

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10fmddfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

How to Use This Manual

Readers	This manual is intended for user engineers who wish to understand the functions of the RL78/G1E and design and develop application systems and programs for these devices. The target products are as follows.						
	 64-pin: R5F10FLx (x 80-pin: R5F10FMx (x) 						
Purpose	This manual is intended to Organization below.	give users an understanding of	the functions described in the				
Organization	The RL78/G1E manual is sep and the RL78 family softwar	parated into three parts: this ma e user's manual.	nual, RL78/G1A user's manual,				
	RL78/G1E User's Manual (This Manual)	RL78/G1A Hardware User's Manual	RL78 family Software User's Manual				
	Pin functionsInternal block functionsOn-chip peripheral	 Pin functions Internal block functions Interrupts	CPU functionsInstruction setExplanation of each				

functions

• Electrical specifications

- Other on-chip peripheral functions
 - Electrical specifications

instruction

O Analog Block			
AVDD1	Power supply for configurable	AMP1_OUT,	Configurable amplifier output
	amplifiers	AMP2_OUT,	
AVdd2	Power supply for variable output	AMP3_OUT	
	voltage regulator and reference	DAC1_OUT,	D/A converter output
	voltage generator	DAC2_OUT,	
AVdd3	Power supply for low-pass filter and	DAC3_OUT,	
	high-pass filter	DAC4_OUT	
AGND1	Ground for configurable amplifiers	VREFIN1,	
AGND2	Ground for gain adjustment amplifier	VREFIN2,	
AGND3	Ground for variable output voltage	VREFIN3	Reference voltage input for
	regulator and reference voltage		configurable amplifier
	generator	VREFIN4	Reference voltage input for
AGND4	Ground for low-pass filter and		Gain adjustment amplifier,
	high-pass filter		low-pass filter, and high-pass filter
MPXIN10,	Multiplexer input	SCLK	Serial clock input
MPXIN11,		SDO	Serial data output
MPXIN20,		SDI	Serial data input
MPXIN21,		CS	Chip select input
MPXIN30,		TEMP_OUT	Temperature sensor output
MPXIN31,		ARESET	Reset for analog block
MPXIN40,		DVdd	Power supply for SPI
MPXIN41,		DGND	Ground for SPI
MPXIN50,		HPF_OUT	High-pass filter output
MPXIN51,		CLK_HPF	Pin for inputting high-pass filter
MPXIN60,			control clock
MPXIN61		CLK_LPF	Pin for inputting low-pass filter
SC_IN	Input for filter signal processing		control clock
CLK_SYNCH	Synchronous detector control clock	LPF_OUT	Low-pass filter output
	input	BGR_OUT	Reference voltage generator output
SYNCH_OUT	Synchronous detector output	LDO_OUT	Variable output voltage regulator
GAINAMP_IN	Gain adjustment amplifier input	I.C	Internal connect
GAINAMP_OUT	Gain adjustment amplifier output		

3. 6. 3. 9 Timer output enable register m (TOEm)

Addres	s: F01B	AH, F01	BBH (TO	DEO) A	After rese	et: 0000H	H R/W									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEm	0	0	0	0	0	0	0	0	TOE	0	0	TOE	0	0	0	TOE
									m7			m4				m0

TOEmn	Timer output enable/disable of channel n
0	The TOmn operation stopped by count operation (timer channel output bit).
	Writing to the TOmn bit is enabled.
	The TOmn pin functions as data output, and it outputs the level set to the TOmn bit.
	The output level of the TOmn pin can be manipulated by software.
1	The TOmn operation enabled by count operation (timer channel output bit).
	Writing to the TOmn bit is disabled (writing is ignored).
	The TOmn pin functions as timer output, and the TOEmn bit is set or reset depending on the timer operation.
	The TOmn pin outputs the square-wave or PWM depending on the timer operation.

Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to "0".

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 6. 3. 10 Timer output register m (TOm)

Address: F01B8H, F01B9H (TO0) After reset: 0000H R/W

TOmn	Timer output of channel n
0	Timer output value is "0".
1	Timer output value is "1".

Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to "0".

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

Symbol	7	6		5	4	3	2	1	0
ADS	ADISS	0		0	ADS4	ADS3	ADS2	ADS1	ADS0
- <u>L</u>				-	-				
Select m	ode (80-pir	n products,	ADMD = (D)					
ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Selected c	hannel	Input so	ource
0	0	0	0	0	0	ANIO		P20/ANI0/AVREF	
0	0	0	0	0	1	ANI1		P21/ANI1/AVREF	
0	0	0	0	1	0	ANI2		P22/ANI2 pin	
0	0	0	0	1	1	ANI3		P23/ANI3 pin	
0	0	0	1	0	0	ANI4		P24/ANI4 pin	
0	0	0	1	0	1	Setting prohibited		-	
0	0	0	1	1	0	Setting prohibited			
0	0	0	1	1	1	Setting prohibited			
0	0	1	0	0	0	Setting prohibited			
0	0	1	0	0	1	Setting prohibited			
0	0	1	0	1	0	Setting prohibited			
0	0	1	0	1	1	Setting prohibited			
0	0	1	1	0	0	Setting prohibited			
0	0	1	1	0	1	Setting prohibited			
0	0	1	1	1	0	Setting prohibited			
0	0	1	1	1	1	Setting prohibited			
0	1	0	0	0	0	ANI16		P03/ANI16 pin	
0	1	0	0	0	1	ANI17		P02/ANI17 pin	
0	1	0	0	1	0	ANI18		P10/ANI18 pin	
0	1	0	0	1	1	Setting prohibited			
0	1	0	1	0	0	ANI20		P11/ANI20 pin	
0	1	0	1	0	1	ANI21		P12/ANI21 pin	
0	1	0	1	1	0	ANI22		P13/ANI22 pin	
0	1	0	1	1	1	ANI23		P14/ANI23 pin	
0	1	1	0	0	0	ANI24		P15/ANI24 pin	
0	1	1	0	0	1	ANI25		P51/ANI25 pin	
0	1	1	0	1	0	ANI26		P50/ANI26 pin	
0	1	1	0	1	1	Setting prohibited		r	
0	1	1	1	0	0	ANI28		P70/ANI28 pin	
0	1	1	1	0	1	Setting prohibited		r	
0	1	1	1	1	0	ANI30		P41/ANI30 pin	
0	1	1	1	1	1	Setting prohibited			
1	0	0	0	0	0	_		Temperature ser	nsor output ^{Note}
1	0	0	0	0	1	-		Internal reference output (1.45 V) ^{No}	•
		Other th:	an above	1	1	Setting prohibited			
						County promotion			

Address: FFF31H After reset: 00H R/W

Note This setting can be used only in HS (high-speed main) mode.

<R> 3. 12. 3 Registers controlling serial array unit

The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see **12.3** Registers Controlling Serial Array Unit in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 12. 3. 1 Peripheral enable register 0 (PER0)

Address: F00F0H After reset: 00H R/W

Symbol	<7>	6	<5>	4	<3>	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	SAU1EN	SAU0EN	0	TAU0EN

SAU1EN	Control of serial array unit 1 input clock supply
0	Stops input clock supply.
	• SFR used by the serial array unit 1 cannot be written.
	• The serial array unit 1 is in the reset status.
1	Enables input clock supply.
	• SFR used by the serial array unit 1 can be read/written.

<R>

SAU0EN	Control of serial array unit 0 input clock supply
0	Stops input clock supply.
	• SFR used by the serial array unit 0 cannot be written.
	• The serial array unit 0 is in the reset status.
1	Enables input clock supply.
	• SFR used by the serial array unit 0 can be read/written.

<R>

Caution Be sure to clear bits 1, 4, and 6 to "0".

3. 12. 3. 2 Serial clock select register m (SPSm)

The bit setting is same as that of RL78/G1A (64-pin products). For details, see **12. 3. 2** Serial clock select register m (SPSm) in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 13 Serial Interface IICA

Serial interface IICA is not provided in RL78/G1E (64-pin products, 80-pin products).

3.16 Interrupt Functions

The interrupt function switches the program execution to other processing. When the branch processing is finished, the program returns to the interrupted processing. The number of interrupt sources differs, depending on the product.

		64-pin products	80-pin products		
Maskable	External	2	5		
interrupts	Internal	25			

3. 16. 1 Interrupt function types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H).

Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the default priority of vectored interrupt servicing. Default priority, see **Table 3-13**.

A standby release signal is generated and STOP, HALT, and SNOOZE modes are released.

External interrupt requests and internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

3. 16. 2 Interrupt sources and configuration

Interrupt sources include maskable interrupts and software interrupts. In addition, they also have up to seven reset sources (see **Table 3-13**). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000H to 0FFFFH.

3.19 Reset Function

See CHAPTER 19 RESET FUNCTION in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> The reset and internal interrupt signals are generated in each mode as follows.

Interrupt & reset mode	Reset mode	Interrupt mode
(LVIMDS1, LVIMDS0 = 1, 0)	(LVIMDS1, LVIMDS0 = 1, 1)	(LVIMDS1, LVIMDS0 = 0, 1)
Generates an interrupt request signal by detecting $V_{DD} < V_{LVDH}$ when the operating voltage falls, and an internal reset by detecting $V_{DD} < V_{LVDL}$. Releases an internal reset by detecting $V_{DD} \ge V_{LVDH}$.	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$. Generates an interrupt request signal by detecting $V_{DD} < V_{LVD}$.	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$ at power on after the first release of the POR. Generates an interrupt request signal by detecting $V_{DD} < V_{LVD}$ or $V_{DD} \ge V_{LVD}$ at power on after the second release of the POR.

While the voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see **3**. **19 Reset Function**.

3. 21. 2 Configuration of voltage detector

The block diagram of the voltage detector is shown in Figure 3-15.

<R>

Figure 3-15. Block Diagram of Voltage Detector

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch2 (non-inverting amplifier)

Remark *: don't care

Example of procedure for stopping configurable amplifier Ch3 (differential amplifier)

4. 4. 4 Procedure for operating the low-pass filter

Follow the procedures below to start and stop the low-pass filter.

Example of procedure for starting the low-pass filter

Example of procedure for stopping the low-pass filter

4.6 Temperature Sensor

The RL78/G1E (64-pin products, 80-pin products) has one on-chip temperature sensor channel.

4. 6. 1 Overview of temperature sensor features

The features of temperature sensor are described below.

- Output voltage temperature coefficient: -5 mV/°C (Typ.)
- Includes a power-off function.

4.6.2 Block diagram

4.7.3 Registers controlling the variable output voltage regulator

The variable output voltage regulator is controlled by the following 2 registers:

- LDO control register (LDOC)
- Power control register 2 (PC2)

(1) LDO control register (LDOC)

This register is used to specify the output voltage of the variable output voltage regulator. Reset signal input sets this register to 0DH.

Address: 0BH After reset: 0DH R/W

_	7	6	5	4	3	2	1	0
LDOC	0	0	0	0	LDO3	LDO2	LDO1	LDO0

LDO3	LDO2	LDO1	LDO0	Output Voltage of Variable Output Voltage Regulator (Typ.)
0	0	0	0	2.0 V
0	0	0	1	2.1 V
0	0	1	0	2.2 V
0	0	1	1	2.3 V
0	1	0	0	2.4 V
0	1	0	1	2.5 V
0	1	1	0	2.6 V
0	1	1	1	2.7 V
1	0	0	0	2.8 V
1	0	0	1	2.9 V
1	0	1	0	3.0 V
1	0	1	1	3.1 V
1	1	0	0	3.2 V
1	1	0	1	3.3 V ^{Note}
	Other the	an above		Setting prohibited

Note Output voltage of 3.3 V is available when the power supply voltage is more than 4 V.

<R> Remark Bits 7 to 4 are fixed at 0 of read only.

4.9 SPI

4.9.1 Overview of SPI features

The SPI interface is used to allow control from external devices by using clocked communication via four lines: a serial clock line (\overline{SCLK}), two serial data lines (SDI and SDO), and a chip select input line (\overline{CS}).

Data transmission/reception:

- 16-bit data unit
- MSB first

Figure 4-4. SPI Configuration Example

Caution After turning on DV_{DD}, be sure to generate external reset by inputting a reset signal to ARESET pin before starting SPI communication. For details, see 4.10 Analog Reset.

Function Block	External Reset from ARESET Pin	Internal Reset by Reset Control Register (RC)				
Configurable amplifier	Operation stops.					
Gain adjustment amplifier	Operation stops.					
D/A converter	Operation stops.					
Low-pass filter	Operation stops.					
High-pass filter ^{Note}	Operation stops.					
Temperature sensor	Operation stops.					
Variable output voltage regulator	Operation stops.					
Reference voltage generator	Operation stops.					
SPI	Operation stops.	Operation enabled.				

Note 80-pin products only.

Table 4-13. Statuses of SPI Control Registers after Analog Reset Is Acknowledged

Address	SPI Control Register	Status After a Reset Is Acknowledged				
		External Reset	Internal Reset			
00H	Configuration register 1 (CONFIG1)	00H	00H			
01H	Configuration register 2 (CONFIG2)	00H	00H			
03H	MPX setting register 1 (MPX1)	00H	00H			
04H	MPX setting register 2 (MPX2)	00H	00H			
05H	MPX setting register 3 (MPX3)	00H	00H			
06H	Gain control register 1 (GC1)	00H	00H			
07H	Gain control register 2 (GC2)	00H	00H			
08H	Gain control register 3 (GC3)	00H	00H			
09H	AMP operation mode control register (AOMC)	00H	00H			
0AH	Gain control register 4 (GC4)	00H	00H			
0BH	LDO control register (LDOC)	0DH	ODH			
0CH	DAC reference voltage control register (DACRC)	00H	00H			
0DH	DAC control register 1 (DAC1C)	80H	80H			
0EH	DAC control register 2 (DAC2C)	80H	80H			
0FH	DAC control register 3 (DAC3C)	80H	80H			
10H	DAC control register 4 (DAC4C)	80H	80H			
11H	Power control register 1 (PC1)	00H	00H			
12H	Power control register 2 (PC2)	00H	00H			
13H	Reset control register (RC)	00H	01H ^{Note}			

<R>

Note The reset control register is not initialized by generating internal reset of the reset control register, but it can be done to 00H by generating external reset from ARESET pin or writing 0 to the RESET bit of the reset control register (RC)..

<R> 5.1.3 Absolute maximum ratings (common to microcontroller block and analog block)

Absolute maximum ratings

Parameter	Symbol	Conditions	Ratings	Unit
Operating ambient		In normal operation mode	-40 to +85	°C
temperature	TA	In flash memory programming mode	-40 to +85	°C
Storage temperature	T _{stg}		-40 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Key Interrupt Input Timing

RESET Input Timing

<R> (4) Communication between devices at same potential (CSI mode)

(slave mode, SCKp ... External clock input) (2/2)

Parameter	Symbo	Conditions		HS Note 1		LS Note 2		LV Note 3		Unit
	I			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp↑) ^{Note 4}	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/f _{мск} +20		1/f _{мск} +30		1/f _{мск} +30		ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	1/f _{мск} +30		1/f _{MCK} +30		1/f _{мск} +30		ns
		$1.7~V \leq V_{DD} \leq 5.5~V$		1/f _{мск} +40		1/f _{MCK} +40		1/f _{мск} +40		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		1/f _{мск} +40		1/f _{мск} +40		ns
SIp hold time (from SCKp↑) ^{Note 4}	t _{KSI2}	$1.8~V \le V_{DD} \le 5.5~V$		1/f _{мск} +31		1/f _{мск} +31		1/f _{мск} +31		ns
		$1.7~V \leq V_{DD} \leq 5.5~V$		1/f _{мск} +250		1/f _{MCK} +250		1/f _{мск} +250		ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$	≤ 5.5 V	—		1/f _{MCK} +250		1/f _{мск} +250		ns
Delay time from SCKp↓ to SOp	t _{KSO2}	KSO2 C = 30 pF Note 6	$2.7V \le V_{DD} \le 5.5V$		2/f _{MCK} +44		2/f _{МСК} +110		2/f _{MCK} +110	ns
output ^{Note 5}			$2.4V \le V_{DD} \le 5.5V$		2/f _{MCK} +75		2/f _{мск} +110		2/f _{MCK} +110	ns
			$1.8V \le V_{DD} \le 5.5V$		2/f _{MCK} +110		2/f _{мск} +110		2/f _{MCK} +110	ns
			$1.7V \le V_{DD} \le 5.5V$		2/f _{MCK} +220		2/f _{МСК} +220		2/f _{MCK} +220	ns
			$1.6V \le V_{DD} \le 5.5V$		_		2/f _{мск} +220		2/f _{MCK} +220	ns

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 5.5 V, Vss = 0 V) (2/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- **4.** This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp \downarrow .
- 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp¹.
- 6. C is the load capacitance of the SOp output line.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1)

2. fMCK: Serial array unit operating clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

CSI mode connection diagram (during communication between devices with the same voltage)

CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0)

Remarks 1. p: CSI number (p = 00, 10, 20, 21)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)

