDIN	IG [48:33]						
\$13	IRQP2	W																
\$14	IRQP3	R								PENDIN	IG [64:49]						
		W								PENDIN	IC [80:65	1						
\$15	IRQP4	W								FENDIN	10 [80.05							
\$16	IRQP5	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
		W																
	Reserved																	
\$1D	ICTL	R	INT	IF	PIC				VAB				INT_DIS	1	IRQB STATE	IRQA STATE	IRQB EDG	IRQA EDG
		vv																
				= Rese	rved													

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.8 Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10 Interrupt Priority Register 9 (IPR9)

Base + \$9	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		E IDI			PWM	A_RL	PWM	B_RL					ADC/	A_CC	ADCE	3_CC
Write				_1 166	IF	Ľ	IP	Ľ	ADCA_	ZUIFL	ADCD_	ZOIFL	IF	Ľ	IF	Ľ
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-12 Interrupt Priority Register 9 (IPR9)

5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

Part 6 System Integration Module (SIM)

6.1 Introduction

The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features. The system integration module is responsible for the following functions:

- Reset sequencing
- Clock generation & distribution
- Stop/Wait control
- Pull-up enables for selected peripherals
- System status registers
- Registers for software access to the JTAG ID of the chip
- Enforcing Flash security

These are discussed in more detail in the sections that follow.

6.2 Features

The SIM has the following features:

- Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory
- Power-saving clock gating for peripheral
- Three power modes (Run, Wait, Stop) to control power utilization
 - Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation
 - Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be done
 explicitly
 - Wait mode shuts down the 56800E core and unnecessary system clock operation
 - Run mode supports full part operation
- Controls to enable/disable the 56800E core WAIT and STOP instructions
- Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32 clocks (phased release of reset) for reset, except for POR, which is 2²¹ clock cycles.
- Controls reset sequencing after reset
- Software-initiated reset
- Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control
- System Control Register
- Registers for software access to the JTAG ID of the chip

6.5.6.2 PWMA1—Bit 14

This bit controls the pull-up resistors on the FAULTA3 pin.

6.5.6.3 CAN—Bit 13

This bit controls the pull-up resistors on the CAN_RX pin.

6.5.6.4 EMI_MODE—Bit 12

This bit controls the pull-up resistors on the EMI_MODE pin.

Note: In this package, this input pin is double-bonded with the adjacent V_{SS} pin and this bit should be changed to a 1 in order to reduce power consumption.

6.5.6.5 RESET—Bit 11

This bit controls the pull-up resistors on the RESET pin.

6.5.6.6 IRQ—Bit 10

This bit controls the pull-up resistors on the \overline{IRQA} and \overline{IRQB} pins.

6.5.6.7 XBOOT—Bit 9

This bit controls the pull-up resistors on the EXTBOOT pin.

Note: In this package, this input pin is double-bonded with the adjacent V_{SS} pin and this bit should be changed to a 1 in order to reduce power consumption.

6.5.6.8 PWMB—Bit 8

This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.

6.5.6.9 PWMA0—Bit 7

This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.

6.5.6.10 Reserved—Bit 6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.11 CTRL—Bit 5

This bit controls the pull-up resistors on the \overline{WR} and \overline{RD} pins.

6.5.6.12 Reserved—Bit 4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.13 JTAG—Bit 3

This bit controls the pull-up resistors on the $\overline{\text{TRST}}$, TMS and TDI pins.

Mode	Core Clocks	Peripheral Clocks	Description
Run	Active	Active	Device is fully functional
Wait	Core and memory clocks disabled	Active	Peripherals are active and can produce interrupts if they have not been masked off. Interrupts will cause the core to come out of its suspended state and resume normal operation. Typically used for power-conscious applications.
Stop	I System clocks continue to be generated in the SIM, but most are gated prior to reaching memory, core and peripherals.		The only possible recoveries from Stop mode are: 1. CAN traffic (1st message will be lost) 2. Non-clocked interrupts 3. COP reset 4. External reset 5. Power-on reset

Table 6-3 Clock Operation in Power-Down Modes

All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as the main processor frequency in this architecture. The maximum frequency of operation is $SYS_CLK = 60MHz$.

6.8 Stop and Wait Mode Disable Function

Figure 6-16 Internal Stop Disable Circuit

The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E system clock must be set equal to the oscillator output.

GPIO Port	Port Width	Available Pins in 56F8145	Peripheral Function	Reset Function
F	16	4	4 pins - EMI Data - Can only be used as GPIO 12 pins - EMI Data - Not available in this package	EMI Data N/A

Table 8-3 GPIO External Signals MapPins in shaded rows are not available in 56F8345 / 56F8145Pins in italics are NOT available in the 56F8145 device

GPIO Port	GPIO Bit	Reset Function	Functional Signal	Package Pin #
	0	Peripheral	A8 ¹	15
	1	Peripheral	A9 ¹	16
	2	Peripheral	A10 ¹	17
	3	Peripheral	A11 ¹	18
	4	Peripheral	A12 ¹	19
	5	Peripheral	A13 ¹	20
GPIOA	6	N/A		
	7	N/A		
	8	N/A		
	9	N/A		
	10	N/A		
	11	N/A		
	12	N/A		
	13	N/A		

Table 10-1 Absolute Maximum Ratings (Continued)

 $(V_{SS} = V_{SSA_ADC} = 0)$

Characteristic	Symbol	Notes	Min	Max	Unit
Junction Temperature (Automotive)	Т _Ј		-40	150	°C
Junction Temperature (Industrial)	Т _Ј		-40	125	°C
Storage Temperature (Automotive)	T _{STG}		-55	150	°C
Storage Temperature (Industrial)	T _{STG}		-55	150	°C

1. If corresponding GPIO pin is configured as open drain.

Note: Pins in italics are NOT available in the 56F8145 device.

Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0

Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1, TDO, SCLK0

Pin Group 3: RSTO, TDO

Pin Group 4: CAN_TX

Pin Group 5: D0-15, GPIOD0-5

Pin Group 6: A8-15, GPIOB0-4, TD0-1

Pin Group 7: CLKO

Pin Group 8: PWMA0-5, PWMB0-5

Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3

Pin Group 10: TCK

Pin Group 11: XTAL, EXTAL

Pin Group 12: ANA0-7, ANB0-7

Pin Group 13: OCR_DIS, CLKMODE

			•		
Characteristic	Symbol	Min	Тур	Мах	Units
POR Trip Point	POR	1.75	1.8	1.9	V
LVI, 2.5 volt Supply, trip point ¹	V _{EI2.5}	—	2.14	_	V
LVI, 3.3 volt supply, trip point ²	V _{EI3.3}	—	2.7	_	V
Bias Current	l _{bias}	—	110	130	μΑ

Table 10-6 Power-On Reset Low Voltage Parameters

1. When V_{DD_CORE} drops below $V_{EI2.5}$, an interrupt is generated.

2. When $V_{\text{DD}_\text{CORE}}$ drops below $V_{\text{EI3.3}},$ an interrupt is generated.

Table 10-7 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Enabled (OCR_DIS = Low)

Mode	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions
RUN1_MAC	155mA	50mA	2.5mA	60MHz Device Clock
				All peripheral clocks are enabled
				All peripherals running
				 Continuous MAC instructions with fetches from Data RAM
				ADC powered on and clocked
Wait3	91mA	65µA	2.5mA	60MHz Device Clock
		·		All peripheral clocks are enabled
				ADC powered off
Stop1	5.8mA	0μA	155µA	8MHz Device Clock
		•		All peripheral clocks are off
				ADC powered off
				PLL powered off
Stop2	5.1mA	0μA	145µA	External Clock is off
		·	·	All peripheral clocks are off
				ADC powered off
				PLL powered off

1. No Output Switching

2. Includes Processor Core current supplied by internal voltage regulator

Figure 10-14 Quadrature Decoder Timing

10.12 Serial Communication Interface (SCI) Timing

Table 10-20 SCI Timing¹

Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud Rate ²	BR	_	(f _{MAX} /16)	Mbps	_
RXD ³ Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns	10-15
TXD ⁴ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns	10-16

1. Parameters listed are guaranteed by design.

 f_{MAX} is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8345 device and 40MHz for the 56F8145 device.

3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

Figure 10-15 RXD Pulse Width

	Intercept	Slope
PDU08DGZ_ME	1.3	0.11mW / pF
PDU04DGZ_ME	1.15mW	0.11mW / pF

Table 10-24 IO Loading Coefficients at 10MHz

Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the outputs change. Table 10-24 provides coefficients for calculating power dissipated in the IO cells as a function of capacitive load. In these cases:

Total Power = Σ ((Intercept +Slope*Cload)*frequency/10MHz)

where:

- Summation is performed over all output pins with capacitive loads
- Total Power is expressed in mW
- Cload is expressed in pF

Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when averaged over a period of time.

E, the external [static component], reflects the effects of placing resistive loads on the outputs of the device. Sum the total of all V²/R or IV to arrive at the resistive load contribution to power. Assume V = 0.5 for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.

In previous discussions, power consumption due to parasitics associated with pure input pins is ignored, as it is assumed to be negligible.

ым	MILLIN	IETERS		
DIN	MIN	MAX		
Α		1.60		
A1	0.05	0.15		
A2	1.35	1.45		
b	0.17	0.27		
b1	0.17	0.23		
С	0.09	0.20		
c1	0.09	0.16		
D	22.00) BSC		
D1	20.00BSC			
е	0.50 BSC			
Е	16.00) BSC		
E1	14.00) BSC		
L	0.45	0.75		
L1	1.00	REF		
L2	0.50	REF		
S	0.20			
R1	0.08			
R2	0.08	0.20		
0	0°	7 °		
01	0°			
02	11°	13°		

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H.
- 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C.
- 6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE b DIMENSION TO EXCEED 0.35.

Figure 11-3 128-pin LQFP Mechanical Information

56F8345 Technical Data, Rev. 17

Power Distribution and I/O Ring Implementation

THIS PAGE IS INTENTIONALLY BLANK