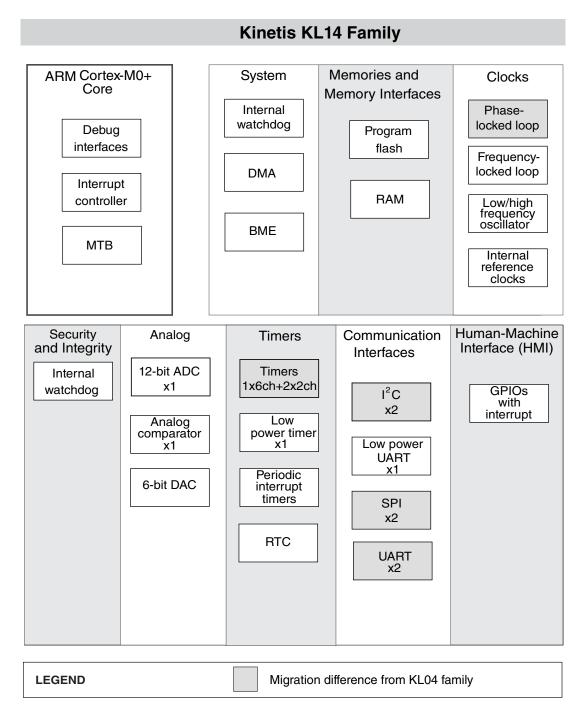


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 9x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl14z64vfm4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1	Rati	ngs	5
	1.1	Therma	al handling ratings5
	1.2	Moistu	re handling ratings5
	1.3	ESD ha	andling ratings5
	1.4	Voltage	e and current operating ratings5
2	Ger	eral	
	2.1	AC ele	ctrical characteristics6
	2.2	Nonsw	itching electrical specifications6
		2.2.1	Voltage and current operating requirements7
		2.2.2	LVD and POR operating requirements7
		2.2.3	Voltage and current operating behaviors8
		2.2.4	Power mode transition operating behaviors9
		2.2.5	Power consumption operating behaviors 10
		2.2.6	EMC radiated emissions operating behaviors15
		2.2.7	Designing with radiated emissions in mind16
		2.2.8	Capacitance attributes16
	2.3	Switch	ing specifications16
		2.3.1	Device clock specifications16
		2.3.2	General switching specifications 17
	2.4	Therma	al specifications17
		2.4.1	Thermal operating requirements 17
		2.4.2	Thermal attributes18
3	Peri	pheral o	operating requirements and behaviors
	3.1	Core m	nodules
		3.1.1	SWD electricals
	3.2	System	n modules20
	3.3	Clock r	modules
		3.3.1	MCG specifications20
		3.3.2	Oscillator electrical specifications22
	3.4	Memor	ies and memory interfaces24
		3.4.1	Flash electrical specifications24
	3.5	Securit	ty and integrity modules

	3.6	Analog]	26
		3.6.1	ADC electrical specifications	26
		3.6.2	CMP and 6-bit DAC electrical specifications	29
	3.7	Timers	s	31
	3.8	Comm	unication interfaces	31
		3.8.1	SPI switching specifications	31
		3.8.2	Inter-Integrated Circuit Interface (I2C) timing.	35
		3.8.3	UART	37
4	Dim	ensions	5	37
	4.1	Obtain	ing package dimensions	37
5	Pino	out		37
	5.1	KL14 8	Signal Multiplexing and Pin Assignments	37
			pinouts	
6	Ord	ering pa	arts	44
	6.1	Detern	nining valid orderable parts	44
7	Part	identifi	cation	44
	7.1		ption	
	7.2	Forma	t	45
	7.3	Fields.		45
	7.4	Examp	ble	45
8	Terr	· ·	y and guidelines	
	8.1		ion: Operating requirement	
	8.2	Definit	ion: Operating behavior	46
	8.3	Definit	ion: Attribute	46
	8.4		ion: Rating	
	8.5		of exceeding a rating	47
	8.6	Relatio	onship between ratings and operating	
		require	ements	48
	8.7		ines for ratings and operating requirements	
	8.8		ion: Typical value	
	8.9	Typica	I value conditions	50
9	Rev	ision hi	story	50

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	—
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	3
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	65	μA	3
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	—
R _{PU}	Internal pullup resistors	20	50	kΩ	4
R _{PD}	Internal pulldown resistors	20	50	kΩ	5

Table 7. Voltage and current operating behaviors (continued)

- 1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
- 2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.
- 3. Measured at $V_{DD} = 3.6 \text{ V}$
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 5. Measured at VDD supply voltage = VDD min and Vinput = VDD

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

POR and VLLSx \rightarrow RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.

Symbol	Description	Min.	Тур.	Max.	Unit	
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	 VLLS0 → RUN 	_	95	115	μs	

 Table 8. Power mode transition operating behaviors

Table continues on the next page...

9

Symbol	Description	Temp.	Тур.	Max	Unit	Note
		at 70 °C	5.71	7.75	μA	
		at 85 °C	10	13.54	μA	
		at 105 °C	22.4	30.41	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.22	1.6	μA	—
	at 3.0 V	at 50 °C	2.25	2.31	μA	
		at 70 °C	4.21	5.44	μA	
		at 85 °C	7.37	9.44	μA	
		at 105 °C	16.6	21.76	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current	at 25 °C	0.58	0.94	μA	—
	at 3.0 V	at 50 °C	1.26	1.31	μA	
		at 70 °C	2.53	3.33	μA	
		at 85 °C	4.74	6.1	μA	
		at 105 °C	11.4	15.27	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.31	0.65	μA	—
	(SMC_STOPCTRL[PORPO] = 0) at 3.0	at 50 °C	0.99	1.43	μA	
		at 70 °C	2.25	3.01	μA	
		at 85 °C	4.46	5.83	μA	
		at 105 °C	11.13	14.99	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.12	0.47	μA	7
	(SMC_STOPCTRL[PORPO] = 1) at 3.0	at 50 °C	0.8	1.24	μA	
		at 70 °C	2.06	2.81	μA	
		at 85 °C	4.27	5.62	μA	
		at 105 °C	10.93	14.78	μA	

Table 9. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for time.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 6. MCG configured for BLPI mode.
- 7. No brownout.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)				Unit		
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA

Table continues on the next page...

Symbol	Description		Temperature (°C)						
			-40	25	50	70	85	105	
I _{IREFSTEN32KHz}	32 kHz internal reference clock Measured by entering STOP m 32 kHz IRC enabled.		52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock at Measured by entering STOP o with the crystal enabled.		206	228	237	245	251	258	μA
I _{EREFSTEN32KHz}	,	VLLS1	440	490	540	560	570	580	n/
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	580	
	EREFSTEN] bits. Measured	LLS	490	490	540	560	570	680	
	by entering all modes with the	VLPS	510	560	560	560	610	680	
crystal enabled.	STOP	510	560	560	560	610	680		
I _{CMP}	CMP peripheral adder measure the device in VLLS1 mode with using the 6-bit DAC and a sing input for compare. Includes 6-b consumption.	CMP enabled le external	22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measure the device in VLLS1 mode with kHz crystal enabled by means RTC_CR[OSCE] bit and the R for 1 minute. Includes ERCLK3 external crystal) power consum	n external 32 of the TC ALARM set 32K (32 kHz	432	357	388	475	532	810	n/
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μı
	115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μ
	compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280	287	
I _{BG}	Bandgap adder when BGEN b device is placed in VLPx, LLS, mode.		45	45	45	45	45	45	μı
I _{ADC}	ADC peripheral adder combini	na the	366	366	366	366	366	366	μ

Table 10.	Low power mo	de peripheral adders -	– typical value (continued)
-----------	--------------	------------------------	-----------------------------

application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, $f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 48 \text{ MHz}$, $f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	—	24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	—	24	MHz
	VLPR and VLPS modes ¹			
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²	—	24	MHz
f _{ERCLK}	External reference clock	—	16	MHz

Table continues on the next page...

3.1.1 SWD electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
JЗ	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10		ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	—	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 17. SWD full voltage range electricals

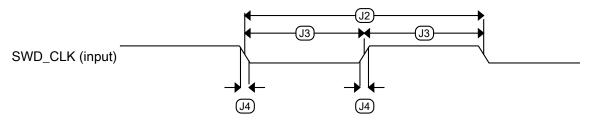


Figure 5. Serial wire clock input timing

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz	_	1.5	_	mA	
	• 32 MHz					
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz		25	—	μA	
	• 4 MHz		400	—	μA	
	• 8 MHz (RANGE=01)		500	_	μA	
	• 16 MHz		2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance					2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1		MΩ	
R_S	Series resistor — low-frequency, low-power mode (HGO=0)	—			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)				kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 19.	Oscillator DC electrical s	pecifications	(continued)
-----------	----------------------------	---------------	-------------

V_{DD}=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

Table 21. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	—	1.8	ms	—
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	—
t _{ersall}	Erase All Blocks execution time	—	88	650	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

Peripheral operating requirements and behaviors

12-bit ADC electrical characteristics 3.6.1.2

	-						1
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	0	2.4	4.0	6.1	MHz	1/f _{ADACK}
		 ADLPC = 1, ADHSC = 1 	3.0	5.2	7.3	MHz	
fadack		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz	
		 ADLPC = 0, ADHSC = 1 					
	Sample Time	See Reference Manual chapte	r for sample	times			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		• <12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	_		±0.5	LSB ⁴	
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 26. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

Num.	Symbol	Description	Min.	Max.	Unit	Note
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	_
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	16	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	_
8	t _v	Data valid (after SPSCK edge)	_	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output	1			

Table 28. SPI master mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

Table 29. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	—
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	—	ns	_
8	t _v	Data valid (after SPSCK edge)	_	52	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	—	ns	
7	t _{HI}	Data hold time (inputs)	7	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output]			

Table 30. SPI slave mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Table 31. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	_
4	t _{Lag}	Enable lag time	1	—	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	_
6	t _{SU}	Data setup time (inputs)	2	—	ns	_
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	_
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

34

- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Peripheral operating requirements and behaviors

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 32. I2C timing

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

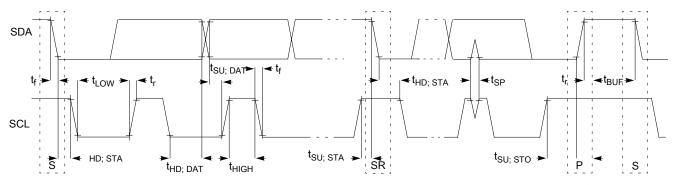


Figure 15. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00473D
48-pin QFN	98ASA00466D
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23174W

5 Pinout

5.1 KL14 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	1	PTE0	DISABLED		PTE0		UART1_TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	-	2	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	—	-	—	PTE2	DISABLED		PTE2	SPI1_SCK					
4	_	-	-	PTE3	DISABLED		PTE3	SPI1_MISO			SPI1_MOSI		
5	—	-	-	PTE4	DISABLED		PTE4	SPI1_PCS0					

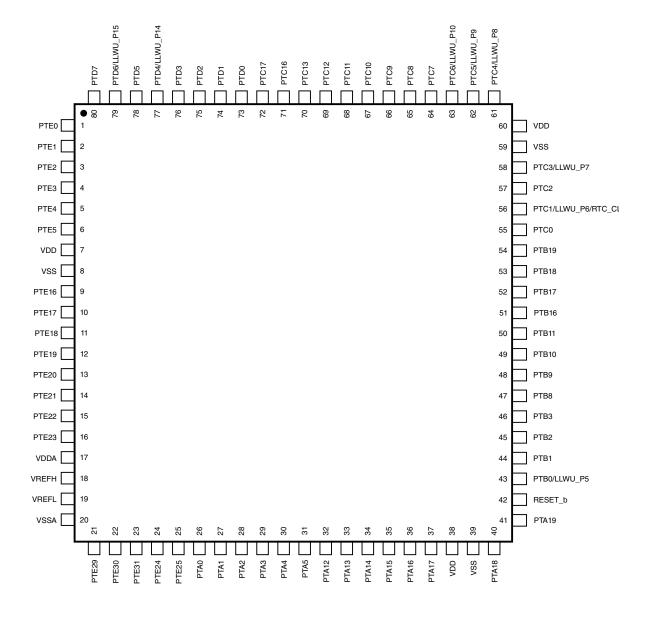


Figure 16. KL14 80-pin LQFP pinout diagram

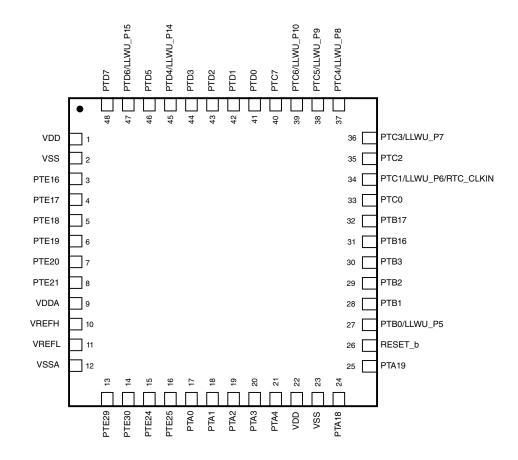


Figure 18. KL14 48-pin QFN pinout diagram

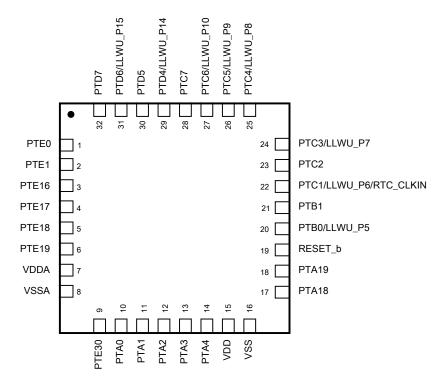


Figure 19. KL14 32-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL14 and MKL14

7 Part identification

MKL14Z64VFT4

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

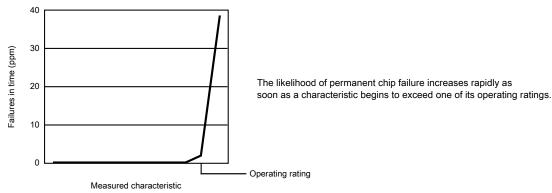
This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

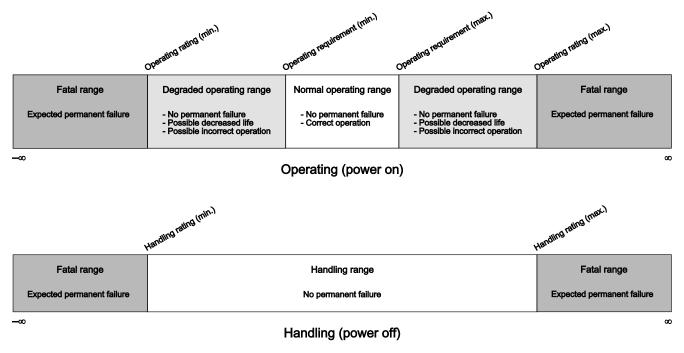
8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.2.1 Example


This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ



Terminology and guidelines

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

Rev. No.	Date	Substantial Changes		
		 Added a note to the I_{LAT} in the ESD handling ratings Updated Voltage and current operating ratings Updated Voltage and current operating requirements Updated the Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Capacitance attributes Updated footnote in the Device clock specifications Updated t_{ersall} in the Flash timing specifications — commands 		
		 Updated VADIN in the 12-bit ADC operating conditions Updated Temp sensor slope and voltage and added a note to them in the 12-bit ADC electrical characteristics Removed T_A in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing 		
5	08/2014	 Updated related source and added block diagram in the front page Updated Power consumption operating behaviors 		