

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10fmeafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

2. 2 Pin Functions in Analog Block

<R> About I/O circuit type, see 2. 4 Block Diagrams of Pins.

<R> 2. 2. 1 64-pin products

AVints - - Power supply pin for filter AGND2 - - GND pin for gain adjustment amplifier MPXINS0 ANALOG6 Input Multiplexer 6 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) AMP3_OUT ANALOG6 U/U Configurable amplifier Ch3 output pin 0 (-)) AMP3_OUT ANALOG6 U/U D/A converter Ch3 output pin 0 configurable amplifier Ch3 reference voltage input pin VREFIN3 AMP_OUT ANALOG1 Output Configurable amplifier Ch1 output pin AMP2_OUT ANALOG1 Output Configurable amplifier Ch1 output pin AVer - - GND pin for configurable amplifier Ch1 output pin AVer - - Power supply pin for configurable amplifier Ch1 to Ch3. AVer - - Power supply pin for configurable amplifier Ch1 oc Ch3. AVer - - Power supply pin for configurable amplifier Ch1 oCh3. DAC2_OUT/ ANALOG2 U/O D/A converter Ch1 output pin/configurable amplifier Ch1 oCh3. DAC3_OUT/ ANALOG6 U/A O/A converter Ch1 output pin/configurable amplifier Ch1 input pin 1 (-)) MEXIN31 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MULTIPLEXY ANALOG6 Multiplexer 1 input pin 0 (Configurable ampl	Function Name	I/O Circuit Type	I/O	Function
AGND2 - GND pin for gain adjustment ampilfier MPXIN80 ANALOG6 Input Multiplexer 6 input pin 0 (Configurable ampilfier Ch3 input pin 0 (-)) MPXIN50 ANALOG6 Multiplexer 6 input pin 0 (Configurable ampilfier Ch3 input pin 0 (-)) MP3_OUT ANALOG10 Output Configurable ampilfier Ch3 output pin DAG3_OUT/ ANALOG11 Output Configurable ampilfier Ch3 output pin AMP2_OUT ANALOG11 Output Configurable ampilfier Ch1 output pin AGND1 - - GND pin for configurable ampilfier Ch1 output pin AVon - - Power supply pin for configurable ampilfier Ch1 ch2 AMP1_OUT ANALOG2 I/O D/A converter Ch2 output pin/configurable ampilfier Ch1 ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch1 output pin/configurable ampilfier Ch1 reference voltage input pin VREFIN2 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable ampilfier Ch2 input pin 1 (-)) MPXIN31 ANALOG6 Multiplexer 1 input pin 1 (Configurable ampilfier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurable ampilfier Ch1 input pin 0 (-)) MPXIN31 ANALOG6 Multiplexer 1 input pin 0 (Configurable ampilfier Ch1 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurab		- Type	_	Power supply nin for filter
MPXIN60 ANALOG6 Input Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) MMP3_OUT ANALOG10 Output Configurable amplifier Ch3 output pin 0 (-)) AMP3_OUT ANALOG2 VO D/A converter Ch3 output pin DAC3_OUT/ ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 - GND pin for configurable amplifiers Ch1 to Ch3. AMP1_OUT ANALOG2 VO D/A converter Ch2 output pin/configurable amplifier Ch1 to Ch3. AVon - Power supply pin for configurable amplifiers Ch1 to Ch3. AVEFIN2 ANALOG2 VO D/A converter Ch1 output pin/configurable amplifier Ch2 reference voltage input pin VREFIN2 NALOG6 Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN31 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN31 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN1				
MPXINSO ANALOG6 Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 ()) AMP3_QUT ANALOG10 Output Configurable amplifier Ch3 output pin MCS_QUT/ ANALOG2 I/O D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin AMP3_QUT ANALOG1 Output Configurable amplifier Ch2 output pin AMP3_QUT ANALOG11 Output Configurable amplifier Ch2 output pin AMP1_QUT ANALOG1 Output Configurable amplifier Ch1 output pin AK001 - - GND pin for configurable amplifier Ch1 to Ch3. AMP1_QUT ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin AVcon - - Power supply pin for configurable amplifier Ch2 input pin 1 (+) MPXIN40 ANALOG6 Input Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) <t< td=""><td></td><td></td><td></td><td></td></t<>				
AMP3_OUT ANALOG10 Output Configurable amplifier Ch3 output pin DAG3_OUT/ ANALOG2 I/O D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin AMP3_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVpon - - GND pin for configurable amplifier Ch1 output pin AVpon - - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 NANLOG2 I/O D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN11 ANALOG6 Input Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN12 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6			input	
DAC3_OUT/ VREFIN3 ANALOG2 I/O D/A converter Ch3 output pin/onfigurable amplifier Ch3 reference voltage input pin AMP2_OUT ANALOG1 Output Configurable amplifier Ch2 output pin AGND1 - GND pin for configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AGND1 - - RND pin for configurable amplifier Ch1 output pin AVeon - - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 - Power supply pin for configurable amplifier Ch2 input pin 1 (+) MPXIN41 ANALOG6 I/O D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+) MPXIN40 ANALOG6 I/O Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MUltiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) M			Outrout	
VREFIN3 Image Description AMP2_OUT ANALOG11 Output Configurable amplifier Ch2 output pin AGND1 - - GND pin for configurable amplifier Ch1 output pin AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVoor - Power supply pin for configurable amplifier Ch1 to Ch3 DAC2_OUT/ ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin OAC1_OUT/ ANALOG2 I/O D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+)) MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN30				
AGND1 - - GND pin for configurable amplifiers Ch1 to Ch3. AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVon - - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ ANALOG2 VO D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin VREFIN2 VV D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN1 D/A converter Ch1 output pin/configurable amplifier Ch2 input pin 1 (+)) MPXIN41 ANALOG6 Input MPXIN43 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUltiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MSIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUltiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Mu		ANALOGZ	1/0	D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin
AMP1_OUT ANALOG11 Output Configurable amplifier Ch1 output pin AVcon - - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ VREFIN2 ANALOG2 I/O Power supply pin for configurable amplifier Ch1 to Ch3 DAC1_OUT/ VREFIN1 ANALOG2 I/O I/O converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN40 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN40 ANALOG6 Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN41 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT	AMP2_OUT	ANALOG11	Output	Configurable amplifier Ch2 output pin
Avos - Power supply pin for configurable amplifiers Ch1 to Ch3 DAC2_OUT/ VREFIN2 ANALOG2 I/O D/A converter Ch2 output pin/configurable amplifier Ch1 reference voltage input pin VREFIN2 ANALOG6 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 1 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GR_OUT ANALOG9 Output Reference voltage regulator output pin Avoco - - Power supply pin for variable output voltage regulator and reference voltage generator LD_O	AGND1	_	-	GND pin for configurable amplifiers Ch1 to Ch3.
DAC2_OUT/ VREFIN2 ANALOG2 I/A D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin DAC1_OUT/ VREFIN1 ANALOG2 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN31 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUItiplexer 2 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - GND pin for variable output voltage regulator and reference voltage generator Do_COUT ANALOG3 Output Reference voltage generator output pin LDO_OUT ANALOG3 Output Tem	AMP1_OUT	ANALOG11	Output	Configurable amplifier Ch1 output pin
VREFIN2 ANALOG2 DAC1_OUT/ VREFIN1 ANALOG6 D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin MPXIN41 ANALOG6 MPXIN41 ANALOG6 MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN20 ANALOG6 Output Reference voltage generator output pin AVDDD2 - Power s	AV _{DD1}	-	-	Power supply pin for configurable amplifiers Ch1 to Ch3
VREFIN1ANALOG6InputMultiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+))MPXIN41ANALOG6Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-))MPXIN30ANALOG6Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (+))MPXIN30ANALOG6Multiplexer 3 input pin 0 (Configurable amplifier Ch1 input pin 0 (-))MPXIN11ANALOG6Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (+))MPXIN10ANALOG6Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 0 (+))MUltiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+))Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+))MPXIN10ANALOG6Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-))AGND3GND pin for variable output voltage regulator and reference voltage generatorBGR_OUTANALOG3OutputReference voltage generator output pinAVoz2Power supply pin for variable output voltage regulator and reference voltage generatorLDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG8InputExternal reset signal input for The functions of analog blockDVopPower supply in for SPISCLKANALOG3InputSerial data output pin for SPISDIANALOG3InputSerial data output pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG3I/OD/A converter Ch4 output pin/gain adj	_	ANALOG2	I/O	D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin
MPXIN41 ANALOG6 Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN30 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN21 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MPXIN20 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVooz - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Temperature sensor output pin	_	ANALOG2		D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin
MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN20 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MVItiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUltiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - Power supply pin for variable output voltage regulator and reference voltage generator LDQ_OUT ANALOG3 Output Temperature sensor output pin TEMP_OUT ANALOG5	MPXIN41	ANALOG6	Input	Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+))
MPXIN40 ANALOG6 MPXIN30 ANALOG6 MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN20 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MUtiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) Mutot Power supply pin for variable o	MPXIN31	ANALOG6		Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-))
MPXIN30 ANALOG6 MPXIN21 ANALOG6 MPXIN21 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MVItiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - ANALOG9 Output Reference voltage generator output pin AVooz - ANALOG3 Output Reference voltage generator output pin AVooz - AVALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG3 Notu Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVoo - - SCLK ANALOG3 Input Strial data output pin f	MPXIN40	ANALOG6		Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 0 (+))
MPXIN21 ANALOG6 MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG9 AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG3 AVoo2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output ARESET ANALOG5 Input SCLK ANALO68 Input SOD ANALO68 Input SCLK ANALO68 Input SOD ANALO68 Input Sol ANALO68 Input Sol ANALO68 Input Sol ANALO68 Input Soli	MPXIN30	ANALOG6		
MPXIN11 ANALOG6 MPXIN20 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MPXIN10 ANALOG6 MUltiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 AVoto2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Reference voltage generator output pin TEMP_OUT ANALOG3 ANALOG3 Output Voto2 - ANALOG3 Output Voto2 - ANALOG4 Output Temperature sensor output pin TEMP_OUT ANALOG5 Input External reset signal input for the functions of analog block DVoo - - SCLK ANALOG8 Input Serial clock input pin for SPI Serial clock input pin for	MPXIN21	ANALOG6		
MPXIN20 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVoo2 - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVoo - - Power supply pin for SPI SCLK ANALOG8 Input Serial data output pin for SPI SD0 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Serial data input pin for SPI SD1 ANALOG8 Input Chip select input pin for SPI DGND -	MPXIN11	ANALOG6		
MPXIN10 ANALOG6 Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) AGND3 - - GND pin for variable output voltage regulator and reference voltage generator BGR_OUT ANALOG9 Output Reference voltage generator output pin AVoo2 - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVoo - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Chip select input pin for SPI SDI ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filte	MPXIN20	ANALOG6		
AGND3GND pin for variable output voltage regulator and reference voltage generatorBGR_OUTANALOG9OutputReference voltage generator output pinAVoo2Power supply pin for variable output voltage regulator and reference voltage generatorLDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVooPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG8InputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPIDGNDGND pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pinVREFIN4GND pin for inputting low-pass filter control clockAGND4GND pin for filter	MPXIN10	ANALOG6		
BGR_OUT ANALOG9 Output Reference voltage generator output pin AV _{DD2} - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input External reset signal input for the functions of analog block DVop - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI GS ANALOG8 Input Serial data input pin for SPI DGND - - GND pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for inputting low-pass filter control clock AGND4 - - GND pin for filter <td>AGND3</td> <td>-</td> <td>-</td> <td></td>	AGND3	-	-	
AV _{DD2} - - Power supply pin for variable output voltage regulator and reference voltage generator LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ĀRESET ANALOG5 Input External reset signal input for the functions of analog block DVpp - - Power supply pin for SPI SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG8 Input Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input Serial data input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for filter	BGR OUT	ANALOG9	Output	
LDO_OUTANALOG3OutputVariable output voltage regulator output pinTEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVobPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter		_	_	
TEMP_OUTANALOG4OutputTemperature sensor output pinARESETANALOG5InputExternal reset signal input for the functions of analog blockDVopPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputSerial data input pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4CLK_LPFANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter	LDO OUT	ANALOG3	Output	
ARESETANALOG5InputExternal reset signal input for the functions of analog blockDV_DDPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputDif or inputting low-pass filter control clockAGND4GND pin for filter				
DV_DDPower supply pin for SPISCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ANALOG13I/OD/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4CLK_LPFANALOG7InputPin for inputting low-pass filter control clockAGND4GND pin for filter		ANALOG5		
SCLKANALOG8InputSerial clock input pin for SPISDOANALOG12OutputSerial data output pin for SPISDIANALOG8InputSerial data input pin for SPICSANALOG8InputChip select input pin for SPIDGNDGND pin for SPIDAC4_OUT/ VREFIN4ANALOG7InputDif or inputting low-pass filter control clockAGND4GND pin for filter		_	_	
SDO ANALOG12 Output Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 - - GND pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	SCLK	ANALOG8	Input	
CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		ANALOG12		
CS ANALOG8 Input Chip select input pin for SPI DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	SDI	ANALOG8	Input	Serial data input pin for SPI
DGND - - GND pin for SPI DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		ANALOG8	Input	Chip select input pin for SPI
DAC4_OUT/ ANALOG13 I/O D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin VREFIN4 CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter		_	_	
CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock AGND4 - - GND pin for filter	DAC4_OUT/	ANALOG13	I/O	
AGND4 – – GND pin for filter		ANALOG7	Input	Pin for inputting low-pass filter control clock
		_		
	LPF_OUT	ANALOG1	Output	Low-pass filter output pin

Address	RL78/G1E (64-pin prod	ucts)	RL78/G1A (64-pin pro	ducts)			
	SFRs Name	Sy	mbol	SFRs Name	Syr	nbol	
FFF34H	Same as RL78/G1A (64-pin products)	KRCTL		Key return control register	KRCTL		
FFF35H	Same as RL78/G1A (64-pin products)	KRF		Key return flag register	KRF		
FFF36H				Key return mode control register 1	KRM1		
FFF37H	Key return mode control register 0 Note	KRM0		Key return mode control register 0	KRM0		
FFF38H	External interrupt rising edge	EGP0		External interrupt rising edge	EGP0		
	enable register 0 Note			enable register 0			
FFF39H	External interrupt falling edge	EGN0		External interrupt falling edge	EGN0		
	enable register 0 Note			enable register 0			
FFF3AH				External interrupt rising edge	EGP1		
				enable register 1			
FFF3BH				External interrupt falling edge	EGN1		
				enable register 1		n	
FFF44H	Same as RL78/G1A (64-pin products)	TXD1/	SDR02	Serial data register 02	TXD1/	SDR02	
	-	SIO10	_		SIO10	_	
FFF45H		_					
FFF46H	Same as RL78/G1A (64-pin products)	RXD1/	SDR03	Serial data register 03	RXD1/	SDR03	
	-	SIO11			SIO11	_	
FFF47H		_					
FFF48H	Same as RL78/G1A (64-pin products)	TXD2/	SDR10	Serial data register 10	TXD2/	SDR10	
	-	SIO20	_		SIO20	_	
FFF49H			000044	Operiod states as sinters 44	-	000044	
FFF4AH	Same as RL78/G1A (64-pin products)	RXD2/ SIO21	SDR11	Serial data register 11	RXD2/ SIO21	SDR11	
		51021	_		31021	_	
FFF4BH		-	l		-		
FFF50H				IICA shift register 0	IICA0		
FFF51H				IICA status register 0	IICS0		
FFF52H		TDDOO		IICA flag register 0 Timer data register 02	IICF0		
FFF64H	Same as RL78/G1A (64-pin products)	TDR02			TDR02		
FFF65H FFF66H	Some as PI 70/C1A (64 sis products)	TDR03L	TDR03	Timer data register 03	TDR03L	TDR03	
	Same as RL78/G1A (64-pin products)	TDR03H	IDRUS		TDR03H	IDRUS	
FFF67H FFF68H	Same as RL78/G1A (64-pin products)	TDR04	1	Timer data register 04	TDR04	1	
-							
FFF69H	Same as PL 78/G14 (64 pip products)	TDR05		Timer data register 05	TDR05		
FFF6AH	Same as RL78/G1A (64-pin products)						
FFF6BH	Same as PL 78/G14 (64 pip products)	TDR06		Timer data register 06	TDR06		
FFF6CH FFF6DH	Same as RL78/G1A (64-pin products)						
	Some on PL 79/C14 (64 pin products)	TDR07		Timer data register 07	TDR07		
FFF6EH	Same as RL78/G1A (64-pin products)						
FFF6FH							

Table 3-1. List of Differences in Special Function Registers (SFRs) (2/4)

Note The bit setting is different from that of RL78/G1A (64-pin products).

Caution Do not write data to the registers which is in the row with painted gray.

3.4 Port Functions

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 4 PORT FUNCTIONS in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 4. 1 Port functions

The RL78/G1E microcontrollers (64-pin products, 80-pin products) are provided with digital I/O ports, which enable variety of control operations. In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.

3. 4. 2 Port configuration

Ports include the following hardware.

Item	Configuration							
Control registers	Port mode registers (PM0 to PM2, PM4 to PM7, PM14, PM15)							
	Port registers (P0 to P2, P4, P5, P7, P12 to P14)							
	Pull-up resistor option registers (PU0, PU1, PU4, PU5, PU7, PU14)							
	Port input mode registers (PIM0, PIM1)							
	Port output mode registers (POM0, POM1, POM5)							
	Port mode control registers (PMC0, PMC1, PMC3, PMC5, PMC7)							
	A/D port configuration register (ADPC)							
	Peripheral I/O redirection register (PIOR)							
	Global analog input disable register (GAIDIS)							
Port	64-pin products							
	Total: 24 (CMOS I/O: 20, CMOS input: 3, CMOS output: 1)							
	· 80-pin products							
	Total: 30 (CMOS I/O: 26, CMOS input: 3, CMOS output: 1)							
Pull-up resistor	· 64-pin products Total: 16							
	· 80-pin products Total: 21							

Table 3-5. Port Configuration

For details of each port, also see 4.2 Port Configuration in RL78/G1A Hardware User's Manual (R01UH0305E).

Figure 3-1. Block Diagram of Clock Generator	$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Contract busing the second se Second second sec
< K>	X11 X21E9 FRQS6 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FRQS7 FR	\sim

RENESAS

R01UH0353EJ0200 Rev.2.00 Mar 31, 2014

109

(Remark is listed on the next page)

3. 5. 3. 2 System clock control register (CKC)

Address: FFF	A4H After	reset: 00H R/M	Note										
Symbol	<7>	6	<5>	<4>	3	2	1	0					
СКС	CLS	0	MCS	MCM0	0	0	0	0					
-													
	CLS Status of CPU/peripheral hardware clock (fcLK)												
	0	Main system	clock (fmain)										
	1				_								
-		•											

MCS	Status of main system clock (fmain)
0	High-speed on-chip oscillator clock (f⊩)
1	High-speed system clock (f _{MX})

MCM0	Main system clock (fmain) operation control
0	Selects the high-speed on-chip oscillator clock (fin) as the main system clock (fmain)
1	Selects the high-speed system clock (f _{MX}) as the main system clock (f _{MAIN})

Note Bits 7 and 5 are read-only.

Caution Be sure to clear bits 0 to 3 and 6 to "0".

- Remark fin: High-speed on-chip oscillator clock frequency
 - fmx: High-speed system clock frequency
 - fMAIN: Main system clock frequency

• Format of Timer Mode Register mn (TMRmn) (3/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	TER	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
					mn											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W

CISmn1	CISmn0	Selection of TImn pin input valid edge									
0	0	Falling edge									
0	1	Rising edge									
1	0	Both edges (when low-level width is measured)									
	Start trigger: Falling edge, Capture trigger: Rising edge										
1	1	Both edges (when high-level width is measured)									
		Start trigger: Rising edge, Capture trigger: Falling edge									
If both the edg	es are specifie	d when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to									
CISmn0 bits to	o 10B.										

<R> Note Bit 11 is fixed at 0 of read only, write is ignored.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7))

3. 12. 1. 3 Simplified I²C (IIC00, IIC10, IIC20)

This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA). This simplified I^2C is designed for single communication with a device such as EEPROM, flash memory, or A/D converter, and therefore, it functions only as a master.

Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed.

For details about the settings, see 3. 12. 8 Operation of simplified I²C (IIC00, IIC10, IIC20).

[Data transmission/reception]

- Master transmission, master reception (only master function with a single master)
- ACK output function Note and ACK detection function
- Data length of 8 bits
- (When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.)
- Manual generation of start condition and stop condition

[Interrupt function]

• Transfer end interrupt

[Error detection flag]

• Parity error (ACK error), or overrun error

[Functions not supported by simplified I²C]

- Slave transmission, slave reception
- Arbitration loss detection function
- Wait detection functions
- Note When receiving the last data, ACK will not be output if 0 is written to the SOEmn bit (serial output enable register m (SOEm)) and serial communication data output is stopped. For details, see 3. 12. 8 Operation of simplified I²C (IIC00, IIC10, IIC20).

• 80-pin products

Address: FF	FE8H After re	set: FFH R/W	,					
Symbol	7	6	5	<4>	<3>	<2>	<1>	<0>
PR00L	DL 1 1		1	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0
Address: FF	FECH After re	eset: FFH R/W	1					
Symbol	7	6	5	4	<3>	<2>	<1>	<0>
PR10L	1	1	1	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1
	FE9H After re							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR00H	TMPR001H	SRPR00	STPR00	DMAPR01	DMAPR00	SREPR02	SRPR02	STPR02
	SREPR00		IICPR000				CSIPR021	CSIPR020
								IICPR020
Address: FF	FEDH After re	eset: FFH R/M	1					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10H	TMPR101H	SRPR10	STPR10	DMAPR11	DMAPR10	SREPR12	SRPR12	STPR12
	SREPR10		CSIPR100				CSIPR121	CSIPR120
			IICPR100					IICPR120
Address: FF	FEAH After re	eset: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	1	SREPR01	SRPR01	STPR01
						TMPR003H		CSIPR010
								IICPR010
Address: FF	FEEH After re	eset: FFH R/W	1					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR11L	TMPR103	TMPR102	TMPR101	TMPR100	1	SREPR11	SRPR11	STPR11
			-			TMPR103H	-	CSIPR110
								IICPR110
Address: FF	FEBH After re	Set FFH RM	1					
Symbol	<7>	6	5	4	<3>	<2>	1	<0>
PR01H	TMPR004					ITPR0		ADPR0
		1	1	1	KRPR0	IIPKU	1	AUPKU
	FEFH After re							
Symbol								
PR11H	<7> TMPR104	6 1	5	4	<3> KRPR1	<2> ITPR1	1	<0> ADPR1

3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7)

(1) 64-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	1	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W

Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to "0".

2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register to "1".

(2) 80-pin products

Symbol	7	6	5	4	3	2	1	0	Address	After Reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FFF20H	FFH	R/W
PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W

Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to "0".

2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register to "1".

3.23 Regulator

See CHAPTER 23 REGULATOR in RL78/G1A Hardware User's Manual (R01UH0305E).

3. 25 Flash Memory

In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 25 FLASH MEMORY in RL78/G1A Hardware User's Manual (R01UH0305E).

<R> 3. 25. 1 Serial Programming Using Flash Memory Programmer

The following dedicated flash memory programmer can be used to write data to the internal flash memory of the RL78/G1E.

- PG-FP5, FL-PR5
- E1 on-chip debugging emulator

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the RL78/G1E has been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the RL78/G1E is mounted on the target system.

Remark FL-PR5 and FA series are products of Naito Densei Machida Mfg. Co., Ltd.

(9) Power control register 1 (PC1)

This register is used to enable or disable operation of the configurable amplifiers and the D/A converters.

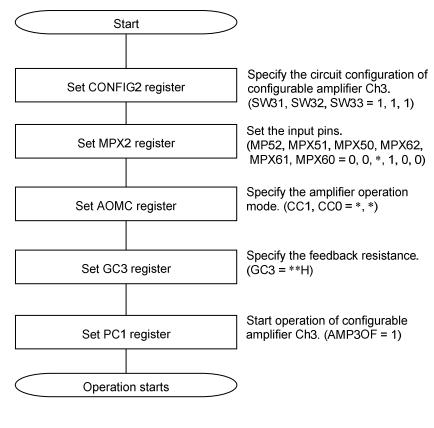
Use this register to stop unused functions to reduce power consumption and noise.

When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 0 to 2) to 1.

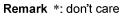
Reset signal input clears this register to 00H.

Address: 11H After reset: 00H R/W

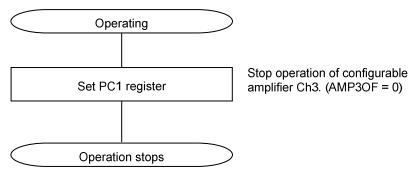
	7	6	5	4	3	2	1	0
PC1	DAC4OF	DAC3OF	DAC2OF	DAC1OF	0	AMP3OF	AMP2OF	AMP1OF


AMP3OF	Operation of configurable amplifier Ch3
0	Stop operation of configurable amplifier Ch3.
1	Enable operation of configurable amplifier Ch3.

AMP2OF	Operation of configurable amplifier Ch2					
0	Stop operation of configurable amplifier Ch2.					
1	Enable operation of configurable amplifier Ch2.					

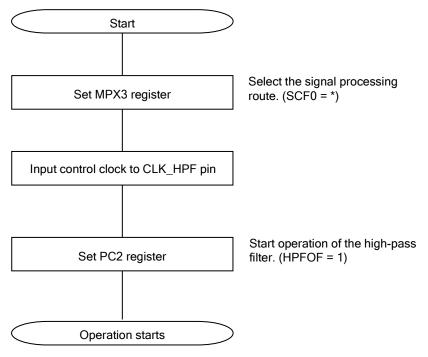

AMP10F	Operation of configurable amplifier Ch1
0	Stop operation of configurable amplifier Ch1.
1	Enable operation of configurable amplifier Ch1.

Caution Be sure to clear bit 3 to "0".

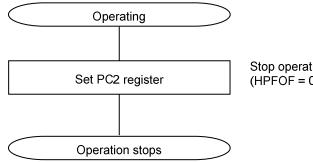


Example of procedure for starting configurable amplifier Ch3 (transimpedance amplifier)

Example of procedure for stopping configurable amplifier Ch3 (transimpedance amplifier)



4. 5. 4 Procedure for operating the high-pass filter


Follow the procedures below to start and stop the high-pass filter.

Example of procedure for starting the high-pass filter

Remark *: don't care

Example of procedure for stopping the high-pass filter

Stop operation of the high-pass filter. (HPFOF = 0)

<R> (9) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (slave mode, SCKp ... External clock input) (1/2)

Parameter	Symbol		Conditions	HS	HS ^{Note 1}		LS Note 2		LV Note 3	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp	t _{KCY2}	4.0	$V \leq V_{DD} \leq 5.5 V$,							
cycle time Note 4	Ļ	2.7	$V \le Vb \le 4.0 V$							
			24 MHz < fмск	14/fмск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	12/fмск		_		_		ns
			8 MHz < fмск ≤ 20 MHz	10/ f мск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/ f мск		—		ns
			fмск ≤ 4 MHz	6/f мск		10/ f мск		10/ f мск		ns
		2.7	$V \leq V_{DD} < 4.0 V,$							
		2.3	√ ≤ Vb ≤ 2.7 V							
			24 MHz < fмск	20/ f мск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	16/fмск		_		_		ns
			16 MHz < fмск ≤ 20 MHz	14/ f мск		_		_		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8	$V \leq V_{DD} < 3.3 V,$							
		1.6	$V \le Vb \le 2.0 V^{Note 5}$		Γ	1	1	1	Γ	
			24 MHz < fмск	48/f мск		—		—		ns
			20 MHz < fмск ≤ 24 MHz	36/f мск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/ f мск				_		ns
			8 MHz < fмск ≤ 16 MHz	26/ f мск				—		ns
			4 MHz < fмск ≤ 8 MHz	16/ f мск		16/fмск		_		ns
			$f_{MCK} \le 4 MHz$	10/ f мск		10/ f мск		10/fмск		ns

(TA = -40 to +85°C, 1.8 V \leq Vdd \leq 5.5 V, Vss = 0 V) (1/2)

Notes 1. HS is condition of HS (high-speed main) mode.

- 2. LS is condition of LS (low-speed main) mode.
- 3. LV is condition of LV (low-voltage main) mode.
- 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **5.** Specify a value so as to satisfy $V_{DD} \ge Vb$.
- **Caution** Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

<R> (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I²C mode) (1/2)

Parameter	Symbol	Conditions	HS	Note 1	LS Note 2		LV Note 3		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock	f _{SCL}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		1000		300 Note 4		300 Note 4	kHz
frequency		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$		Note 4					
		$Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V},$		1000		300 Note 4		300 Note 4	kHz
		$2.3 V \le Vb \le 2.7 V$,		Note 4					
		Cb = 50 pF, Rb = 2.7 k Ω							
		$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kHz
		$2.7 V \le Vb \le 4.0 V$,							
		$Cb = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$		400 Note 4		300 Note 4		300 Note 4	kHz
		$2.3 V \le Vb \le 2.7 V$,							
		Cb = 100 pF, Rb = $2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$		300 Note 4		300 Note 4		300 Note 4	kHz
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}^{\text{Note 5}},$							
		Cb = 100 pF, Rb = 5.5 k Ω							
Hold time	t _{LOW}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	475		1550		1550		ns
when SCLr = L	-2011	$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	475		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$4.0 V \le V_{DD} \le 5.5 V$,	1150		1550		1550		ns
		$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	1150		1550		1550		ns
		$2.3 V \le Vb \le 2.7 V$,			1000		1000		
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	1550		1550		1550		ns
		$1.6 V \le Vb \le 2.0 V^{Note 5}$,							
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							
Hold time	t _{ніGH}	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	245		610		610		ns
when SCLr = H	4 IIGH	$2.7 V \le Vb \le 4.0 V$,	2.0		010		0.0		
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	200		610		610		ns
		$2.3 V \le Vb \le 2.7 V,$							
		$Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$4.0 V \le V_{DD} \le 5.5 V,$	675		610		610		ns
		$2.7 V \le Vb \le 4.0 V,$							
		$Cb = 100 \text{ pF}, Rb = 2.8 \text{ k}\Omega$							
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	600		610		610		ns
		$2.3 V \le Vb \le 2.7 V,$			010		0.0		
		$Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$							
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	610		610		610		ns
		$1.6 V \le Vb \le 2.0 V^{Note 5}$,			010		010		1.5
		$Cb = 100 \text{ pF}, Rb = 5.5 \text{ k}\Omega$							

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes are listed on the next page.)

Parameter	Symbol	Conditions		Ratings		Unit
			MIN	TYP	MAX	
Input conversion	VOFF00	CC1, CC0 = 0, 0, T _A = 25°C	-7	-	7	mV
offset voltage		GCn = 07H (20.8 dB)				
	VOFF01	CC1, CC0 = 0, 1, T _A = 25°C	-10	-	10	mV
		GCn = 07H (20.8 dB)				
	VOFF10	CC1, CC0 = 1, 0, T _A = 25°C	-10	-	10	mV
		GCn = 07H (20.8 dB)				
	VOFF11	CC1, CC0 = 1, 1, T _A = 25°C	-12	-	12	mV
		GCn = 07H (20.8 dB)				
Input conversion	VOTC		-	±6	-	<i>μ</i> V/°C
offset voltage						
temperature						
coefficient						
Slew rate	SR00	CC1, CC0 = 0, 0, CL = 30 pF,	-	0.68	-	V/µs
		GCn = 00H (9.5 dB)				
	SR01	CC1, CC0 = 0, 1, CL = 30 pF,	-	0.35	-	V/µs
		GCn = 00H (9.5 dB)				
	SR10	CC1, CC0 = 1, 0, CL = 30 pF,	-	0.25	-	V/µs
		GCn = 00H (9.5 dB)				
	SR11	CC1, CC0 = 1, 1, CL = 30 pF,	-	0.09	-	V/µs
		GCn = 00H (9.5 dB)				
Power supply	PSRR00	CC1, CC0 = 0, 0, GCn = 00H (9.5 dB),	-	70	-	dB
rejection ratio		f = 1 kHz				
	PSRR01	CC1, CC0 = 0, 1, GCn = 00H (9.5 dB),	-	68	-	dB
		f = 1 kHz				
	PSRR10	CC1, CC0 = 1, 0, GCn = 00H (9.5 dB),	-	62	-	dB
		f = 1 kHz				
	PSRR11	CC1, CC0 = 1, 1, GCn = 00H (9.5 dB),	-	50	-	dB
		f = 1 kHz				
Gain setting error	GAIN_Accu1	$T_A = 25^{\circ}C$	-0.6	-	0.6	dB
	GAIN_Accu2	$T_{\rm A} = -40 \text{ to } 85^{\circ}\text{C}$	-1.0	_	1.0	dB

$(-40^{\circ}C \le T_{A} \le 85^{\circ}C, \text{ AVDD1} = \text{AVDD2} = \text{AVDD3} = \text{DVDD} = 5.0 \text{ V}, \text{ VREFIN1} = \text{VREFIN2} = \text{VREFIN3} = 1.7 \text{ V}, \text{ AMP1OF} = $
AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, non-inverting amplifier) (2/2)

Remark n = 1 to 3

Parameter	Symbol	Conditions		Unit		
			MIN	TYP	MAX	
Current consumption	Icc00	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 0, 0	-	970	2,150	μA
	lcc01	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 0, 1	-	510	1,150	μA
	lcc10	AMP1OF = AMP2OF = AMP3OF = 1, $CC1, CC0 = 1, 0$	-	350	780	μA
	lcc11	AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 1, 1	-	140	330	μA
Input voltage	VINL		AGND1 - 0.1	_	_	V
	VINH		_	_	AVDD1 - 1.5	V
Output voltage	VOUTL	IOL = -200 μA	_	AGND1 + 0.02	AGND1 + 0.06	V
e alp at renage	VOUTH	$IOH = 200 \ \mu A$	AVDD1- 0.06	AV _{DD1} - 0.02	_	V
Settling time	tset_ampoo	GC3 = 00H (20 dB), CC1, CC0 = 0, 0, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	_	_	9	μs
	tset_ampo1	GC3 = 00H (20 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	-	-	18	μs
	tset_amp10	GC3 = 00H (20 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV	-	_	28	μs
	tset_amp11	GC3 = 00H (20 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1V _{PP} , output convergence voltage V _{PP} = 999 mV	-	_	71	μs
Gain bandwidth	GBW00	CL = 30 pF, CC1, CC0 = 0, 0 GC3 = 11H (54 dB)	-	1.82	-	MHz
	GBW01	CL = 30 pF, CC1, CC0 = 0, 1 GC3 = 11H (54 dB)	-	1.03	-	MHz
	GBW10	CL = 30 pF, CC1, CC0 = 1, 0 GC3 = 11H (54 dB)	-	0.69	-	MHz
	GBW11	CL = 30 pF, CC1, CC0 = 1, 1 GC3 = 11H (54 dB)	-	0.22	-	MHz
Equivalent input noise	En00	CC1, CC0 = 0, 0 GC3 = 11H (54 dB) f = 1 kHz	-	90	_	nV/√ Hz
	En01	CC1, CC0 = 0, 1 GC3 = 11H (54 dB) f = 1 kHz	-	119	-	nV/√ Hz
	En10	CC1, CC0 = 1, 0 GC3 = 11H (54 dB) f = 1 kHz	-	150	_	nV/√ Hz
	En11	CC1, CC0 = 1, 1 GC3 = 11H (54 dB) f = 1 kHz	-	260	_	nV/√ Hz

 $(-40^{\circ}C \le TA \le 85^{\circ}C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, GC1 = GC2 = 03H, instrumentation amplifier) (1/2)$

<R>

(2) 80-pin products

 $(-40^{\circ}C \leq T_{\text{A}} \leq 85^{\circ}C, \text{ AV}_{\text{DD1}} = \text{AV}_{\text{DD2}} = \text{AV}_{\text{DD3}} = \text{DV}_{\text{DD}} = 5.0 \text{ V}, \text{ VREFIN4} = 1.7 \text{ V}, \text{ GAINOF} = 1, \text{ DAC4OF} = 0)$

Parameter	Symbol	Conditions		Unit			
			MIN	TYP	MAX		
Current	IccA		-	530	1,300	μA	
consumption							
Input voltage	VINL		AGND2 - 0.1	-	-	V	
	VINH		-	-	AV _{DD1} - 0.05	V	
Output voltage	VOUTL1	IOL = -100 µA, GAINAMP_OUT pin	-	AGND2 + 0.02	AGND2 + 0.05	V	
	VOUTH1	IOH = 100 μA, GAINAMP_OUT pin	AV _{DD1} - 0.05	AV _{DD1} - 0.02	-	V	
	VOUTL2	IOL = -100 μA, SYNCH_OUT pin	-	AGND2 + 0.03	AGND2 + 0.06	V	
	VOUTH2	IOH = 100 μ A, SYNCH_OUT pin	AV _{DD1} - 0.06	AV _{DD1} - 0.03	-	V	
Gain bandwidth	GBW1	CLK_SYNCH = H, SYNCH_OUT pin	-	1.38	-	MHz	
		CL = 30 pF, GC4 = 11H (40 dB)					
	GBW2	CLK_SYNCH = L, SYNCH_OUT or	-	0.86	-	MHz	
		GAINAMP_OUT pin					
		CL = 30 pF, GC4 = 11H (40 dB)					
Input conversion	VOFF	$GC4 = 00H (6 dB), T_A = 25^{\circ}C,$	-30	-	30	mV	
offset voltage		GAINAMP_IN = 2.5 V					
Input conversion	VOTC1	CLK_SYNCH = H, SYNCH_OUT pin	-	±6	-	μV/°C	
offset voltage	VOTC2	CLK_SYNCH = L, GAINAMP_OUT pin	-	±18	-	<i>μ</i> V/°C	
temperature							
coefficient							
Slew rate	SR	CL = 30 pF	-	0.9	-	V/µs	
Equivalent input	En_Gain	f = 1 kHz, GC4 = 11H (40 dB)	-	700	-	nV/√ Hz	
noise		GAINAMP_OUT pin					
Power supply	PSRR1	CLK_SYNCH = H,	-	60	-	dB	
rejection ratio		SYNCH_OUT pin,					
		f = 1 kHz, GC4 = 00H (6 dB)					
	PSRR2	CLK_SYNCH = L,	-	45	_	dB	
		SYNCH_OUT or GAINAMP_OUT pin,					
		f = 1 kHz, GC4 = 00H (6 dB) T _A = 25°C	0.0		0.0	٩D	
Gain setting error	GAIN_Accu1	TA = 25°C	-0.6	_	0.6	dB	
	GAIN_Accu2	T _A = −40 to 85°C	-1.0	_	1.0	dB	
CLK_SYNCH	VILCLK_SYNCH				$0.3 imes AV_{DD1}$	V	
low-level							
input voltage							
CLK_SYNCH	VIHCLK_SYNCH		$0.7 \times AV_{\text{DD1}}$			V	
high-level							
input voltage	1						

