

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 13x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-WQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10flddna-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G1E RENESAS MCU

CHAPTER 1 OUTLINE

<R> 1.1 Features

The RL78/G1E is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package. The chip of analog block features a range of front-end analog circuits for small sensor signal processing such as a configurable gain amplifier, gain adjustment amplifier, filter circuit, D/A converter, and temperature sensor. The chip of 16-bit microcontroller block corresponds to the RL78/G1A (64-pin products).

1.1.1 Microcontroller block

Low power consumption technology by standby function

- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from 0.03125 µs (32 MHz operation with high-speed on-chip oscillator) to 0.05 µs (20 MHz operation with high-speed system clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 2 to 4 KB

Code flash memory

- Code flash memory: 32 to 64 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with boot swap function/flash shield window function)

Data flash memory

- Data flash memory: 4 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: VDD = 1.8 to 5.5 V

<R> 1.5 Block Diagram

1.5.1 64-pin products

Remark The RL78/G1E (64-pin products) is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package.

<R> (1) Block diagram in microcontroller block (80-pin products)

Note Connected inside the package.

Item		64-pin products	80-pin products			
		R5F10FLx	R5F10FMx			
Serial interface	I ² C bus	 64-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel UART: 1 channel CSI: 1 channel / UART (LIN-bus supported): 1 channel 80-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 2 channels / simplified I²C: 1 channel / UART (LIN-bus supported): 1 channel 				
Multiplier and divider / multip		Multiplier: 16 bits \times 16 bits (Unsigned or signed))			
accumulator	.,	Divider: 32 bits ÷ 32 bits (Unsigned)				
		Multiply accumulator: 16 bits × 16 bits + 32 bits (Unsigned or signed)				
DMA controller		2 channels				
Vectored interrupt sources Internal		25				
	External	2	5			
Key interrupt		4 ch (7) ^{Note 1}	4 ch (8) ^{Note 1}			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 				
Power-on-reset circuit		Power-on-reset: 1.51 ±0.03 V				
		• Power-down-reset: 1.50 ±0.03 V				
Voltage detector		Detection lev	vel: 3 stages			
On-chip debug function		Prov	ided			

Table 1-1 Outline of Functions	(Microcontroller Block) (2/2)
--------------------------------	-------------------------------

<R>

Notes 1. The number in parentheses is the channels of key interrupt when using the peripheral I/O redirection register (PIOR).

2. The illegal instruction is generated when instruction code FFH is executed. Rest by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2/2)

<	R	>

					(2
Function	Pin	I/O	After Reset	Alternate Function	Function
Name	Туре				
P50	7-3-2	I/O	Analog input	ANI26/INTP1	Port 5.
P51	7-3-1		port	ANI25/INTP2	2-bit I/O port.
					Output of P50 can be set to N-ch open-drain output (V_{DD}
					tolerance).
					P50 and P51 can be set to analog input. Note 1
					Input/output can be specified in 1-bit units.
					Use of an on-chip pull-up resistor can be specified by software
					setting at input port.
P70	7-3-1	I/O	Analog input	ANI28/KR0/	Port 7.
			port	SCK21/SCLK ^{Note2}	4-bit I/O port.
P71	7-1-2		Input port	KR1/SI21/SDO ^{Note2}	P70 can be set to analog input. Note 1
P72	7-1-1			KR2/SO21/SDI ^{Note2}	Input/output can be specified in 1-bit units.
P73				KR3/CS ^{Note2}	Use of an on-chip pull-up resistor can be specified by software
					setting at input port.
P121	2-2-1	Input	Input port	X1	Port 12.
P122				X2/EXCLK	2-bit input port.
P130	1-1-1	Output	Output port	_	Port 13.
P137	2-1-2	Input	Input port	INTP0	1-bit output port and 1-bit input port.
P140	7-1-1	I/O	Input port	PCLBUZ0/INTP6	Port 14.
					1-bit I/O port.
					Input/output can be specified in 1-bit units.
					Use of an on-chip pull-up resistor can be specified by a software
					setting at input port.
RESET	2-1-1	Input	-	_	Input only pin for external reset.
					When external reset is not used, connect this pin to $V_{\mbox{\scriptsize DD}}$ directly
					or via a resistor.

<R> Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units).

2. SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block.

<R>

Figure 2-7. Pin Block Diagram for Pin Type 7-1-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

2. SAU: Serial array unit

<R>

Figure 2-9. Pin Block Diagram for Pin Type 7-3-2

Remarks 1. For alternate functions, see 2. 1. 1 Port functions.

2. SAU: Serial array unit

2.5.24 AGND1

This is the ground pin for configurable amplifiers Ch1 to Ch3.

2. 5. 25 AVDD1

This is the power supply pin for configurable amplifiers Ch1 to Ch3.

2.5.26 AGND3

This is the GND pin for variable output voltage regulator and reference voltage generator.

2. 5. 27 BGR_OUT

This is the output pin for reference voltage generator.

2. 5. 28 AVDD2

This is the power supply pin for variable output voltage regulator and reference voltage generator.

2. 5. 29 LDO_OUT

This is the output pin for variable output voltage regulator.

2.5.30 TEMP_OUT

This is the output pin for temperature sensor.

2. 5. 31 ARESET

This is the active-low system reset input pin for the function of analog block. After turning on DV_{DD}, it is necessary to input the external reset signal to this pin before starting SPI communication. When controlling the external reset signal by the microcontroller block of this package, it is recommended to directly connect this pin to P130 which is to be a low-level output port on reset. If the resource pin of ARESET is to be Hi-Z at a short moment, this pin must be connected to DGND via a resistor. For details of the functions, see **4.10** Analog Reset.

2.5.32 DVDD

This is the power supply pin for SPI.

2. 5. 33 SCLK

This is the serial clock input pin for SPI.

2.5.34 SDO

This is the serial data output pin for SPI.

Address	RL78/G1E (80-pin produ	cts)	RL78/G1A (64-pin products)				
	2nd SFRs Name	Symbol	2nd SFRs Name	Symbol			
F0110H	Same as RL78/G1A (64-pin products)	SMR00	Serial mode register 00	SMR00			
F0111H							
F0112H	Serial mode register 01 Note	SMR01	Serial mode register 01	SMR01			
F0113H							
F0114H	Same as RL78/G1A (64-pin products)	SMR02	Serial mode register 02	SMR02			
F0115H							
F0116H	Serial mode register 03 Note	SMR03	Serial mode register 03	SMR03			
F0117H							
F0118H	Same as RL78/G1A (64-pin products)	SCR00	Serial communication operation	SCR00			
F0119H			setting register 00				
F011AH	Serial communication operation	SCR01	Serial communication operation	SCR01			
F011BH	setting register 01 Note		setting register 01				
F011CH	Same as RL78/G1A (64-pin products)	SCR02	Serial communication operation	SCR02			
F011DH			setting register 02				
F011EH	Serial communication operation	SCR03	Serial communication operation	SCR03			
F011FH	setting register 03 Note		setting register 03				
F0120H	Same as RL78/G1A (64-pin products)	SEOL SEO	Serial channel enable status register 0	SEOL SEO			
F0121H							
F0122H	Same as RL78/G1A (64-pin products)	SSOL SSO	Serial channel start register 0	SSOL SSO			
F0123H				_			
F0124H	Same as RL78/G1A (64-pin products)	STOL STO	Serial channel stop register 0	STOL STO			
F0125H		-		-			
F0126H	Same as RL78/G1A (64-pin products)	SPS0L SPS0	Serial clock select register 0	SPS0L SPS0			
F0127H				-			
F0128H	Same as RL78/G1A (64-pin products)	SO0	Serial output register 0	SO0			
F0129H			Carial autaut anable register 0				
F012AH	Same as RL78/G1A (64-pin products)	SOE0L SOE0	Serial output enable register 0	SOE0L SOE0			
F012BH		SOLOL SOLO	Sorial output loval register 0	SOLOL SOLO			
F0134H	Same as RL78/G1A (64-pin products)	SOLOL SOLO	Serial output level register 0	30101 3010			
F0135H		SSCOL SSCO	Serial standby control register 0	SSCOL SSCO			
F0138H	Same as RL78/G1A (64-pin products)	SSCOL SSCO	Senar standby control register o	<u>–</u>			
F0140H	Same as RL78/G1A (64-pin products)	SSR10L SSR10) Serial status register 10	SSR10L SSR10			
F0141H							
F0142H	Same as RL78/G1A (64-pin products)	SSR11L SSR17	I Serial status register 11	SSR11L SSR11			
F0143H				-			

Table 3-4. List of Differences in Ex	cpanded Special Function	Registers (2nd SFRs) (3/6)
--------------------------------------	--------------------------	----------------------------

Note The bit setting is different from that of RL78/G1A (64-pin products).

3. 6. 2 Configuration of timer array unit

Timer array unit includes the following hardware.

Table 3-8. Configuration of Timer Array Unit

Item	Configuration
Timer/counter	Timer count register mn (TCRmn)
Register	Timer data register mn (TDRmn)
Timer input	TI00, TI04, TI07, RxD2 pin (for LIN-bus)
Timer output	TO00, TO04, TO07, output controller
Control registers	<registers block="" of="" setting="" unit=""></registers>
	Peripheral enable register 0 (PER0)
	Timer clock select register m (TPSm)
	Timer channel enable status register m (TEm)
	Timer channel start register m (TSm)
	Timer channel stop register m (TTm)
	Timer input select register 0 (TIS0)
	Timer output enable register m (TOEm)
	• Timer output register m (TOm)
	Timer output level register m (TOLm)
	Timer output mode register m (TOMm)
	<registers channel="" each="" of=""></registers>
	Timer mode register mn (TMRmn)
	Timer status register mn (TSRmn)
	Input switch control register (ISC)
	Noise filter enable register 1 (NFEN1)
	Port mode control register (PMCxx)
	Port mode register (PMxx)
	Port register (Pxx)

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

<R> Notes 1. The SCR00, SCR02, and SCR10 registers only. Others are fixed to 0.

- 2. The SCR00 and SCR01 registers only. Others are fixed to 1.
- 3. When using CSImn not with EOCmn = 0, error interrupt INTSRE0 may be generated.

Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

- **Remark** m: Unit number (m = 0, 1)
 - n: Channel number (n = 0 to 3)
 - p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21)

3. 17. 3. 5 Peripheral I/O redirection register (PIOR)

Address:	F0077H A	fter reset: 00H R	W					
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	0	0	PIOR1	PIOR0

Function		64-pin p	products		80-pin products				
		Setting value of	PIOR1, PIOR)	Setting value of PIOR1, PIOR0				
	0, 0	0, 1	1, 0	1, 1	0, 0	0, 1	1, 0	1, 1	
KR0	P70	Setting	P00	P10	P70	Setting	P00	P10	
KR1	P71	prohibited	P01	P11	P71	prohibited	P01	P11	
KR2	P72		P02	P12	P72		P02	P12	
KR3	P73		P03	P13	P73		P03	P13	
KR4	-		-	P14	-		P04	P14	
KR5	_		P22	-	_		P22	P15	
KR6	-		P23	-	-		P23	-	
KR7	_		_	_	_		P24	_	

3. 17. 4 Key interrupt operation

See 17. 4 Key Interrupt Operation in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 21 Voltage Detector

<R> 3. 21. 1 Functions of voltage detector

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H).

The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (VDD) with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or interrupt request signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 3 levels (For details, see **3. 24 Option Byte**).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5.
 2. 3 AC characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detector or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

(a) Interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0)

The two detection voltages (VLVDH, VLVDL) are selected by the option byte 000C1H. The high-voltage detection level (VLVDH) is used for releasing resets and generating interrupts. The low-voltage detection level (VLVDL) is used for generating resets.

(b) Reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1)

The detection voltage (VLVD) selected by the option byte 000C1H is used for generating/releasing resets.

(c) Interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1)

The detection voltage (VLVD) selected by the option byte 000C1H is used for releasing resets/generating interrupts.

3. 26. 2 On-chip debug security ID

See 26. 2 On-Chip Debug Security ID in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 26. 3 Securing of user resources

See 26. 3 Securing of User Resources in RL78/G1A Hardware User's Manual (R01UH0305E).

4.1.3 Registers controlling the configurable amplifiers

The configurable amplifiers are controlled by the following 9 registers:

- Configuration register 1 (CONFIG1)
- Configuration register 2 (CONFIG2)
- MPX setting register 1 (MPX1)
- MPX setting register 2 (MPX2)
- Gain control register 1 (GC1)
- Gain control register 2 (GC2)
- Gain control register 3 (GC3)
- AMP operation mode control register (AOMC)
- Power control register 1 (PC1)

(2) Power control register 2 (PC2)

This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise.

When using the high-pass filter, be sure to set bit 2 to 1.

Reset signal input clears this register to 00H.

• 80-pin products

Address: 12H After reset: 00H R/W

HPFOF	Operation of high-pass filter
0	Stop operation of the high-pass filter.
1	Enable operation of the high-pass filter.

Remark Bits 7 to 5 can be set to 1, but this has no effect on the function.

4. 6. 4 Procedure for operating the temperature sensor

Follow the procedures below to start and stop the temperature sensor.

Example of procedure for starting the temperature sensor

Example of procedure for stopping the temperature sensor

<R> Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

<R> (4) Communication between devices at same potential (CSI mode)

(slave mode, SCKp ... External clock input) (1/2)

Parameter	Symbol	Conditions		HS⁵	HS Note 1		lote 2	LV Note 3		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp	t _{KCY2}	$4.0V \leq V_{DD} \leq$	20MHz < f _{мск}	8/f _{MCK}		_		—		ns
cycle time Note 4		5.5V	f _{мск} ≤ 20MHz	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
		$2.7V \le V_{DD} \le$	16MHz < f _{MCK}	8/f _{MCK}		_		_		ns
		5.5V	$f_{MCK} \leq 16 MHz$	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
		$2.4~V \le V_{DD} \le 5.8$	5 V	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
				and		and		and		
				500ns		500ns		500ns		
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.9$	5 V	6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns
				and		and		and		
			750ns		750ns		750ns			
	$1.7~V \le V_{DD} \le 5.5~V$		6/f _{MCK}		6/f _{MCK}		6/f _{MCK}		ns	
				and		and		and		
				1500ns		1500ns		1500ns		
		$1.6~V \le V_{DD} \le 5.8$	5 V	-		6/f _{MCK}		6/f _{MCK}		ns
						and		and		
						1500ns		1500ns		
SCKp	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.8$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
high-level	t _{KL2}			-7		-7		-7		
width		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.9$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
low-level width				-8		-8		-8		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	5 V	t _{KCY2} /2		t _{KCY2} /2		t _{KCY2} /2		ns
				-18		-18		-18		
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			t _{KCY2} /2		t _{KCY2} /2		ns
				t _{KCY2} /2 -66		-66		-66		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.9$	5 V	_		t _{KCY2} /2		t _{KCY2} /2		ns
						-66		-66		

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1)

2. fmck: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

<R> (8) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output) (1/2)

Parameter	Symbol	Conditions	HS Note 1		LS Note 2		LV Note 3		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	300		1150		1150		ns
		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$							
		$Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega$							
		tĸcy1 ≥ 4/fclĸ							_
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	500		1150		1150		
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$							
		$Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		tĸcyı ≥ 4/fclĸ							_
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	1150		1150		1150		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}							
		$Cb = 30 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
		t _{KCY1} ≥ 4/fcLK							
SCKp	t ĸн1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		ns
high level width		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$	-75		-75		-75		
		$Cb = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							_
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$	-170		-170		-170		
		$Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}	-458		-458		-458		
		$Cb = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega$							
SCKp	t ĸ∟1	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		ns
low level width		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$	-12		-50		-50		
		$Cb = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$							
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		$2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$	-18		-50		-50		
		$Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		
		1.6 V \leq Vb \leq 2.0 V, ^{Note 4}	-50		-50		-50		
		Cb = 30 pF, Rb = 5.5 k Ω							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes, Caution and Remarks are listed on the next page.)

