

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XE

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 13x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-WQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10flcana-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. 16	Interrupt Functions	193
	3. 16. 1 Interrupt function types	193
	3. 16. 2 Interrupt sources and configuration	193
	3. 16. 3 Registers controlling interrupt functions	199
	3. 16. 3. 1 Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)	204
	3. 16. 3. 2 Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)	206
	3. 16. 3. 3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H,	
	PR11L, PR11H, PR12L, PR12H, PR02L, PR02H)	208
	3. 16. 3. 4 External interrupt rising edge enable register (EGP0), External interrupt falling edge	
	enable register (EGN0)	212
	3. 16. 3. 5 Program status word (PSW)	213
	3. 16. 4 Interrupt servicing operations	213
3. 17	Key Interrupt Function	214
	3. 17. 1 Functions of key interrupt	214
	3. 17. 2 Configuration of key interrupt	215
	3. 17. 3 Register controlling key interrupt	217
	3. 17. 3. 1 Key return control register (KRCTL)	217
	3. 17. 3. 2 Key return mode register 0 (KRM0)	217
	3. 17. 3. 3 Key return flag register (KRF)	217
	3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7)	218
	3. 17. 3. 5 Peripheral I/O redirection register (PIOR)	219
	3. 17. 4 Key interrupt operation	219
3. 18	Standby Function	220
3. 19	Reset Function	221
3. 20	Power-On-Reset Circuit	222
3. 21	Voltage Detector	223
	3. 21. 1 Functions of voltage detector	223
	3. 21. 2 Configuration of voltage detector	224
	3. 21. 3 Registers controlling voltage detector	225
	3. 21. 3. 1 Voltage detection register (LVIM)	225
	3. 21. 3. 2 Voltage detection level register (LVIS)	225
	3. 21. 4 Operation of voltage detector	228
	3. 21. 5 Cautions for voltage detector	228
3. 22	Safety Functions	229
	3. 22. 1 Overview of safety functions	229
	3. 22. 2 Registers used by safety functions	230
	3. 22. 3 Operation of safety functions	230
	3. 22. 3. 1 Flash memory CRC operation function (high-speed CRC)	230
	3. 22. 3. 2 CRC operation function (general-purpose CRC)	230
	3. 22. 3. 3 RAM parity error detection function	230
	3. 22. 3. 4 RAM guard function	230

Item		64-pin products	80-pin products		
		R5F10FLx	R5F10FMx		
Serial interface	I ² C bus	 64-pin products CSI: 1 channel / simplified l²C: 1 channel / UART: 1 channel UART: 1 channel CSI: 1 channel / UART (LIN-bus supported): 1 channel 80-pin products CSI: 1 channel / simplified l²C: 1 channel / UART: 1 channel CSI: 1 channel / simplified l²C: 1 channel / UART: 1 channel CSI: 2 channels / simplified l²C: 1 channel / UART (LIN-bus supported): 1 channel 			
Multiplier and divider / multip		Multiplier: 16 bits \times 16 bits (Unsigned or signed))		
accumulator	.,	Divider: 32 bits ÷ 32 bits (Unsigned)	7		
		Multiply accumulator: 16 bits \times 16 bits + 32 bits (Unsigned or signed)			
DMA controller		2 cha	2 channels		
Vectored interrupt sources	Internal	25			
	External	2 5			
Key interrupt		4 ch (7) ^{Note 1}	4 ch (8) ^{Note 1}		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 			
Power-on-reset circuit		Power-on-reset: 1.51 ±0.03 V			
		Power-down-reset: 1.50 ±0.03 V			
Voltage detector		Detection level: 3 stages			
On-chip debug function		Provided			

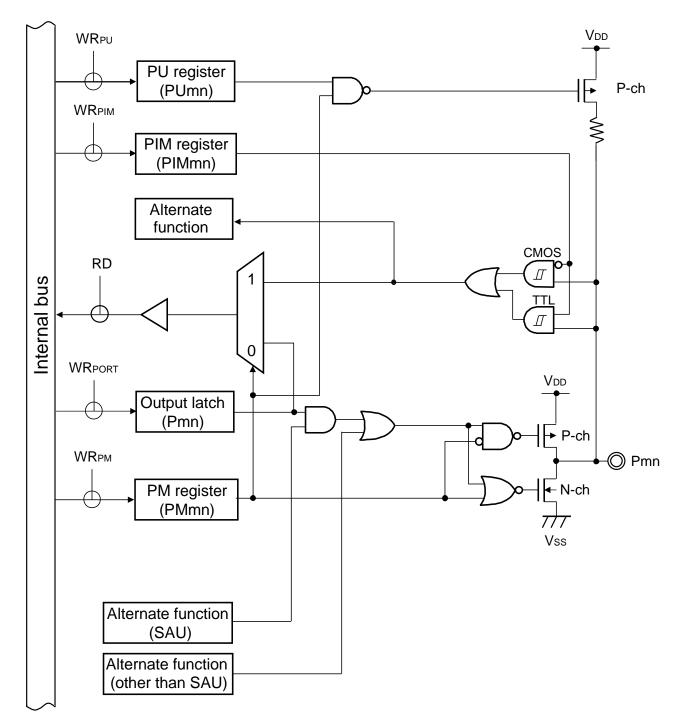
Table 1-1 Outline of Functions	(Microcontroller Block) (2/2)
--------------------------------	-------------------------------

<R>

Notes 1. The number in parentheses is the channels of key interrupt when using the peripheral I/O redirection register (PIOR).

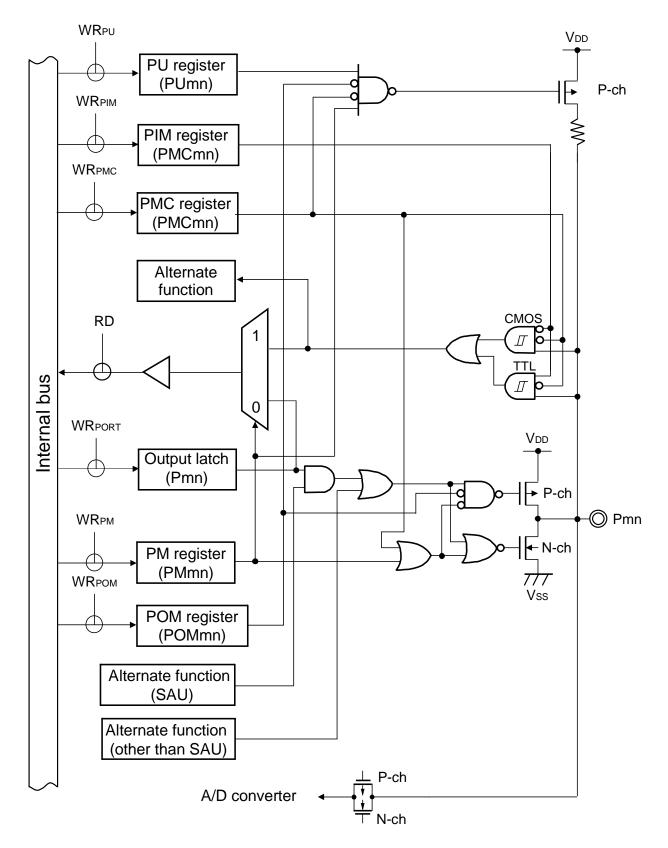
2. The illegal instruction is generated when instruction code FFH is executed. Rest by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>


			(2/3)
Function Name	RL78/G1E	RL78/G1E	RL78/G1A
	(64-pin)	(80-pin)	(64-pin)
KR0	\checkmark		\checkmark
KR1	\checkmark	\checkmark	\checkmark
KR2	\checkmark		\checkmark
KR3	\checkmark	\checkmark	\checkmark
KR4	(√)	(√)	\checkmark
KR5	(√)	(√)	\checkmark
KR6	(√)	(√)	\checkmark
KR7	_	(√)	\checkmark
KR8	_	_	\checkmark
KR9	-	_	\checkmark
PCLBUZ0	_		\checkmark
PCLBUZ1	_	_	
REGC	\checkmark		
RTC1HZ	_	_	\checkmark
RESET	\checkmark		
RXD0	\checkmark		
RXD1	\checkmark		
RXD2	\checkmark		
SCK00	\checkmark		
SCK01	_	_	
SCK10	_		
SCK11	_	_	
SCK20	_		
SCK21			
SCLA0	_	_	
SCL00			
SCL01	_	_	
SCL10	_		
SCL11	_	_	
SCL20	_		
SCL21	_	_	
SDAA0	_	_	
SDA00			
SDA01	_	_	
SDA10	_		
SDA11	_	_	
SDA20	_		
SDA21	_	_	
SI00	\checkmark		
SI01	_	_	
SI10	_	√	
SI11	_	_	
SI20	_		
SI21		√	, √
0121	Y	, v	1

<R> Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Figure 2-10. Pin Block Diagram for Pin Type 8-1-1


Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

2. SAU: Serial array unit

<R>

Figure 2-12. Pin Block Diagram for Pin Type 8-3-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

2. SAU: Serial array unit

2. 5. 8 Port 13 (P130, P137)

(1) Port mode

P130 functions as an output port.

P137 functions as an input port.

(2) Control mode

P137 functions as external interrupt request input.

(a) INTP0

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

3. 4. 3. 1 Port mode register (PMxx)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	1	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FFF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
PM14	1	1	1	1	1	1	PM141	PM140	FFF2EH	FFH	R/W
PM15	1	1	1	PM154	PM153	PM152	PM151	PM150	FFF2FH	FFH	R/W

Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bits 0 and 1 of the PM14 register, and bits 0 to 4 of the PM15 register to "0".

2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to "1".

	Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
	PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
	PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
	PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
	PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W
<r></r>	PM5	1	1	1	1	1	1	PM51	PM50	FFF25H	FFH	R/W
	PM6	1	1	1	1	PM63	PM62	PM61	PM60	FFF26H	FFH	R/W
	PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
	PM14	1	1	1	1	1	1	PM141	PM140	FFF2EH	FFH	R/W
	PM15	1	1	1	PM154	PM153	PM152	PM151	PM150	FFF2FH	FFH	R/W

(2) 80-pin products

Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bit 1 of the PM14 register, and bits 0 to 4 of the PM15 register to "0".

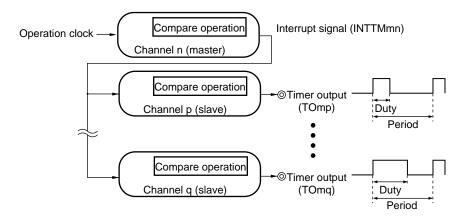
<R>

2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 2 to 7 of the PM5 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to "1".

3.6 Timer Array Unit

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 6 TIMER ARRAY UNIT in RL78/G1A Hardware User's Manual (R01UH0305E).

The timer array unit is provided in all products (Unit 0, Channels 0 to 7).


Units	Channels	64-pin products, 80-pin products
Unit 0	Channel 0	\checkmark
	Channel 1	\checkmark
	Channel 2	\checkmark
	Channel 3	\checkmark
	Channel 4	\checkmark
	Channel 5	\checkmark
	Channel 6	\checkmark
	Channel 7	\checkmark

Caution Most of the following descriptions in this section use the case of 80-pin products as an example.

<3> Multiple PWM (Pulse Width Modulation) output

By extending the PWM function and using one master channel and two or more slave channels, up to seven types of PWM signals that have a specific period and a specified duty factor can be generated.

Caution For details about the rules of simultaneous channel operation function, see 3. 6. 4 Basic rules of timer array unit.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn) : n = 0, 4, 7), p, q: Slave channel number (4, 7)

3. 6. 1. 3 8-bit timer operation function (channels 1 and 3 only)

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

Caution There are several rules for using 8-bit timer operation function. For details, see 3. 6. 4 Basic rules of timer array unit.

3. 6. 2 Configuration of timer array unit

Timer array unit includes the following hardware.

Table 3-8. Configuration of Timer Array Unit

Item	Configuration				
Timer/counter	Timer count register mn (TCRmn)				
Register	Timer data register mn (TDRmn)				
Timer input	TI00, TI04, TI07, RxD2 pin (for LIN-bus)				
Timer output	TO00, TO04, TO07, output controller				
Control registers	<registers block="" of="" setting="" unit=""></registers>				
	Peripheral enable register 0 (PER0)				
	Timer clock select register m (TPSm)				
	Timer channel enable status register m (TEm)				
	Timer channel start register m (TSm)				
	• Timer channel stop register m (TTm)				
	• Timer input select register 0 (TIS0)				
	• Timer output enable register m (TOEm)				
	• Timer output register m (TOm)				
	Timer output level register m (TOLm)				
	Timer output mode register m (TOMm)				
	<registers channel="" each="" of=""></registers>				
	Timer mode register mn (TMRmn)				
	Timer status register mn (TSRmn)				
	Input switch control register (ISC)				
	Noise filter enable register 1 (NFEN1)				
	Port mode control register (PMCxx)				
	Port mode register (PMxx)				
	Port register (Pxx)				

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

The presence or absence of timer I/O pins in each timer array unit channel is as follows.

Tir	mer array unit channels	64-pin products, 80-pin products
Unit 0	Channel 0	P00/TI00, P01/TO00
	Channel 1	_
	Channel 2	-
	Channel 3	-
	Channel 4	P42/TI04/TO04
	Channel 5	-
	Channel 6	-
	Channel 7	P41/TI07/TO07

Table 3-9. Timer I/O Pins provided in Each Product

- **Remarks 1.** When timer input and timer output are shared by the same pin, either only timer input or only timer output can be used.
 - 2. -: here is no timer I/O pin, but the channel is available. (However, the channel can only be used as an interval timer.)

Figures 3-3 show the block diagrams of the timer array unit of the 80-pin products.

3. 12. 1 Functions of serial array unit

Each serial interface supported by the RL78/G1E (64-pin products, 80-pin products) has the following features.

3. 12. 1. 1 3-wire serial I/O (CSI00, CSI10, CSI20, CSI21)

Data is transmitted or received in synchronization with the serial clock (SCK) output from the master channel.

3-wire serial communication is clocked communication performed by using three communication lines: one for the serial clock (SCK), one for transmitting serial data (SO), one for receiving serial data (SI).

For details about the settings, see **3. 12. 5** Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) Communication.

[Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data

[Clock control]

- Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
- Maximum transfer rate During master communication (CSI00): Max. fcLK/2^{Note}

During master communication (other than CSI00): Max. fcLk/4^{Note}

During slave communication: Max. fmck/6^{Note}

[Interrupt function]

• Transfer end interrupt/buffer empty interrupt

[Error detection flag]

• Overrun error

In addition, CSI00 of following channels supports the SNOOZE mode. When SCK input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. Only CSI00 can be specified for asynchronous reception.

Note Use the clocks within a range satisfying the SCK cycle time (tkcr) characteristics (see CHAPTER 5 ELECTRICAL SPECIFICATIONS).

3.17 Key Interrupt Function

The number of key interrupt input channels differs, depending on the product.

	64-pin products	80-pin products
Key interrupt	4 ob (7 ob)	4 ob (9 ob)
input channels	4 ch (7 ch)	4 ch (8 ch)

Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. Most of the following descriptions in this section use the case of 80-pin products as an example.

3. 17. 1 Functions of key interrupt

A key interrupt (INTKR) can be generated by inputting a rising/falling edge to the key interrupt input pins (KR0 to KR7). There are two ways to identify the channel(s) to which a valid edge has been input:

- · Identify the channel(s) (KR0 to KR7) by using the port input level.
- · Identify the channel(s) (KR0 to KR5) by using the key interrupt flag.

Key Interrupt Pins	Key return mode register (KRM0)	Key return flag register (KRF)
KR0	KRM00	KRF0
KR1	KRM01	KRF1
KR2	KRM02	KRF2
KR3	KRM03	KRF3
KR4	KRM04	KRF4
KR5	KRM05	KRF5
KR6	KRM06	-
KR7	KRM07	-

Table 3-16. Assignment of Key Interrupt Detection Pins

Remark KR0 to KR3 (KR0 to KR6): 64-pin products

KR0 to KR3 (KR0 to KR7): 80-pin products

Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR)

(5) Gain control register 1 (GC1)

This register is used to specify the gain and feedback resistance of configurable amplifier Ch1.

The value to specify depends on the configuration of configurable amplifier Ch1.

When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) to 03H.

Reset signal input clears this register to 00H.

Address: 06H After reset: 00H R/W

	7	6	5	4	3	2	1	0
GC1	0	0	0	AMPG14	AMPG13	AMPG12	AMPG11	AMPG10

Table 4-1. Gain of Configurable Amplifier Ch1 (Non-Inverting Amplifier)

AMPG14	AMPG13	AMPG12	AMPG11	AMPG10	Gain of Configurable Amplifier Ch1 (Typ.)
0	0	0	0	0	9.5 dB
0	0	0	0	1	10.9 dB
0	0	0	1	0	12.4 dB
0	0	0	1	1	14.0 dB
0	0	1	0	0	15.6 dB
0	0	1	0	1	17.3 dB
0	0	1	1	0	19.0 dB
0	0	1	1	1	20.8 dB
0	1	0	0	0	22.7 dB
0	1	0	0	1	24.5 dB
0	1	0	1	0	26.4 dB
0	1	0	1	1	28.3 dB
0	1	1	0	0	30.3 dB
0	1	1	0	1	32.2 dB
0	1	1	1	0	34.2 dB
0	1	1	1	1	36.1 dB
1	0	0	0	0	38.1 dB
1	0	0	0	1	40.1 dB
	C	Other than abov	e		Setting prohibited

<R> **Remark** Bits 7 to 5 are fixed at 0 of read only.

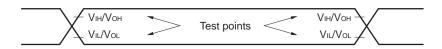
CHAPTER 5 ELECTRICAL SPECIFICATIONS

In this capter, the electrical specification is described for the target products shown below.

Target products	A: Consumer applications	$T_A = -40$ to $+85^{\circ}C$
	R5F10FLCANA, R5F10FLCAN	A, R5F10FLDANA, R5F10FLDANA,
	R5F10FLEANA, R5F10FLEANA	A, R5F10FMCAFB, R5F10FMCAFB,
	R5F10FMDAFB, R5F10FMDAF	B, R5F10FMEAFB, R5F10FMEAFB

- Target productsD: Industrial applicationsTA = -40 to +85°CR5F10FLCDNA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLDDNA, R5F10FLDDNA, R5F10FLEDNA, R5F10FMCDFB, R5F10FMCDFB, R5F10FMCDFB, R5F10FMEDFB, R5F10FMEDFB
- Cautions 1. The RL78/G1E microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product, so that refer to CHAPTER 2 PIN FUNCTIONS. In this Chapter, most of the descriptions use the case of 80-pin products as an example.

- **Notes 1.** Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pullup/pull-down resistors, and data flash rewriting.
 - 2. When the HALT instruction is executed for the flash memory.
 - **3.** When the high-speed on-chip oscillator is stopped.
 - **4.** When the high-speed system clock is stopped.
 - 5. Not including the current flowing into 12-bit interval timer, watchdog timer.
 - **6.** The relationship between the operation voltage range, CPU operating frequency, and operating mode is as below.


HS (High-speed main) mode:	VDD = 2.7 to 5.5 V @ 1 MHz to 32 MHz
	V_{DD} = 2.4 to 5.5 V @ 1 MHz to 16 MHz
LS (Low-speed main) mode:	V_{DD} = 1.8 to 5.5 V @ 1 MHz to 8 MHz
LV (Low-voltage main) mode:	VDD = 1.6 to 5.5 V @ 1 MHz to 4 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. The TYP. temperature condition in modes other than STOP mode is $T_A = 25^{\circ}C$.

<R> 5. 2. 4 Peripheral functions characteristics

AC Timing Test Points

<R> 5. 2. 4. 1 Serial array unit

(1) Communication between devices at same potential (UART mode) (dedicated baud rate generator output)

```
(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})
```

Paramete	Symbol	Conditions	HS '	Note 1	LS	lote 2	LV	Unit	
r			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
rate Note 4		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3		0.6	Mbps
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		5.3 Note 5		1.3 Note 5		0.6	Mbps
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate: $f_{MCK} = f_{CLK}$ Note 6		_		1.3 Note 5		0.6	Mbps

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode is 4800 bps.
- 5. The following conditions are required for low voltage interface.
 - 2.4 V \leq VDD < 2.7 V: 2.6 Mbps max.
 - $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$: 1.3 Mbps max.
 - 1.6 V \leq VDD < 1.8 V: 0.6 Mbps max.
- **6.** f_{CLK} in each operating mode is as below.
 - HS (high-speed main) mode : f_{CLK} = 32 MHz
 - LS (low-speed main) mode : f_{CLK} = 8 MHz
 - LV (low-voltage main) mode : f_{CLK} = 4 MHz
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

<R> (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I²C mode) (1/2)

Parameter	Symbol	Conditions	HS	Note 1	LS	Note 2	LV Note 3		Unit
SCI r clock			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock	f _{SCL}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		1000		300 Note 4		300 Note 4	kHz
frequency		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$		Note 4					
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V},$		1000		300 Note 4		300 Note 4	kHz
		$2.3 V \le Vb \le 2.7 V$,		Note 4					
		Cb = 50 pF, Rb = 2.7 k Ω							
		$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kHz
		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kHz
		$2.3 V \le Vb \le 2.7 V$,							
		Cb = 100 pF, Rb = $2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$		300 Note 4		300 Note 4		300 Note 4	kHz
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 5}},$							
		Cb = 100 pF, Rb = 5.5 k Ω							
Hold time	t _{LOW}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	475		1550		1550		ns
when SCLr = L	-2011	$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	475		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$4.0 V \le V_{DD} \le 5.5 V$,	1150		1550		1550		ns
		$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	1150		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V$,			1000		1000		
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	1550		1550		1550		ns
		$1.6 V \le Vb \le 2.0 V^{Note 5}$,							
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
Hold time	t _{ніGH}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	245		610		610		ns
when SCLr = H	4 IIGH	$2.7 V \le Vb \le 4.0 V$,	2.0		0.0		0.0		
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	200		610		610		ns
		$2.3 V \le Vb \le 2.7 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$4.0 V \le V_{DD} \le 5.5 V,$	675		610		610		ns
		$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	600		610		610		ns
		$2.3 V \le Vb \le 2.7 V,$			0.0		0.0		
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	610		610		610		ns
		$1.6 V \le Vb \le 2.0 V^{Note 5}$,							
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							

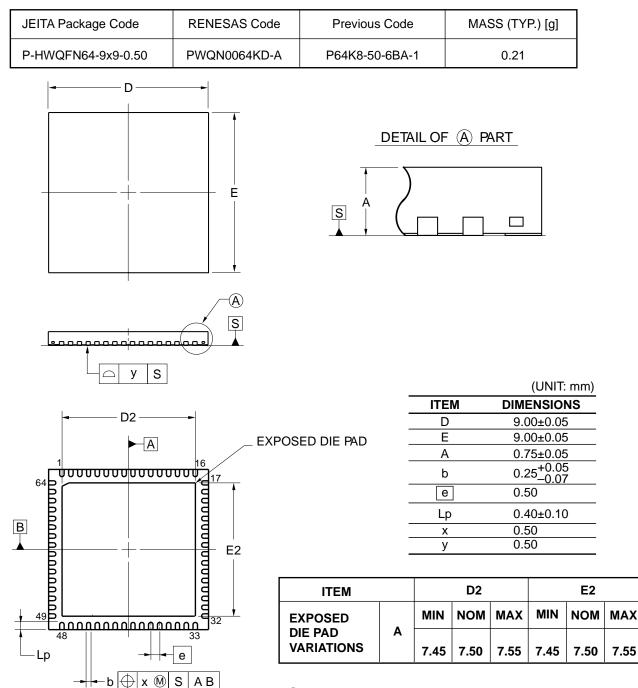
(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes are listed on the next page.)

Note Total current flowing to internal power supply pins AV_{DD1}, AV_{DD2}, AV_{DD3}, and DV_{DD}. Current flowing through the pull-up resistor is not included. The input leakage current flowing when the level of the input pin is fixed to AV_{DD1}, AV_{DD2}, AV_{DD3} or DV_{DD}, or AGND1, AGND2, AGND3, AGND4, or DGND is included. See the table below to check the definition of those symbols of the current flowing.

	Symbol		Analog function with power on											
Parameter		Configurable amplifier		Gain	D/A converter				Low-	High-	Temperature	Variable output		
		Ch1	Ch2	Ch3	adjustment amplifier	Ch1	Ch2	Ch3	Ch4	pass filter	pass filter	sensor	voltage regulator	
	Im111 ^{Note 1}	ON	ON	ON	_	-	_	ON	-	-	-	_	_	
	Im112 ^{Note 1}	ON	ON	ON	ON	ON	ON	ON	ON	-	_	ON	ON	
	Im113 ^{Note 1}	ON	ON	ON	_	ON	ON	ON	ON	ON	ON	ON	ON	
Supply	Im114 ^{Note1}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	
current	Im121 ^{Note 2}	ON	ON	ON	_	-	_	ON	_	-	-	_	_	
	Im122 Note 2	ON	ON	ON	ON	ON	ON	ON	ON	-	_	ON	ON	
	Im123 ^{Note 2}	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	
	Im124 ^{Note 2}	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	

Notes 1. CC1, CC0 = 0, 0


2. CC1, CC0 = 1, 1

CHAPTER 6 PACKAGE DRAWINGS

R5F10FLCANA, R5F10FLDANA, R5F10FLEANA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLEDNA

64-PIN PLASTIC WQFN (9 x 9)

© 2012 Renesas Electronics Corporation. All rights reserved.

