# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                               |
|----------------------------|----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                     |
| Core Size                  | 32-Bit Single-Core                                                   |
| Speed                      | 48MHz                                                                |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                            |
| Peripherals                | Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT                      |
| Number of I/O              | 40                                                                   |
| Program Memory Size        | 64KB (64K x 8)                                                       |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | -                                                                    |
| RAM Size                   | 8K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                         |
| Data Converters            | A/D 15x12b                                                           |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                   |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 48-VFQFN Exposed Pad                                                 |
| Supplier Device Package    | 48-QFN (7x7)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl14z64vft4 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong









| Symbol              | Description                                                                                                                                                  | Min.                 | Max.                 | Unit | Notes |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------|-------|
| V <sub>DD</sub>     | Supply voltage                                                                                                                                               | 1.71                 | 3.6                  | V    |       |
| V <sub>DDA</sub>    | Analog supply voltage                                                                                                                                        | 1.71                 | 3.6                  | V    | —     |
| $V_{DD} - V_{DDA}$  | V <sub>DD</sub> -to-V <sub>DDA</sub> differential voltage                                                                                                    | -0.1                 | 0.1                  | V    | —     |
| $V_{SS} - V_{SSA}$  | V <sub>SS</sub> -to-V <sub>SSA</sub> differential voltage                                                                                                    | -0.1                 | 0.1                  | V    | —     |
| V <sub>IH</sub>     | Input high voltage                                                                                                                                           |                      |                      |      | —     |
|                     | • $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$                                                                                                 | $0.7 \times V_{DD}$  | —                    | V    |       |
|                     | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                                                                                                 | $0.75 \times V_{DD}$ | _                    | V    |       |
| V <sub>IL</sub>     | Input low voltage                                                                                                                                            |                      |                      |      | _     |
|                     | • $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$                                                                                                 | _                    | $0.35 \times V_{DD}$ | V    |       |
|                     | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                                                                                                 |                      | $0.3 \times V_{DD}$  | V    |       |
| V <sub>HYS</sub>    | Input hysteresis                                                                                                                                             | $0.06 \times V_{DD}$ | _                    | V    | _     |
| I <sub>ICIO</sub>   | IO pin negative DC injection current—single pin<br>• V <sub>IN</sub> < V <sub>SS</sub> –0.3V                                                                 | -3                   | _                    | mA   | 1     |
| I <sub>ICcont</sub> | Contiguous pin DC injection current —regional limit,<br>includes sum of negative injection currents of 16<br>contiguous pins<br>• Negative current injection | -25                  |                      | mA   | _     |
| V <sub>ODPU</sub>   | Open drain pullup voltage level                                                                                                                              | V <sub>DD</sub>      | V <sub>DD</sub>      | V    | 2     |
| V <sub>RAM</sub>    | V <sub>DD</sub> voltage required to retain RAM                                                                                                               | 1.2                  | _                    | V    | —     |

#### 2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements

2. Open drain outputs must be pulled to  $V_{DD}$ .

### 2.2.2 LVD and POR operating requirements T

| able 6. | V <sub>DD</sub> supply LVD and PO | <b>R</b> operating requirements |
|---------|-----------------------------------|---------------------------------|
|---------|-----------------------------------|---------------------------------|

| Symbol            | Description                                                   | Min. | Тур. | Max. | Unit | Notes |
|-------------------|---------------------------------------------------------------|------|------|------|------|-------|
| V <sub>POR</sub>  | Falling V <sub>DD</sub> POR detect voltage                    | 0.8  | 1.1  | 1.5  | V    | —     |
| V <sub>LVDH</sub> | Falling low-voltage detect threshold — high range (LVDV = 01) | 2.48 | 2.56 | 2.64 | V    | —     |
|                   | Low-voltage warning thresholds — high range                   |      |      |      |      | 1     |

Table continues on the next page ...

<sup>1.</sup> All I/O pins are internally clamped to  $V_{SS}$  through a ESD protection diode. There is no diode connection to  $V_{DD}$ . If  $V_{IN}$ greater than V<sub>IO\_MIN</sub> (= V<sub>SS</sub>-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as  $R = (V_{IO MIN} - V_{IN})/|I_{ICIO}|$ .



| Symbol                | Description                          | Temp.     | Тур.  | Мах   | Unit | Note |
|-----------------------|--------------------------------------|-----------|-------|-------|------|------|
|                       |                                      | at 70 °C  | 5.71  | 7.75  | μA   |      |
|                       |                                      | at 85 °C  | 10    | 13.54 | μA   |      |
|                       |                                      | at 105 °C | 22.4  | 30.41 | μA   |      |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current | at 25 °C  | 1.22  | 1.6   | μA   | —    |
|                       | at 3.0 V                             | at 50 °C  | 2.25  | 2.31  | μA   |      |
|                       |                                      | at 70 °C  | 4.21  | 5.44  | μA   |      |
|                       |                                      | at 85 °C  | 7.37  | 9.44  | μA   |      |
|                       |                                      | at 105 °C | 16.6  | 21.76 | μA   |      |
| IDD_VLLS1             | Very low-leakage stop mode 1 current | at 25 °C  | 0.58  | 0.94  | μA   | _    |
|                       | at 3.0 V                             | at 50 °C  | 1.26  | 1.31  | μA   |      |
|                       |                                      | at 70 °C  | 2.53  | 3.33  | μA   |      |
|                       |                                      | at 85 °C  | 4.74  | 6.1   | μA   |      |
|                       |                                      | at 105 °C | 11.4  | 15.27 | μA   |      |
| I <sub>DD_VLLS0</sub> | Very low-leakage stop mode 0 current | at 25 °C  | 0.31  | 0.65  | μA   | _    |
|                       | (SMC_STOPCTRL[PORPO] = 0) at 3.0     | at 50 °C  | 0.99  | 1.43  | μA   |      |
|                       | v                                    | at 70 °C  | 2.25  | 3.01  | μA   |      |
|                       |                                      | at 85 °C  | 4.46  | 5.83  | μA   |      |
|                       |                                      | at 105 °C | 11.13 | 14.99 | μA   |      |
| IDD_VLLS0             | Very low-leakage stop mode 0 current | at 25 °C  | 0.12  | 0.47  | μA   | 7    |
|                       | (SMC_STOPCTRL[PORPO] = 1) at 3.0     | at 50 °C  | 0.8   | 1.24  | μA   |      |
|                       | ·                                    | at 70 °C  | 2.06  | 2.81  | μA   |      |
|                       |                                      | at 85 °C  | 4.27  | 5.62  | μA   |      |
|                       |                                      | at 105 °C | 10.93 | 14.78 | μA   |      |

#### Table 9. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for time.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 6. MCG configured for BLPI mode.
- 7. No brownout.

#### Table 10. Low power mode peripheral adders — typical value

| Symbol                    | Description                                                                                                      | Temperature (°C) |    |    | Unit |    |     |    |
|---------------------------|------------------------------------------------------------------------------------------------------------------|------------------|----|----|------|----|-----|----|
|                           |                                                                                                                  | -40              | 25 | 50 | 70   | 85 | 105 |    |
| I <sub>IREFSTEN4MHz</sub> | 4 MHz internal reference clock (IRC) adder.<br>Measured by entering STOP or VLPS mode<br>with 4 MHz IRC enabled. | 56               | 56 | 56 | 56   | 56 | 56  | μA |

Table continues on the next page...





| Symbol                     | Description                                                                                                                                                                                       |                                                                                    |     | ٦   | Tempera | ature (°0 | C)  |     | Unit |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-----|---------|-----------|-----|-----|------|
|                            |                                                                                                                                                                                                   |                                                                                    | -40 | 25  | 50      | 70        | 85  | 105 |      |
| I <sub>IREFSTEN32KHz</sub> | 32 kHz internal reference clock<br>Measured by entering STOP n<br>32 kHz IRC enabled.                                                                                                             | (IRC) adder.<br>node with the                                                      | 52  | 52  | 52      | 52        | 52  | 52  | μA   |
| I <sub>EREFSTEN4MHz</sub>  | External 4 MHz crystal clock a<br>Measured by entering STOP o<br>with the crystal enabled.                                                                                                        | dder.<br>r VLPS mode                                                               | 206 | 228 | 237     | 245       | 251 | 258 | μA   |
| I <sub>EREFSTEN32KHz</sub> | External 32 kHz crystal clock                                                                                                                                                                     | VLLS1                                                                              | 440 | 490 | 540     | 560       | 570 | 580 | nA   |
|                            | OSC0 CRIEREFSTEN and                                                                                                                                                                              | VLLS3                                                                              | 440 | 490 | 540     | 560       | 570 | 580 |      |
|                            | EREFSTEN] bits. Measured                                                                                                                                                                          | LLS                                                                                | 490 | 490 | 540     | 560       | 570 | 680 |      |
|                            | by entering all modes with the                                                                                                                                                                    | VLPS                                                                               | 510 | 560 | 560     | 560       | 610 | 680 |      |
|                            | crystal enabled.                                                                                                                                                                                  | STOP                                                                               | 510 | 560 | 560     | 560       | 610 | 680 |      |
| I <sub>CMP</sub>           | CMP peripheral adder measured by placing<br>the device in VLLS1 mode with CMP enabled<br>using the 6-bit DAC and a single external<br>input for compare. Includes 6-bit DAC power<br>consumption. |                                                                                    | 22  | 22  | 22      | 22        | 22  | 22  | μA   |
| I <sub>RTC</sub>           | RTC peripheral adder measure<br>the device in VLLS1 mode with<br>kHz crystal enabled by means<br>RTC_CR[OSCE] bit and the R<br>for 1 minute. Includes ERCLK3<br>external crystal) power consum    | ed by placing<br>n external 32<br>of the<br>TC ALARM set<br>32K (32 kHz<br>nption. | 432 | 357 | 388     | 475       | 532 | 810 | nA   |
| I <sub>UART</sub>          | UART peripheral adder<br>measured by placing the<br>device in STOP or VLPS<br>mode with selected clock<br>source waiting for RX data at                                                           | MCGIRCLK<br>(4 MHz<br>internal<br>reference<br>clock)                              | 66  | 66  | 66      | 66        | 66  | 66  | μA   |
|                            | 115200 baud rate. Includes<br>selected clock source power<br>consumption.                                                                                                                         | OSCERCLK<br>(4 MHz<br>external<br>crystal)                                         | 214 | 237 | 246     | 254       | 260 | 268 |      |
| I <sub>TPM</sub>           | TPM peripheral adder<br>measured by placing the<br>device in STOP or VLPS<br>mode with selected clock<br>source configured for output                                                             | MCGIRCLK<br>(4 MHz<br>internal<br>reference<br>clock)                              | 86  | 86  | 86      | 86        | 86  | 86  | μA   |
|                            | compare generating 100 Hz<br>clock signal. No load is<br>placed on the I/O generating<br>the clock signal. Includes<br>selected clock source and I/O<br>switching currents.                       | OSCERCLK<br>(4 MHz<br>external<br>crystal)                                         | 235 | 256 | 265     | 274       | 280 | 287 |      |
| I <sub>BG</sub>            | Bandgap adder when BGEN b<br>device is placed in VLPx, LLS,<br>mode.                                                                                                                              | it is set and<br>or VLLSx                                                          | 45  | 45  | 45      | 45        | 45  | 45  | μA   |
| I <sub>ADC</sub>           | ADC peripheral adder combini<br>measured values at V <sub>DD</sub> and V                                                                                                                          | ng the<br>/ <sub>DDA</sub> by placing                                              | 366 | 366 | 366     | 366       | 366 | 366 | μA   |

| Table 10. | Low power mode | peripheral adders — | <ul> <li>typical value (continued)</li> </ul> |
|-----------|----------------|---------------------|-----------------------------------------------|
|-----------|----------------|---------------------|-----------------------------------------------|



## 3.1.1 SWD electricals

| Symbol | Description                                     | Min. | Max. | Unit |
|--------|-------------------------------------------------|------|------|------|
|        | Operating voltage                               | 1.71 | 3.6  | V    |
| J1     | SWD_CLK frequency of operation                  |      |      |      |
|        | Serial wire debug                               | 0    | 25   | MHz  |
| J2     | SWD_CLK cycle period                            | 1/J1 | —    | ns   |
| J3     | SWD_CLK clock pulse width                       |      |      |      |
|        | Serial wire debug                               | 20   | —    | ns   |
| J4     | SWD_CLK rise and fall times                     | —    | 3    | ns   |
| J9     | SWD_DIO input data setup time to SWD_CLK rise   | 10   | —    | ns   |
| J10    | SWD_DIO input data hold time after SWD_CLK rise | 0    | —    | ns   |
| J11    | SWD_CLK high to SWD_DIO data valid              | —    | 32   | ns   |
| J12    | SWD_CLK high to SWD_DIO high-Z                  | 5    | —    | ns   |

Table 17. SWD full voltage range electricals



Figure 5. Serial wire clock input timing



| Symbol                | Description                           | Min.   | Тур. | Max.                                                          | Unit | Notes |
|-----------------------|---------------------------------------|--------|------|---------------------------------------------------------------|------|-------|
| J <sub>acc_pll</sub>  | PLL accumulated jitter over 1µs (RMS) |        |      |                                                               |      | 10    |
|                       | • f <sub>vco</sub> = 48 MHz           | —      | 1350 | —                                                             | ps   |       |
|                       | • f <sub>vco</sub> = 100 MHz          | _      | 600  | _                                                             | ps   |       |
| D <sub>lock</sub>     | Lock entry frequency tolerance        | ± 1.49 | —    | ± 2.98                                                        | %    |       |
| D <sub>unl</sub>      | Lock exit frequency tolerance         | ± 4.47 | —    | ± 5.97                                                        | %    |       |
| t <sub>pll_lock</sub> | Lock detector detection time          | _      |      | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S    | 11    |

#### Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal  $V_{DD}$  and 25 °C,  $f_{ints_{ft}}$ .
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco\_t</sub>) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

## **3.3.2 Oscillator electrical specifications**

## 3.3.2.1 Oscillator DC electrical specifications

| Symbol          | Description                             | Min. | Тур. | Max. | Unit | Notes |
|-----------------|-----------------------------------------|------|------|------|------|-------|
| V <sub>DD</sub> | Supply voltage                          | 1.71 | —    | 3.6  | V    |       |
| IDDOSC          | Supply current — low-power mode (HGO=0) |      |      |      |      | 1     |
|                 | • 32 kHz                                | _    | 500  | —    | nA   |       |
|                 | • 4 MHz                                 | _    | 200  | —    | μA   |       |
|                 | • 8 MHz (RANGE=01)                      | _    | 300  | —    | μA   |       |
|                 | • 16 MHz                                | _    | 950  | —    | μA   |       |
|                 |                                         | _    | 1.2  | _    | mA   |       |

Table 19. Oscillator DC electrical specifications

Table continues on the next page ...



| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
|                              | • 24 MHz                                                                                               | _    | 1.5             | —    | mA   |       |
|                              | • 32 MHz                                                                                               |      |                 |      |      |       |
| I <sub>DDOSC</sub>           | Supply current — high gain mode (HGO=1)                                                                |      |                 |      |      | 1     |
|                              | • 32 kHz                                                                                               | —    | 25              | _    | μA   |       |
|                              | • 4 MHz                                                                                                | —    | 400             | _    | μA   |       |
|                              | • 8 MHz (RANGE=01)                                                                                     | —    | 500             | —    | μA   |       |
|                              | • 16 MHz                                                                                               | —    | 2.5             | —    | mA   |       |
|                              | • 24 MHz                                                                                               | —    | 3               | —    | mA   |       |
|                              | • 32 MHz                                                                                               | —    | 4               | —    | mA   |       |
| C <sub>x</sub>               | EXTAL load capacitance                                                                                 |      | _               | _    |      | 2, 3  |
| Cy                           | XTAL load capacitance                                                                                  | _    |                 |      |      | 2, 3  |
| R <sub>F</sub>               | Feedback resistor — low-frequency, low-power mode (HGO=0)                                              | _    | _               | _    | MΩ   | 2, 4  |
|                              | Feedback resistor — low-frequency, high-gain mode (HGO=1)                                              | —    | 10              | —    | MΩ   |       |
|                              | Feedback resistor — high-frequency, low-power mode (HGO=0)                                             | _    | _               | _    | MΩ   |       |
|                              | Feedback resistor — high-frequency, high-gain mode (HGO=1)                                             | _    | 1               | _    | MΩ   |       |
| R <sub>S</sub>               | Series resistor — low-frequency, low-power mode (HGO=0)                                                | _    | —               | —    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain<br>mode (HGO=1)                                             | —    | 200             |      | kΩ   |       |
|                              | Series resistor — high-frequency, low-power mode (HGO=0)                                               | _    | _               | _    | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              |                                                                                                        | —    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) |      | 0.6             |      | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) |      | V <sub>DD</sub> |      | V    |       |

| Table 19. | <b>Oscillator DC electrical s</b> | pecifications ( | (continued) | 1 |
|-----------|-----------------------------------|-----------------|-------------|---|
|-----------|-----------------------------------|-----------------|-------------|---|

V<sub>DD</sub>=3.3 V, Temperature =25 °C
 See crystal or resonator manufacturer's recommendation



### 3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                | Description                        | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>   | Longword Program high-voltage time | _    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub> | Sector Erase high-voltage time     | _    | 13   | 113  | ms   | 1     |
| t <sub>hversall</sub> | Erase All high-voltage time        | _    | 52   | 452  | ms   | 1     |

Table 21. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

#### 3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

| Symbol                | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------|------|------|------|------|-------|
| t <sub>rd1sec1k</sub> | Read 1s Section execution time (flash sector) | —    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>   | Program Check execution time                  | —    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>   | Read Resource execution time                  | —    | —    | 30   | μs   | 1     |
| t <sub>pgm4</sub>     | Program Longword execution time               | —    | 65   | 145  | μs   | _     |
| t <sub>ersscr</sub>   | Erase Flash Sector execution time             | —    | 14   | 114  | ms   | 2     |
| t <sub>rd1all</sub>   | Read 1s All Blocks execution time             | _    | —    | 1.8  | ms   | _     |
| t <sub>rdonce</sub>   | Read Once execution time                      | _    | —    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>  | Program Once execution time                   | —    | 65   | —    | μs   | _     |
| t <sub>ersall</sub>   | Erase All Blocks execution time               | —    | 88   | 650  | ms   | 2     |
| t <sub>vfykey</sub>   | Verify Backdoor Access Key execution time     | —    | —    | 30   | μs   | 1     |

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

### 3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

| Symbol              | Description                                                              | Min. | Тур. | Max. | Unit |
|---------------------|--------------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage<br>flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation          |      | 1.5  | 4.0  | mA   |



### 3.4.1.4 Reliability specifications Table 24. NVM reliability specifications

| Symbol                  | Description                            | Min.    | Typ. <sup>1</sup> | Max. | Unit   | Notes |
|-------------------------|----------------------------------------|---------|-------------------|------|--------|-------|
|                         | Program                                | m Flash |                   |      |        |       |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5       | 50                | _    | years  | _     |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20      | 100               | _    | years  | _     |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K    | 50 K              | _    | cycles | 2     |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C  $\leq$  T<sub>i</sub>  $\leq$  125 °C.

## 3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

## 3.6 Analog

## 3.6.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

### 3.6.1.1 12-bit ADC operating conditions Table 25. 12-bit ADC operating conditions

| Symbol            | Description                | Conditions                               | Min.              | Typ. <sup>1</sup> | Max.              | Unit | Notes |
|-------------------|----------------------------|------------------------------------------|-------------------|-------------------|-------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage             | Absolute                                 |                   | —                 | 3.6               | V    | —     |
| $\Delta V_{DDA}$  | Supply voltage             | Delta to $V_{DD}$ ( $V_{DD} - V_{DDA}$ ) | -100              | 0                 | +100              | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage             | Delta to $V_{SS}$ ( $V_{SS} - V_{SSA}$ ) | -100              | 0                 | +100              | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high |                                          | 1.13              | V <sub>DDA</sub>  | V <sub>DDA</sub>  | V    | 3     |
| V <sub>REFL</sub> | ADC reference voltage low  |                                          | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V    | 3     |
| V <sub>ADIN</sub> | Input voltage              |                                          | V <sub>REFL</sub> | _                 | V <sub>REFH</sub> | V    | _     |
| C <sub>ADIN</sub> | Input<br>capacitance       | 8-bit / 10-bit / 12-bit<br>modes         | —                 | 4                 | 5                 | pF   |       |
| R <sub>ADIN</sub> | Input series<br>resistance |                                          | _                 | 2                 | 5                 | kΩ   | _     |

Table continues on the next page...



| Symbol            | Description                               | Conditions                                                                                                                                        | Min.   | Typ. <sup>1</sup> | Max.    | Unit | Notes |
|-------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|---------|------|-------|
| R <sub>AS</sub>   | Analog source<br>resistance<br>(external) | 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz                                                                                                         | _      | _                 | 5       | kΩ   | 4     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency         | ≤ 12-bit mode                                                                                                                                     | 1.0    | _                 | 18.0    | MHz  | 5     |
| C <sub>rate</sub> | ADC conversion<br>rate                    | <ul> <li>≤ 12-bit modes</li> <li>No ADC hardware averaging</li> <li>Continuous conversions<br/>enabled, subsequent<br/>conversion time</li> </ul> | 20.000 | _                 | 818.330 | Ksps | 6     |

- 1. Typical values assume  $V_{DDA}$  = 3.0 V, Temp = 25 °C,  $f_{ADCK}$  = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V<sub>REFH</sub> is internally tied to V<sub>DDA</sub>, and V<sub>REFL</sub> is internally tied to V<sub>SSA</sub>.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



Figure 7. ADC input impedance equivalency diagram



#### 12-bit ADC electrical characteristics 3.6.1.2

| Symbol               | Description                    | Conditions <sup>1</sup>                           | Min.         | Typ. <sup>2</sup>      | Max.            | Unit             | Notes                                                                        |
|----------------------|--------------------------------|---------------------------------------------------|--------------|------------------------|-----------------|------------------|------------------------------------------------------------------------------|
| I <sub>DDA_ADC</sub> | Supply current                 |                                                   | 0.215        | _                      | 1.7             | mA               | 3                                                                            |
|                      | ADC                            | • ADLPC = 1, ADHSC =                              | 1.2          | 2.4                    | 3.9             | MHz              | t <sub>ADACK</sub> =                                                         |
|                      | asynchronous                   | 0                                                 | 2.4          | 4.0                    | 6.1             | MHz              | 1/f <sub>ADACK</sub>                                                         |
|                      |                                | <ul> <li>ADLPC = 1, ADHSC =</li> <li>1</li> </ul> | 3.0          | 5.2                    | 7.3             | MHz              |                                                                              |
| fadack               |                                | • ADLPC = 0, ADHSC = 0                            | 4.4          | 6.2                    | 9.5             | MHz              |                                                                              |
|                      |                                | • ADLPC = 0, ADHSC = 1                            |              |                        |                 |                  |                                                                              |
|                      | Sample Time                    | See Reference Manual chapte                       | r for sample | times                  |                 |                  |                                                                              |
| TUE                  | Total unadjusted               | 12-bit modes                                      | —            | ±4                     | ±6.8            | LSB <sup>4</sup> | 5                                                                            |
|                      | error                          | 12-bit modes                                      | _            | ±1.4                   | ±2.1            |                  |                                                                              |
| DNL                  | Differential non-<br>linearity | 12-bit modes                                      |              | ±0.7                   | -1.1 to<br>+1.9 | LSB <sup>4</sup> | 5                                                                            |
|                      |                                | 12-bit modes                                      |              | ±0.2                   | -0.3 to 0.5     |                  |                                                                              |
| INL                  | Integral non-<br>linearity     | 12-bit modes                                      |              | ±1.0                   | -2.7 to<br>+1.9 | LSB <sup>4</sup> | 5                                                                            |
|                      |                                | <ul> <li>&lt;12-bit modes</li> </ul>              | _            | ±0.5                   | –0.7 to<br>+0.5 |                  |                                                                              |
| E <sub>FS</sub>      | Full-scale error               | 12-bit modes                                      | —            | -4                     | -5.4            | LSB <sup>4</sup> | V <sub>ADIN</sub> =                                                          |
|                      |                                | <ul> <li>&lt;12-bit modes</li> </ul>              | _            | -1.4                   | -1.8            |                  | V <sub>DDA</sub> <sup>5</sup>                                                |
| EQ                   | Quantization<br>error          | 12-bit modes                                      | _            | —                      | ±0.5            | LSB <sup>4</sup> |                                                                              |
| E <sub>IL</sub>      | Input leakage<br>error         |                                                   |              | $I_{ln} \times R_{AS}$ |                 | mV               | I <sub>In</sub> =<br>leakage<br>current                                      |
|                      |                                |                                                   |              |                        |                 |                  | (refer to<br>the MCU's<br>voltage<br>and<br>current<br>operating<br>ratings) |
|                      | Temp sensor<br>slope           | Across the full temperature range of the device   | 1.55         | 1.62                   | 1.69            | mV/°C            | 6                                                                            |
| V <sub>TEMP25</sub>  | Temp sensor<br>voltage         | 25 °C                                             | 706          | 716                    | 726             | mV               | 6                                                                            |

## Table 26. 12-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ )

1. All accuracy numbers assume the ADC is calibrated with  $V_{REFH} = V_{DDA}$ 2. Typical values assume  $V_{DDA} = 3.0 \text{ V}$ , Temp = 25 °C,  $f_{ADCK} = 2.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.



| Symbol             | Description                                               | Min. | Тур. | Max. | Unit             |
|--------------------|-----------------------------------------------------------|------|------|------|------------------|
| V <sub>CMPOI</sub> | Output low                                                | —    | —    | 0.5  | V                |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN = 1,<br>PMODE = 1) | 20   | 50   | 200  | ns               |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN = 1,<br>PMODE = 0)  | 80   | 250  | 600  | ns               |
|                    | Analog comparator initialization delay <sup>2</sup>       | _    | —    | 40   | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                         | —    | 7    | —    | μA               |
| INL                | 6-bit DAC integral non-linearity                          | -0.5 | —    | 0.5  | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                      | -0.3 | _    | 0.3  | LSB              |

 Table 27. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to  $V_{\text{DD}}$  – 0.7 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to

DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3.  $1 \text{ LSB} = V_{\text{reference}}/64$ 



Figure 9. Typical hysteresis vs. Vin level ( $V_{DD} = 3.3 V$ , PMODE = 0)





Figure 10. Typical hysteresis vs. Vin level ( $V_{DD}$  = 3.3 V, PMODE = 1)

## 3.7 Timers

See General switching specifications.

## 3.8 Communication interfaces

## 3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to  $20\% V_{DD}$  and  $80\% V_{DD}$  thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

| Num. | Symbol          | Description            | Min.                      | Max.                   | Unit | Note |
|------|-----------------|------------------------|---------------------------|------------------------|------|------|
| 1    | f <sub>op</sub> | Frequency of operation | f <sub>periph</sub> /2048 | f <sub>periph</sub> /2 | Hz   | 1    |

Table 28. SPI master mode timing on slew rate disabled pads

Table continues on the next page ...



| Characteristic                                                                                     | Symbol                | Standa           | rd Mode           | Fast                               | Mode             | Unit |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------|------------------------------------|------------------|------|
|                                                                                                    |                       | Minimum          | Maximum           | Minimum                            | Maximum          |      |
| SCL Clock Frequency                                                                                | f <sub>SCL</sub>      | 0                | 100               | 0                                  | 400 <sup>1</sup> | kHz  |
| Hold time (repeated) START condition.<br>After this period, the first clock pulse is<br>generated. | t <sub>HD</sub> ; STA | 4                | —                 | 0.6                                | —                | μs   |
| LOW period of the SCL clock                                                                        | t <sub>LOW</sub>      | 4.7              | —                 | 1.3                                | —                | μs   |
| HIGH period of the SCL clock                                                                       | t <sub>HIGH</sub>     | 4                | —                 | 0.6                                | —                | μs   |
| Set-up time for a repeated START condition                                                         | t <sub>SU</sub> ; STA | 4.7              | _                 | 0.6                                | —                | μs   |
| Data hold time for I <sup>2</sup> C bus devices                                                    | t <sub>HD</sub> ; DAT | 0 <sup>2</sup>   | 3.45 <sup>3</sup> | 04                                 | 0.9 <sup>2</sup> | μs   |
| Data set-up time                                                                                   | t <sub>SU</sub> ; DAT | 250 <sup>5</sup> | —                 | 100 <sup>3</sup> , <sup>6</sup>    | —                | ns   |
| Rise time of SDA and SCL signals                                                                   | t <sub>r</sub>        | _                | 1000              | 20 +0.1C <sub>b</sub> <sup>7</sup> | 300              | ns   |
| Fall time of SDA and SCL signals                                                                   | t <sub>f</sub>        | _                | 300               | 20 +0.1C <sub>b</sub> <sup>6</sup> | 300              | ns   |
| Set-up time for STOP condition                                                                     | t <sub>SU</sub> ; STO | 4                | —                 | 0.6                                | —                | μs   |
| Bus free time between STOP and<br>START condition                                                  | t <sub>BUF</sub>      | 4.7              | _                 | 1.3                                | —                | μs   |
| Pulse width of spikes that must be suppressed by the input filter                                  | t <sub>SP</sub>       | N/A              | N/A               | 0                                  | 50               | ns   |

### 3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 32. I2C timing

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

The master mode I<sup>2</sup>C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I<sup>2</sup>C bus device can be used in a Standard mode I2C bus system, but the requirement  $t_{SU; DAT} \ge 250$  ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line  $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$  ns (according to the Standard mode I<sup>2</sup>C bus specification) before the SCL line is released.
- 7.  $C_b$  = total capacitance of the one bus line in pF.



Figure 15. Timing definition for fast and standard mode devices on the I<sup>2</sup>C bus



| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name | Default                | ALT0                   | ALT1  | ALT2      | ALT3     | ALT4           | ALT5      | ALT6            | ALT7    |
|------------|------------|-----------|-----------|----------|------------------------|------------------------|-------|-----------|----------|----------------|-----------|-----------------|---------|
| 6          | _          | _         | _         | PTE5     | DISABLED               |                        | PTE5  |           |          |                |           |                 |         |
| 7          | 3          | 1         | _         | VDD      | VDD                    | VDD                    |       |           |          |                |           |                 |         |
| 8          | 4          | 2         | _         | VSS      | VSS                    | VSS                    |       |           |          |                |           |                 |         |
| 9          | 5          | 3         | 3         | PTE16    | ADC0_SE1               | ADC0_SE1               | PTE16 | SPI0_PCS0 | UART2_TX | TPM_<br>CLKIN0 |           |                 |         |
| 10         | 6          | 4         | 4         | PTE17    | ADC0_SE5a              | ADC0_SE5a              | PTE17 | SPI0_SCK  | UART2_RX | TPM_<br>CLKIN1 |           | LPTMR0_<br>ALT3 |         |
| 11         | 7          | 5         | 5         | PTE18    | ADC0_SE2               | ADC0_SE2               | PTE18 | SPI0_MOSI |          | I2C0_SDA       | SPI0_MISO |                 |         |
| 12         | 8          | 6         | 6         | PTE19    | ADC0_SE6a              | ADC0_SE6a              | PTE19 | SPI0_MISO |          | I2C0_SCL       | SPI0_MOSI |                 |         |
| 13         | 9          | 7         | -         | PTE20    | ADC0_SE0               | ADC0_SE0               | PTE20 |           | TPM1_CH0 | UART0_TX       |           |                 |         |
| 14         | 10         | 8         | -         | PTE21    | ADC0_SE4a              | ADC0_SE4a              | PTE21 |           | TPM1_CH1 | UART0_RX       |           |                 |         |
| 15         | 11         | Ι         | -         | PTE22    | ADC0_SE3               | ADC0_SE3               | PTE22 |           | TPM2_CH0 | UART2_TX       |           |                 |         |
| 16         | 12         | Ι         | -         | PTE23    | ADC0_SE7a              | ADC0_SE7a              | PTE23 |           | TPM2_CH1 | UART2_RX       |           |                 |         |
| 17         | 13         | 9         | 7         | VDDA     | VDDA                   | VDDA                   |       |           |          |                |           |                 |         |
| 18         | 14         | 10        | _         | VREFH    | VREFH                  | VREFH                  |       |           |          |                |           |                 |         |
| 19         | 15         | 11        | _         | VREFL    | VREFL                  | VREFL                  |       |           |          |                |           |                 |         |
| 20         | 16         | 12        | 8         | VSSA     | VSSA                   | VSSA                   |       |           |          |                |           |                 |         |
| 21         | 17         | 13        | _         | PTE29    | CMP0_IN5/<br>ADC0_SE4b | CMP0_IN5/<br>ADC0_SE4b | PTE29 |           | TPM0_CH2 | TPM_<br>CLKIN0 |           |                 |         |
| 22         | 18         | 14        | 9         | PTE30    | ADC0_SE23/<br>CMP0_IN4 | ADC0_SE23/<br>CMP0_IN4 | PTE30 |           | TPM0_CH3 | TPM_<br>CLKIN1 |           |                 |         |
| 23         | 19         | —         | _         | PTE31    | DISABLED               |                        | PTE31 |           | TPM0_CH4 |                |           |                 |         |
| 24         | 20         | 15        | —         | PTE24    | DISABLED               |                        | PTE24 |           | TPM0_CH0 |                | I2C0_SCL  |                 |         |
| 25         | 21         | 16        | _         | PTE25    | DISABLED               |                        | PTE25 |           | TPM0_CH1 |                | I2C0_SDA  |                 |         |
| 26         | 22         | 17        | 10        | PTA0     | SWD_CLK                |                        | PTA0  |           | TPM0_CH5 |                |           |                 | SWD_CLK |
| 27         | 23         | 18        | 11        | PTA1     | DISABLED               |                        | PTA1  | UART0_RX  | TPM2_CH0 |                |           |                 |         |
| 28         | 24         | 19        | 12        | PTA2     | DISABLED               |                        | PTA2  | UART0_TX  | TPM2_CH1 |                |           |                 |         |
| 29         | 25         | 20        | 13        | PTA3     | SWD_DIO                |                        | PTA3  | I2C1_SCL  | TPM0_CH0 |                |           |                 | SWD_DIO |
| 30         | 26         | 21        | 14        | PTA4     | NMI_b                  |                        | PTA4  | I2C1_SDA  | TPM0_CH1 |                |           |                 | NMI_b   |
| 31         | 27         | Ι         | -         | PTA5     | DISABLED               |                        | PTA5  |           | TPM0_CH2 |                |           |                 |         |
| 32         | 28         | Ι         | -         | PTA12    | DISABLED               |                        | PTA12 |           | TPM1_CH0 |                |           |                 |         |
| 33         | 29         | -         | -         | PTA13    | DISABLED               |                        | PTA13 |           | TPM1_CH1 |                |           |                 |         |
| 34         | _          | _         | _         | PTA14    | DISABLED               |                        | PTA14 | SPI0_PCS0 | UART0_TX |                |           |                 |         |
| 35         | -          | -         | _         | PTA15    | DISABLED               |                        | PTA15 | SPI0_SCK  | UART0_RX |                |           |                 |         |
| 36         | _          | -         | _         | PTA16    | DISABLED               |                        | PTA16 | SPI0_MOSI |          |                | SPI0_MISO |                 |         |
| 37         | -          | -         | -         | PTA17    | DISABLED               |                        | PTA17 | SPI0_MISO |          |                | SPI0_MOSI |                 |         |
| 38         | 30         | 22        | 15        | VDD      | VDD                    | VDD                    |       |           |          |                |           |                 |         |
| 39         | 31         | 23        | 16        | VSS      | VSS                    | VSS                    |       |           |          |                |           |                 |         |
| 40         | 32         | 24        | 17        | PTA18    | EXTAL0                 | EXTAL0                 | PTA18 |           | UART1_RX | TPM_<br>Clkino |           |                 |         |

| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name                       | Default   | ALT0      | ALT1                           | ALT2      | ALT3            | ALT4           | ALT5      | ALT6            | ALT7 |
|------------|------------|-----------|-----------|--------------------------------|-----------|-----------|--------------------------------|-----------|-----------------|----------------|-----------|-----------------|------|
| 41         | 33         | 25        | 18        | PTA19                          | XTAL0     | XTAL0     | PTA19                          |           | UART1_TX        | TPM_<br>CLKIN1 |           | LPTMR0_<br>ALT1 |      |
| 42         | 34         | 26        | 19        | RESET_b                        | RESET_b   |           | PTA20                          |           |                 |                |           |                 |      |
| 43         | 35         | 27        | 20        | PTB0/<br>LLWU_P5               | ADC0_SE8  | ADC0_SE8  | PTB0/<br>LLWU_P5               | I2C0_SCL  | TPM1_CH0        |                |           |                 |      |
| 44         | 36         | 28        | 21        | PTB1                           | ADC0_SE9  | ADC0_SE9  | PTB1                           | I2C0_SDA  | TPM1_CH1        |                |           |                 |      |
| 45         | 37         | 29        | -         | PTB2                           | ADC0_SE12 | ADC0_SE12 | PTB2                           | I2C0_SCL  | TPM2_CH0        |                |           |                 |      |
| 46         | 38         | 30        | _         | PTB3                           | ADC0_SE13 | ADC0_SE13 | PTB3                           | I2C0_SDA  | TPM2_CH1        |                |           |                 |      |
| 47         | _          | _         | _         | PTB8                           | DISABLED  |           | PTB8                           |           | EXTRG_IN        |                |           |                 |      |
| 48         | _          | -         | _         | PTB9                           | DISABLED  |           | PTB9                           |           |                 |                |           |                 |      |
| 49         | _          | _         | _         | PTB10                          | DISABLED  |           | PTB10                          | SPI1_PCS0 |                 |                |           |                 |      |
| 50         | _          | -         | -         | PTB11                          | DISABLED  |           | PTB11                          | SPI1_SCK  |                 |                |           |                 |      |
| 51         | 39         | 31        | _         | PTB16                          | DISABLED  |           | PTB16                          | SPI1_MOSI | UART0_RX        | TPM_<br>CLKIN0 | SPI1_MISO |                 |      |
| 52         | 40         | 32        | 1         | PTB17                          | DISABLED  |           | PTB17                          | SPI1_MISO | UART0_TX        | TPM_<br>CLKIN1 | SPI1_MOSI |                 |      |
| 53         | 41         | —         | —         | PTB18                          | DISABLED  |           | PTB18                          |           | TPM2_CH0        |                |           |                 |      |
| 54         | 42         | _         | -         | PTB19                          | DISABLED  |           | PTB19                          |           | TPM2_CH1        |                |           |                 |      |
| 55         | 43         | 33        | -         | PTC0                           | ADC0_SE14 | ADC0_SE14 | PTC0                           |           | EXTRG_IN        |                | CMP0_OUT  |                 |      |
| 56         | 44         | 34        | 22        | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | ADC0_SE15 | ADC0_SE15 | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | I2C1_SCL  |                 | TPM0_CH0       |           |                 |      |
| 57         | 45         | 35        | 23        | PTC2                           | ADC0_SE11 | ADC0_SE11 | PTC2                           | I2C1_SDA  |                 | TPM0_CH1       |           |                 |      |
| 58         | 46         | 36        | 24        | PTC3/<br>LLWU_P7               | DISABLED  |           | PTC3/<br>LLWU_P7               |           | UART1_RX        | TPM0_CH2       | CLKOUT    |                 |      |
| 59         | 47         | —         | —         | VSS                            | VSS       | VSS       |                                |           |                 |                |           |                 |      |
| 60         | 48         | -         | _         | VDD                            | VDD       | VDD       |                                |           |                 |                |           |                 |      |
| 61         | 49         | 37        | 25        | PTC4/<br>LLWU_P8               | DISABLED  |           | PTC4/<br>LLWU_P8               | SPI0_PCS0 | UART1_TX        | TPM0_CH3       |           |                 |      |
| 62         | 50         | 38        | 26        | PTC5/<br>LLWU_P9               | DISABLED  |           | PTC5/<br>LLWU_P9               | SPI0_SCK  | LPTMR0_<br>ALT2 |                |           | CMP0_OUT        |      |
| 63         | 51         | 39        | 27        | PTC6/<br>LLWU_P10              | CMP0_IN0  | CMP0_IN0  | PTC6/<br>LLWU_P10              | SPI0_MOSI | EXTRG_IN        |                | SPI0_MISO |                 |      |
| 64         | 52         | 40        | 28        | PTC7                           | CMP0_IN1  | CMP0_IN1  | PTC7                           | SPI0_MISO |                 |                | SPI0_MOSI |                 |      |
| 65         | 53         | Ι         | -         | PTC8                           | CMP0_IN2  | CMP0_IN2  | PTC8                           | I2C0_SCL  | TPM0_CH4        |                |           |                 |      |
| 66         | 54         | -         | -         | PTC9                           | CMP0_IN3  | CMP0_IN3  | PTC9                           | I2C0_SDA  | TPM0_CH5        |                |           |                 |      |
| 67         | 55         | -         | -         | PTC10                          | DISABLED  |           | PTC10                          | I2C1_SCL  |                 |                |           |                 |      |
| 68         | 56         | -         | -         | PTC11                          | DISABLED  |           | PTC11                          | I2C1_SDA  |                 |                |           |                 |      |
| 69         | -          | —         | —         | PTC12                          | DISABLED  |           | PTC12                          |           |                 | TPM_<br>CLKIN0 |           |                 |      |
| 70         | -          | -         | -         | PTC13                          | DISABLED  |           | PTC13                          |           |                 | TPM_<br>CLKIN1 |           |                 |      |
| 71         | -          | -         | -         | PTC16                          | DISABLED  |           | PTC16                          |           |                 |                |           |                 |      |

Kinetis KL14 Sub-Family, Rev5 08/2014.

P





Figure 16. KL14 80-pin LQFP pinout diagram





Figure 17. KL14 64-pin LQFP pinout diagram





Figure 18. KL14 48-pin QFN pinout diagram





Figure 19. KL14 32-pin QFN pinout diagram

## 6 Ordering parts

## 6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL14 and MKL14

## 7 Part identification