

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10fmdafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item		64-pin products	80-pin products			
		R5F10FLx R5F10FMx				
Serial interface		 64-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel UART: 1 channel CSI: 1 channel / UART (LIN-bus supported): 1 channel 80-pin products CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 1 channel / simplified I²C: 1 channel / UART: 1 channel CSI: 2 channels / simplified I²C: 1 channel / UART (LIN-bus supported): 1 channel 				
	I ² C bus	-				
Multiplier and divider / multip accumulator	ly	Multiplier: 16 bits × 16 bits (Unsigned or signed) Divider: 32 bits ÷ 32 bits (Unsigned) Multiply accumulator: 16 bits × 16 bits + 32 bits (Unsigned or signed)				
DMA controller		2 channels				
Vectored interrupt sources	Internal	25				
	External	2	5			
Key interrupt		4 ch (7) ^{Note 1}	4 ch (8) ^{Note 1}			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error Internal reset by illegal-memory access 				
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.03 V				
Voltage detector		Detection lev	vel: 3 stages			
On-chip debug function		Prov	ided			
		FIUV				

<R>

Notes 1. The number in parentheses is the channels of key interrupt when using the peripheral I/O redirection register (PIOR).

2. The illegal instruction is generated when instruction code FFH is executed. Rest by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Address	RL78/G1E (80-pin products))	RL78/G1A (64-pin products)			
	SFRs Name	Symbol	SFRs Name	Symbol		
FFF90H	Same as RL78/G1A (64-pin products)	ITMC	Interval timer control register	ITMC		
FFF91H						
FFF92H			Second count register	SEC		
FFF93H			Minute count register	MIN		
FFF94H			Hour count register	HOUR		
FFF95H			Week count register	WEEK		
FFF96H			Day count register	DAY		
FFF97H			Month count register	MONTH		
FFF98H			Year count register	YEAR		
FFF99H			Watch error correction register	SUBCUD		
FFF9AH			Alarm minute register	ALARMWM		
FFF9BH			Alarm hour register	ALARMWH		
FFF9CH			Alarm week register	ALARMWW		
FFF9DH			Real-time clock control register 0	RTCC0		
FFF9EH			Real-time clock control register 1	RTCC1		
FFFA0H	Clock operation mode control register Note	CMC	Clock operation mode control register	CMC		
FFFA1H	Clock operation status control register Note	CSC	Clock operation status control register	CSC		
FFFA2H	Same as RL78/G1A (64-pin products)	OSTC	Oscillation stabilization time	OSTC		
			counter status register			
FFFA3H	Same as RL78/G1A (64-pin products)	OSTS	Oscillation stabilization time	OSTS		
			select register			
FFFA4H	System clock control register Note	СКС	System clock control register	СКС		
FFFA5H	Clock output select register 0 Note	CKS0	Clock output select register 0	CKS0		
FFFA6H			Clock output select register 1	CKS1		
FFFA8H	Same as RL78/G1A (64-pin products)	RESF	Reset control flag register	RESF		
FFFA9H	Same as RL78/G1A (64-pin products)	LVIM	Voltage detection register	LVIM		
FFFAAH	Same as RL78/G1A (64-pin products)	LVIS	Voltage detection level register	LVIS		
FFFABH	Same as RL78/G1A (64-pin products)	WDTE	Watchdog timer enable register	WDTE		
FFFACH	Same as RL78/G1A (64-pin products)	CRCIN	CRC input register	CRCIN		

Table 3-2. List of Differences in Special Function Registers (SFRs) (3/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Caution Do not write data to the registers which is in the row with painted gray.

Address	RL78/G1E (80-pin produc	cts)		RL78/G1A (64-pin products)				
	2nd SFRs Name	Syı	mbol	2nd SFRs Name	Syn	nbol		
F0148H	Same as RL78/G1A (64-pin products)	SIR10L	SIR10	Serial flag clear trigger register 10	SIR10L	SIR10		
F0149H		_			_			
F014AH	Same as RL78/G1A (64-pin products)	SIR11L	SIR11	Serial flag clear trigger register 11	SIR11L	SIR11		
F014BH		—			-			
F0150H	Same as RL78/G1A (64-pin products)	SMR10		Serial mode register 10	SMR10			
F0151H								
F0152H	Serial mode register 11 Note	SMR11		Serial mode register 11	SMR11			
F0153H								
F0158H	Same as RL78/G1A (64-pin products)	SCR10		Serial communication operation setting	SCR10			
F0159H				register 10				
F015AH	Serial communication operation setting	SCR11		Serial communication operation setting	SCR11			
F015BH	register 11 ^{Note}			register 11				
F0160H	Same as RL78/G1A (64-pin products)	SE1L	SE1	Serial channel enable status register 1	SE1L	SE1		
F0161H		_			_			
F0162H	Same as RL78/G1A (64-pin products)	SS1L	SS1	Serial channel start register 1	SS1L	SS1		
F0163H		_			_			
F0164H	Same as RL78/G1A (64-pin products)	ST1L	ST1	Serial channel stop register 1	ST1L	ST1		
F0165H		_			_			
F0166H	Same as RL78/G1A (64-pin products)	SPS1L	SPS1	Serial clock select register 1	SPS1L	SPS1		
F0167H		—			_			
F0168H	Same as RL78/G1A (64-pin products)	SO1		Serial output register 1	SO1			
F0169H								
F016AH	Same as RL78/G1A (64-pin products)	SOE1L	SOE1	Serial output enable register 1	SOE1L	SOE1		
F016BH		—			—			
F0174H	Same as RL78/G1A (64-pin products)	SOL1L	SOL1	Serial output level register 1	SOL1L	SOL1		
F0175H					-			

Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (4/6)

Note The bit setting is different from that of RL78/G1A (64-pin products).

3. 3. 3 Instruction address addressing

See 3.3 Instruction Address Addressing in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 3. 4 Addressing for processing data addresses

See 3. 4 Addressing for Processing Data Addresses in RL78/G1A Hardware User's Manual (R01UH0305E).

3.4 Port Functions

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 4 PORT FUNCTIONS in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 1 Port functions

The RL78/G1E microcontrollers (64-pin products, 80-pin products) are provided with digital I/O ports, which enable variety of control operations. In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.

3. 4. 2 Port configuration

Ports include the following hardware.

Item	Configuration				
Control registers	Port mode registers (PM0 to PM2, PM4 to PM7, PM14, PM15)				
	Port registers (P0 to P2, P4, P5, P7, P12 to P14)				
	Pull-up resistor option registers (PU0, PU1, PU4, PU5, PU7, PU14)				
	Port input mode registers (PIM0, PIM1)				
	Port output mode registers (POM0, POM1, POM5)				
	Port mode control registers (PMC0, PMC1, PMC3, PMC5, PMC7)				
	A/D port configuration register (ADPC)				
	Peripheral I/O redirection register (PIOR)				
	Global analog input disable register (GAIDIS)				
Port	· 64-pin products				
	Total: 24 (CMOS I/O: 20, CMOS input: 3, CMOS output: 1)				
	· 80-pin products				
	Total: 30 (CMOS I/O: 26, CMOS input: 3, CMOS output: 1)				
Pull-up resistor	· 64-pin products Total: 16				
	· 80-pin products Total: 21				

Table 3-5. Port Configuration

For details of each port, also see 4.2 Port Configuration in RL78/G1A Hardware User's Manual (R01UH0305E).

(2) 80-pin products

Address: F0076H After reset: 00H R/W										
Symbol	7		6		5	4	3	2	1	0
ADPC	0		0		0	0	0	ADPC2	ADPC1	ADPC0
							Analog inpu	t (A)/digital I/O (D) switching	
	ADPC2		ADPC1		ADPC0	ANI4/P24	ANI3/P23	ANI2/P22	ANI1/P21	ANI0/P20
	0		0		0	А	А	А	А	А
	0		0		1	D	D	D	D	D
	0		1		0	D	D	D	D	А
	0		1		1	D	D	D	A	A

D

D

Setting prohibited

Cautions 1. Be sure to clear bits 3 to 7 to "0".

0

0

Other than above

1

1

0

1

2. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).

D

А

A

A

А

А

- 3. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
- 4. When using AVREFP and AVREFM, specify ANIO and ANI1 as the analog input channels and specify input mode by using the port mode register.

		control	Standby controller STOP mode Standby controller STOP mode HALT mode Normation Normation Standby Mark And Detribution Selection Selection Selection Selection Far Auto Selection Selection Performate Serial array unit 1 Salut	
igure 3-1. Block Diagram of Clock Generator	Internal bus	Oscillation stabilization System clock (STS) Itime select register (OSTS) register (CKC)	 	
rR>		Clock operation mode control register (CMC) (CMC)	X(P121) (In Mtz (TTP)) (In Mtz (TTP)	

RENESAS

R01UH0353EJ0200 Rev.2.00 Mar 31, 2014

109

(Remark is listed on the next page)

Remark fx: X1 clock oscillation frequency

- fін: High-speed on-chip oscillator clock frequency
- fex: External main system clock frequency
- fmx: High-speed system clock frequency
- fMAIN: Main system clock frequency
- fclk: CPU/peripheral hardware clock frequency
- fi⊥: Low-speed on-chip oscillator clock frequency

3. 6. 2. 1 Timer count register mn (TCRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6. 2. 1** Timer count register mn (TCRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 6. 2. 2 Timer data register mn (TDRmn)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **6. 2. 2** Timer data register mn (TDRmn) in RL78/G1A Hardware User's Manual (R01UH0305E).

• Format of Timer Mode Register mn (TMRmn) (2/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
	-															
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
.							_	_	_		_		•			
Symbol	15	14	13	12	11	10	9	8	1	6	5	4	3	2	1	0
Symbol TMRmn	15 CKS	14 CKS	13 0	12 CCS	11 0 ^{Note}	10 STS	9 STS	8 STS	CIS	6 CIS	5 0	4	3 MD	2 MD	1 MD	0 MD

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

Bit 11 of TMRmn (n = 2, 4, 6)

MASTER	Selection between using channel n independently or				
mn	simultaneously with another channel (as a slave or master)				
0	Operates in independent channel operation function or as slave channel in simultaneous channel operation function.				
1	Operates as master channel in simultaneous channel operation function.				
Only the chan	Only the channel 2, 4, 6 can be set as a master channel (MASTERmn = 1).				
Be sure to use channel 0, 5, 7 are fixed to 0 (Regardless of the bit setting, channel 0 operates as master, because it is the					
highest channel).					
Clear the MAS	Clear the MASTERmn bit to 0 for a channel that is used with the independent channel operation function.				

Bit 11 of TMRmn (n = 1, 3)

SPLITmn	Selection of 8 or 16-bit timer operation for channels 1 and 3
0	Operates as 16-bit timer.
	(Operates in independent channel operation function or as slave channel in simultaneous channel operation
	function.)
1	Operates as 8-bit timer.

STS	STS	STS	Setting of start trigger or capture trigger of channel n
mn2	mn1	mn0	
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TImn pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TImn pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel
			with the simultaneous channel operation function).
Oth	er than ab	ove	Setting prohibited

<R> Note Bit 11 is fixed at 0 of read only, write is ignored.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

Inte	Def		Interrupt Source	Inte	Vec	Bas	RL78/G	i1E
rrupt Type	ault Priority ^{Note} 1	Name	Trigger	rnal/External	tor Table Address	ic Configuration Type ^{Note 2}	64-pin	80-pin
Mas	29	INTTM05	End of timer channel 5 count or capture	Internal	0044H	(A)	\checkmark	
skabl	30	INTTM06	End of timer channel 6 count or capture		0046H		\checkmark	\checkmark
e	31	INTTM07	End of timer channel 7 count or capture		0048H		\checkmark	\checkmark
	32	INTP6	Pin input edge detection	External	004AH	(B)	_	\checkmark
	33	INTP7			004CH		_	_
	34	INTP8			004EH		_	-
	35	INTP9			0050H			-
	36	INTP10			0052H		_	_
	37	INTP11			0054H		_	_
	38	INTMD	End of division operation/Overflow of multiplyaccumulation result occurs	Internal	005EH	(A)	\checkmark	\checkmark
	39	INTFL	Reserved Note 3		0062H		\checkmark	\checkmark
Software	_	BRK	Execution of BRK instruction	-	007EH	(D)	\checkmark	\checkmark
Res	-	RESET	RESET pin input	-	0000H	-	\checkmark	\checkmark
et		POR	Power-on-reset				\checkmark	\checkmark
		LVD	Voltage detection ^{Note 4}				\checkmark	\checkmark
		WDT	Overflow of watchdog timer				\checkmark	\checkmark
		TRAP	Execution of illegal instruction ^{Note 5}				\checkmark	\checkmark
		IAW	Illegal-memory access				\checkmark	\checkmark
		RAMTOP	RAM parity error				\checkmark	\checkmark

Table 3-13. Interrupt Source List (3/3)

<R>

<R>

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 39 indicates the lowest priority.

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13.

3. Be used at the flash self programming library or the data flash library.

4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is set to 1.

5. When the instruction code in FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

3. 26 On-chip Debug Function

3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E

The RL78/G1A uses the VDD, RESET, TOOL0, and Vss pins to communicate with the host machine via an E1 on-chip debugging emulator. Serial communication is performed by using a single-line UART that uses the TOOL0 pin.

Caution The RL78/G1E has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

- Notes 1. Connecting the dotted line is not necessary during serial flash programming..
 - 2. If the reset circuit on the target system does not have a buffer and generates a reset signal only with resistors and capacitors, this pull-up resistor is not necessary.
 - **3.** AVDD \leq 3.6 V.
- Cautions 1. This circuit diagram is assumed that the reset signal outputs from an N-ch open drain buffer (output resistor: 100Ω or less).
 - 2. For the details of ARESET pin, see 2. 5. 31 ARESET.

(9) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers and the D/A converters.

Use this register to stop unused functions to reduce power consumption and noise.

When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 0 to 2) to 1.

Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

	7	6	5	4	3	2	1	0
PC1	DAC4OF	DAC3OF	DAC2OF	DAC1OF	0	AMP3OF	AMP2OF	AMP1OF

AMP3OF	Operation of configurable amplifier Ch3
0	Stop operation of configurable amplifier Ch3.
1	Enable operation of configurable amplifier Ch3.

AMP2OF	Operation of configurable amplifier Ch2
0	Stop operation of configurable amplifier Ch2.
1	Enable operation of configurable amplifier Ch2.

AMP1OF	Operation of configurable amplifier Ch1
0	Stop operation of configurable amplifier Ch1.
1	Enable operation of configurable amplifier Ch1.

Caution Be sure to clear bit 3 to "0".

4.5.3 Registers controlling the high-pass filter

<R> The high-pass filter is controlled by the following 2 registers:

- MPX setting register 3 (MPX3)
- Power control register 2 (PC2)

(1) MPX setting register 3 (MPX3)

This register is used to control MPX7, MPX9, MPX10, and MPX11.

- <R> When selecting the signal to be input to the filter circuits, use bits 5 and 4. When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3.
 - 80-pin products

Address: 05H After reset: 00H R/W

	7	6	5	4	3	2	1	0
MPX3	0	0	SCF2	SCF1	SCF0	MPX72	MPX71	MPX70

<R>

	SCF2	SCF1	Source of input to filter circuits					
	0	0	SC_IN pin					
Ī	0	1	MPX7 output signal					
Ī	1	0	Gain adjustment amplifier output signal					
	1	1	Setting prohibited					

SCF0	Specification of the order of filter signal processing
0	The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter.
1	The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter.

Remark Bits 7 and 6 are fixed at 0 of read only.

4.9.2 SPI communication

The SPI transmits and receives data in 16-bit units. Data can be transmitted and received when CS is low. Data is transmitted one bit at a time in synchronization with the falling edge of the serial clock, and is received one bit at a time in synchronization with the rising edge of the serial clock. When the R/W bit is 1, data is written to the SPI control register in accordance with the address/data setting after the 16th rising edge of SCLK has been detected following the fall of \overline{CS} , and the operation specified by the data is executed. When the R/W bit is 0, the data is output from the register in accordance with the address/data setting in synchronization with the 9th and later falling edges of \overline{SCLK} following the fall of \overline{CS} .

Figure 4-5. SPI Communication Timing

Pin Name	External Reset from ARESET Pin	Internal Reset by Reset Control Register (RC)
SC_IN	Hi-Z	Hi-Z
CLK_SYNCH	Pull-down input	Pull-down input
SYNCH_OUT	Hi-Z	Hi-Z
GAINAMP_OUT	Hi-Z	Hi-Z
GAINAMP_IN	Hi-Z	Hi-Z
MPXIN61	Hi-Z	Hi-Z
MPXIN51	Hi-Z	Hi-Z
MPXIN60	Hi-Z	Hi-Z
MPXIN50	Hi-Z	Hi-Z
AMP3_OUT	Hi-Z	Hi-Z
DAC3_OUT/VREFIN3	Pull-down input	Pull-down input
AMP2_OUT	Hi-Z	Hi-Z
AMP1_OUT	Hi-Z	Hi-Z
DAC2_OUT/VREFIN2	Pull-down input	Pull-down input
DAC1_OUT/VREFIN1	Pull-down input	Pull-down input
MPXIN41	Hi-Z	Hi-Z
MPXIN31	Hi-Z	Hi-Z
MPXIN40	Hi-Z	Hi-Z
MPXIN30	Hi-Z	Hi-Z
MPXIN21	Hi-Z	Hi-Z
MPXIN11	Hi-Z	Hi-Z
MPXIN20	Hi-Z	Hi-Z
MPXIN10	Hi-Z	Hi-Z
BGR_OUT	Pull down	Pull down
LDO_OUT	Pull down	Pull down
TEMP_OUT	Pull down	Pull down
SCLK	Hi-Z	Pull-up input
SDO	Hi-Z (open drain)	Hi-Z (open drain)
SDI	Hi-Z	Pull-up input
CS	Hi-Z	Pull-up input
DAC4_OUT/VREFIN4	Pull-down input	Pull-down input
HPF_OUT	Hi-Z	Hi-Z
CLK_HPF	Pull-down input	Pull-down input
CLK_LPF	Pull-down input	Pull-down input
LPF OUT		Hi-Z

Table 4-14. Pin Statuses after Analog Reset

<R>

<R> (3) Communication between devices at same potenntial (CSI mode) (master mode, SCKp ... internal clock output)

Parameter	Symbol	Conditions	HS'	Note 1	LS Note 2		LV Note 3		Uni
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	t
SCKp cycle time	t _{KCY1}	$2.7~V \leq V_{DD} \leq 5.5~V$	125		500		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$1.8~V \leq V_{DD} \leq 5.5~V$	500		500		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$1.7~V \leq V_{DD} \leq 5.5~V$	1000		1000		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
		$1.6~V \leq V_{DD} \leq 5.5~V$	-		1000		1000		ns
		$t_{KCY1} \ge 4/f_{CLK}$							
SCKp	t _{KH1} ,	$4.0~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
high-level width	t _{KL1}		-12		-50		-50		
low-level width		$2.7~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-18		-50		-50		
		$2.4~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-38		-50		-50		
		$1.8~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-50		-50		-50		
		$1.7~V \leq V_{DD} \leq 5.5~V$	t _{KCY1} /2		t _{KCY1} /2		t _{KCY1} /2		ns
			-100		-100		-100		
		$1.6~V \leq V_{DD} \leq 5.5~V$	—		t _{KCY1} /2		t _{KCY1} /2		ns
					-100		-100		
Slp setup time	t _{SIK1}	$4.0~V \leq V_{DD} \leq 5.5~V$	44		110		110		ns
(to SCKp↑) ^{Note 4}		$2.7~V \leq V_{DD} \leq 5.5~V$	44		110		110		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$	75		110		110		ns
		$1.8~V \le V_{DD} \le 5.5~V$	110		110		110		ns
		$1.7~V \leq V_{DD} \leq 5.5~V$	220		220		220		ns
		$1.6~V \le V_{DD} \le 5.5~V$	_		220		220		ns
Slp hold time	t _{KSI1}	$1.7~V \leq V_{DD} \leq 5.5~V$	19		19		19		ns
(from SCKp↑) ^{Note 4}		$1.6~V \leq V_{DD} \leq 5.5~V$	-		19		19		
Slp hold time	t _{KSO1}	$1.7~V \leq V_{DD} \leq 5.5~V$		25		25		25	ns
(from SCKp↑) ^{Note 5}		C = 30 pF ^{Note 6}							
		$1.6~V \leq V_{DD} \leq 5.5~V$		—		25		25	1
		C = 30 pF ^{Note 6}							

```
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)
```

(Notes Caution and Remark are listed on the next page.)

<R>

<R> (6) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (UART mode) (output from dedicated baud rate generator) (2/2)

Paramete	Symbo	Conditions			HS Note 1		LS Note 2		LV Note 3		Unit
r	I					MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer		Transmissio	4.0	$VV \le V_{DD} \le 5.5V$,		Note		Note		Note	bps
rate		n	2.7	$V \le Vb \le 4.0V$ Theoretical value of the maximum transfer rate: Cb = 50 pF, Rb = 1.4 kΩ, Vb = 2.7 V		4 2.8 Note 5		4 2.8 Note 5		4 2.8 Note 5	Mbps
			$2.7V \le V_{DD} < 4.0V,$ $2.3V \le Vb \le 2.7V$			Note 7		Note 7		Note 7	bps
				Theoretical value of the maximum transfer rate: Cb = 50 pF, $Rb = 2.7 \text{ k}\Omega,$ Vb = 2.3 V		1.2 Note 8		1.2 Note 8		1.2 Note 8	Mbps
			1.8 1.6	$BV \le V_{DD}$ < 3.3V, $BV \le Vb \le 2.0V^{Note 5}$		Note 9		Note 9		Note 9	bps
				Theoretical value of the maximum transfer rate: Cb = 50 pF, Rb = 5.5 k Ω , Vb = 1.6 V		0.43 Note 10		0.43 Note 10		0.43 Note 10	Mbps

(TA = -40 to +85°C, 1.8 V \leq Vdd \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. The smaller value derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times \ln (1 - \frac{2.2}{Vb})\} \times 3}$$
Baud rate error
(theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-Cb \times Rb \times \ln (1 - \frac{2.2}{Vb})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

(Other Notes and Caution are listed on the next page.)

5. 3. 3. 2 Gain adjustment amplifier characteristics

(1) 64-pin products

 $(-40^{\circ}C \leq T_{\text{A}} \leq 85^{\circ}C, \text{ AV}_{\text{DD1}} = \text{AV}_{\text{DD2}} = \text{AV}_{\text{DD3}} = \text{DV}_{\text{DD}} = 5.0 \text{ V}, \text{ VREFIN4} = 1.7 \text{ V}, \text{ GAINOF} = 1, \text{ DAC4OF} = 0)$

Parameter	Symbol	Conditions		Unit		
			MIN	TYP	MAX	
Current	IccA		-	530	1,300	μA
consumption						
Input voltage	VINL		AGND2 - 0.1	_	-	V
	VINH		_	_	AV _{DD1} - 0.05	V
Output voltage	VOUTL1	IOL = -100 μA	_	AGND2 + 0.02	AGND2 + 0.05	V
	VOUTH1	IOH = 100 μA	AVDD1 - 0.05	AV _{DD1} - 0.02	-	V
Gain bandwidth	GBW2	CL = 30 pF, GC4 = 11H (40 dB)	-	0.86	6 –	
Input conversion	VOFF	GC4 = 00H (6 dB), T _A = 25°C,	-30	_	30	mV
offset voltage		GAINAMP_IN = 2.5 V				
Input conversion	VOTC2	CLK_SYNCH = L, GAINAMP_OUT pin	-	±18	-	μN/°C
offset voltage						
temperature						
coefficient						
Slew rate	SR	CL = 30 pF	-	0.9	-	V/µs
Equivalent input	En_Gain	f = 1 kHz, GC4 = 11H (40 dB)	_	700	_	nV/√ Hz
noise						
Power supply rejection ratio	PSRR2	f = 1 kHz, GC4 = 00H (6 dB)	_	45	_	dB
Gain setting error	GAIN_Accu1	T _A = 25°C	-0.6	-	0.6	dB
	GAIN_Accu2	$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	-1.0	-	1.0	dB

<R>

5. 3. 3. 5 High-pass filter characteristics

Parameter	Symbol	Conditions	Ratings			Unit
			MIN.	TYP.	MAX.	
Current consumption	IccA		-	800	1800	μA
Input voltage	VILHPF		AGND4 +0.2	-	_	V
	VIHHPF		_	_	AV _{DD3} - 1.5	V
Output voltage	Volhpf	IOL = -200 μA	_	AGND4 +0.22	AGND4 +0.25	V
	VOHHPF	IOH = 200 μA	AVDD3 -1.55	AVDD3 -1.52	_	V
Cutoff frequency	fc1	fclk_hpf = 2 kHz	-	8	-	Hz
	fc2	fclk_hpf = 200 kHz	-	800	-	Hz
CLK_HPF	VILCLK_HPF				$0.3 imes AV_{DD3}$	V
low-level						
CLK_HPF high-level input voltage	VIHCLK_HPF		$0.7 \times AV_{DD3}$			V
CLK_HPF Input frequency	f _{clk_hpf}		2	_	200	kHz
CLK_HPF Input low-level-width Input high-level-width	t _{ILW_HPF} t _{IHW_HPF}		200	_	_	ns

Clock Timing

