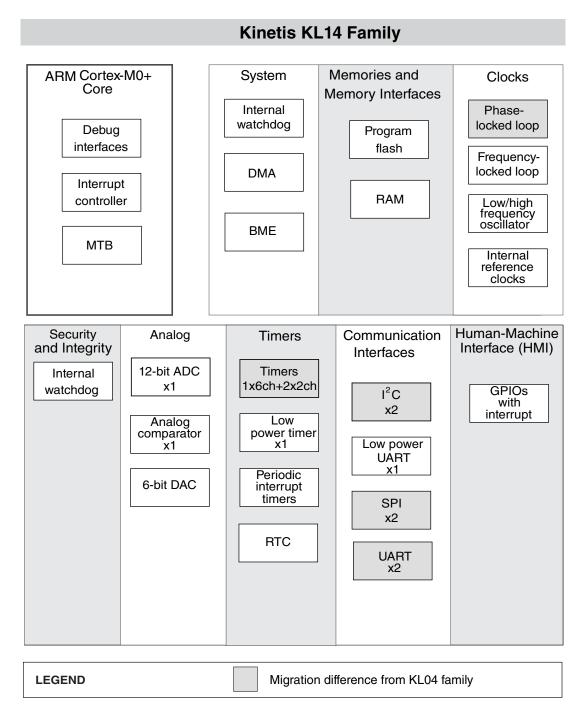


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl14z32vfm4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

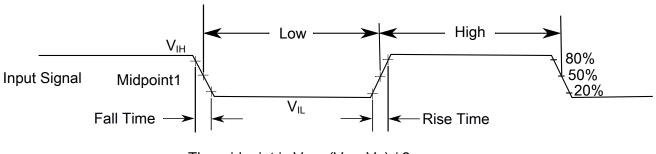
1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

 Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

5

1.4 Voltage and current operating ratings


 Table 4.
 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- C_L=30 pF loads
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

6

Symbol	Description	Min.	Тур.	Max.	Unit	
	 VLLS1 → RUN 					
			93	115	μs	
	 VLLS3 → RUN 					
			42	53	μs	
	• LLS \rightarrow RUN					
			4	4.6	μs	
	 VLPS → RUN 					
			4	4.4	μs	
	• STOP \rightarrow RUN					
			4	4.4	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUNCO_} CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V	_	6.4	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	3.9	4.8	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	—	5	5.9	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 25 °C	6.2	6.5	mA	3, 4
	MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	at 125 °C	6.8	7.1	mA	

Table 9. Power consumption operating behaviors

Table continues on the next page ...

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	3.1	3.1 3.8	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	2.4	3.2	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.6	2	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V	_	777	_	μΑ	5
I _{DD_VLPRCO} Very low power run mode current compute operation - 4 MHz core / MHz flash / bus clock disabled, co executing from flash, at 3.0 V		_	171	420	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	204	449	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	262	509	μA	4, 6
I _{DD_VLPW}			123	366	μΑ	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	319	343	μA	
		at 50 °C	333	365	μA	
		at 70 °C	353	400	μA	
		at 85 °C	380	450	μA	
		at 105 °C	444	572	μA	
I _{DD_VLPS}	Very-low-power stop mode current at	at 25 °C	3.75	8.46	μA	—
	3.0 V	at 50 °C	6.66	13.41	μA	
		at 70 °C	12.9	25.71	μA	
		at 85 °C	22.7	44.06	μA	
		at 105 °C	48.4	90.1	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0	at 25 °C	1.68	2.09	μA	
	V	at 50 °C	3.05	4.04	μA	

Table 9. Power consumption operating behaviors (continued)	Table 9.	Power consum	ption operating	behaviors	(continued)
--	----------	--------------	-----------------	-----------	-------------

Table continues on the next page...

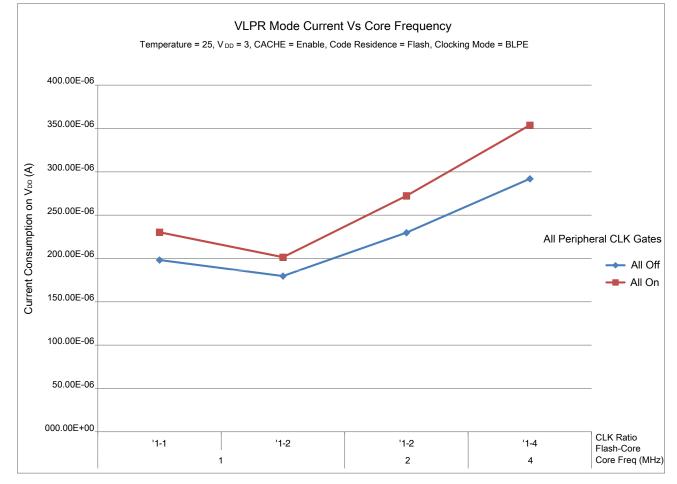


Figure 4. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

 Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	13	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	12	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	7	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	М	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic

2.4.2 Thermal attributes

Table 16.	Thermal	attributes
-----------	---------	------------

Board type	Symbol	Description	80 LQFP	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	70	71	84	92	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	52	28	33	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	59	69	75	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	46	22	27	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	34	34	10	12	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	15	20	2.0	1.8	°C/W	3
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.6	5	5.0	8	°C/W	4

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
JЗ	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10		ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	—	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 17. SWD full voltage range electricals

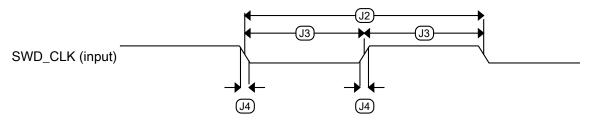


Figure 5. Serial wire clock input timing

Peripheral operating requirements and behaviors

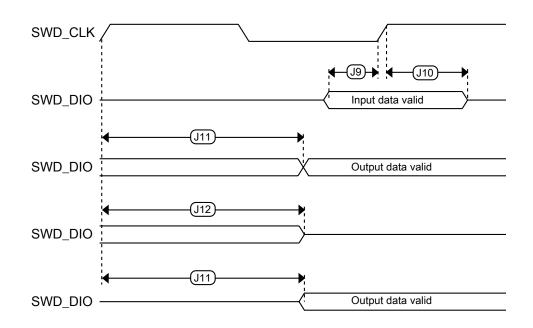


Figure 6. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table 18. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal V _{DD} and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	—	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM]	_	± 0.3	± 0.6	%f _{dco}	1

Table continues on the next page...

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
Δf_{dco_t}		trimmed average DCO output Itage and temperature	—	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	—	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C		4	—	MHz	
∆f _{intf_ft}	(fast clock) over te	on of internal reference clock emperature and voltage — nominal V _{DD} and 25 °C	_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
		FI	L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) 1280 × f_{fll_ref}	40	41.94	48	MHz	-
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS = 00) 732 × f _{fll_ref}		23.99	_	MHz	5, 6
		Mid range (DRS = 01) 1464 × f _{fll_ref}	_	47.97	_	MHz	
J _{cyc_fll}	FLL period jitter • f _{VCO} = 48 M	Hz	_	180	—	ps	7
t _{fll_acquire}	FLL target frequer	ncy acquisition time		—	1	ms	8
		PI	LL				
f _{vco}	VCO operating fre	quency	48.0	—	100	MHz	
I _{pll}		rent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 48)	_	1060	—	μΑ	9
I _{pll}		rent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 24)	_	600	—	μΑ	9
f _{pll_ref}	PLL reference free	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					10
J _{cyc_pll}	• f _{vco} = 48 MH	łz	_	120	_	ps	
	100 -						

Table 18.	MCG s	pecifications	(continued))
-----------	-------	---------------	-------------	---

Table continues on the next page...

Peripheral operating requirements and behaviors

- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	—	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
 register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. ADC conversion clock < 3 MHz

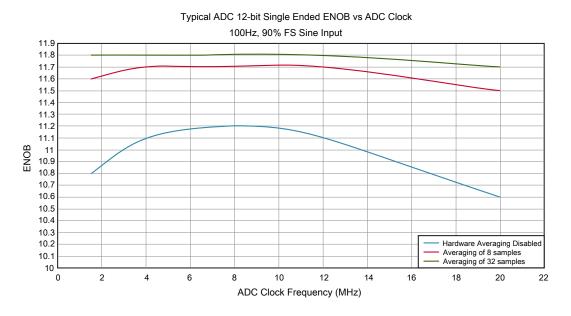


Figure 8. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications

Table 27. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	_	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)	_	_	20	μΑ
V _{AIN}	Analog input voltage	V _{SS}	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	—	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

 Table 27. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} – 0.7 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to

DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. $1 \text{ LSB} = V_{\text{reference}}/64$

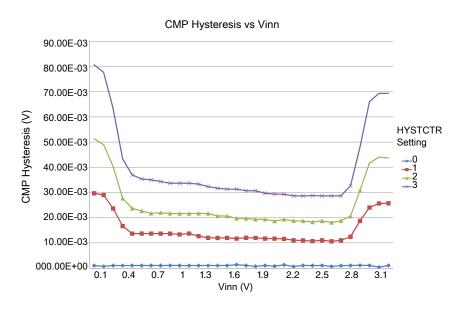


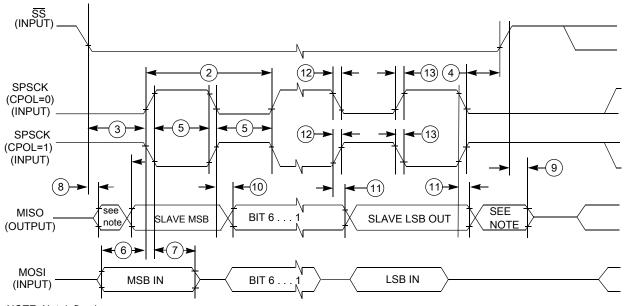
Figure 9. Typical hysteresis vs. Vin level ($V_{DD} = 3.3 V$, PMODE = 0)

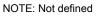
Num.	Symbol	Description	Min.	Max.	Unit	Note
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	_
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	16	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	_
8	t _v	Data valid (after SPSCK edge)	_	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output	1			

Table 28. SPI master mode timing on slew rate disabled pads (continued)

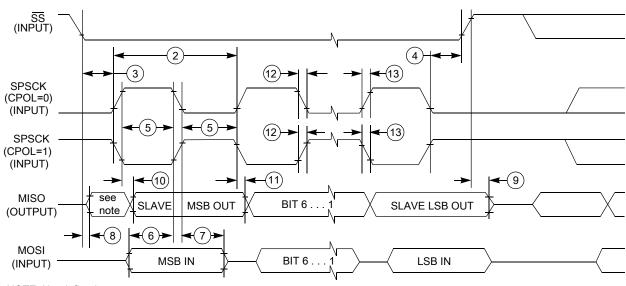
1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$


Table 29. SPI master mode timing on slew rate enabled pads


Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	—
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	—	ns	_
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO} Rise time output		—	36	ns	—
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).


2. $t_{periph} = 1/f_{periph}$

Peripheral operating requirements and behaviors

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 32. I2C timing

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

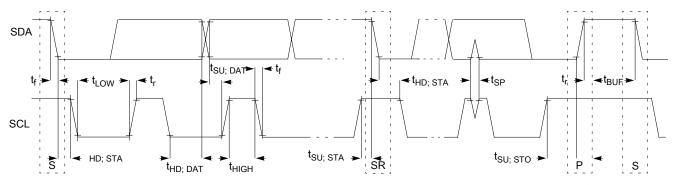


Figure 15. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
32-pin QFN	98ASA00473D				
48-pin QFN	98ASA00466D				
64-pin LQFP	98ASS23234W				
80-pin LQFP	98ASS23174W				

5 Pinout

5.1 KL14 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	1	PTE0	DISABLED		PTE0		UART1_TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	-	2	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	—	-	—	PTE2	DISABLED		PTE2	SPI1_SCK					
4	_	-	-	PTE3	DISABLED		PTE3	SPI1_MISO			SPI1_MOSI		
5	—	-	-	PTE4	DISABLED		PTE4	SPI1_PCS0					

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
6	-	-	_	PTE5	DISABLED		PTE5						
7	3	1	-	VDD	VDD	VDD							
8	4	2	_	VSS	VSS	VSS							
9	5	3	3	PTE16	ADC0_SE1	ADC0_SE1	PTE16	SPI0_PCS0	UART2_TX	TPM_ CLKIN0			
10	6	4	4	PTE17	ADC0_SE5a	ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_ CLKIN1		LPTMR0_ ALT3	
11	7	5	5	PTE18	ADC0_SE2	ADC0_SE2	PTE18	SPI0_MOSI		I2C0_SDA	SPI0_MISO		
12	8	6	6	PTE19	ADC0_SE6a	ADC0_SE6a	PTE19	SPI0_MISO		I2C0_SCL	SPI0_MOSI		
13	9	7	—	PTE20	ADC0_SE0	ADC0_SE0	PTE20		TPM1_CH0	UART0_TX			
14	10	8	-	PTE21	ADC0_SE4a	ADC0_SE4a	PTE21		TPM1_CH1	UART0_RX			
15	11	-	_	PTE22	ADC0_SE3	ADC0_SE3	PTE22		TPM2_CH0	UART2_TX			
16	12	_	-	PTE23	ADC0_SE7a	ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX			
17	13	9	7	VDDA	VDDA	VDDA							
18	14	10	_	VREFH	VREFH	VREFH							
19	15	11	-	VREFL	VREFL	VREFL							
20	16	12	8	VSSA	VSSA	VSSA							
21	17	13	-	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_ CLKIN0			
22	18	14	9	PTE30	ADC0_SE23/ CMP0_IN4	ADC0_SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_ CLKIN1			
23	19	-	-	PTE31	DISABLED		PTE31		TPM0_CH4				
24	20	15	-	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
25	21	16	-	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
26	22	17	10	PTA0	SWD_CLK		PTA0		TPM0_CH5				SWD_CLK
27	23	18	11	PTA1	DISABLED		PTA1	UART0_RX	TPM2_CH0				
28	24	19	12	PTA2	DISABLED		PTA2	UART0_TX	TPM2_CH1				
29	25	20	13	PTA3	SWD_DIO		PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
30	26	21	14	PTA4	NMI_b		PTA4	I2C1_SDA	TPM0_CH1				NMI_b
31	27	-	-	PTA5	DISABLED		PTA5		TPM0_CH2				
32	28	-	-	PTA12	DISABLED		PTA12		TPM1_CH0				
33	29	-	-	PTA13	DISABLED		PTA13		TPM1_CH1				
34	-	-	-	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX				
35	-	-	-	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX				
36	—	-	_	PTA16	DISABLED		PTA16	SPI0_MOSI			SPI0_MISO		
37	_	-	_	PTA17	DISABLED		PTA17	SPI0_MISO			SPI0_MOSI		
38	30	22	15	VDD	VDD	VDD							
39	31	23	16	VSS	VSS	VSS							
40	32	24	17	PTA18	EXTAL0	EXTAL0	PTA18		UART1_RX	TPM_ CLKIN0			

Rev. No.	Date	Substantial Changes				
		 Added a note to the I_{LAT} in the ESD handling ratings Updated Voltage and current operating ratings Updated Voltage and current operating requirements Updated the Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Capacitance attributes Updated footnote in the Device clock specifications Updated t_{ersall} in the Flash timing specifications — commands 				
		 Updated VADIN in the 12-bit ADC operating conditions Updated Temp sensor slope and voltage and added a note to them in the 12-bit ADC electrical characteristics Removed T_A in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing 				
5	08/2014	 Updated related source and added block diagram in the front page Updated Power consumption operating behaviors 				

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL14P80M48SF0 Revision 5 08/2014

