

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl14z64vlh4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Part Number	Mer	nory	Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MKL14Z32VFM4	32	4	28
MKL14Z64VFM4	64	8	28
MKL14Z32VFT4	32	4	40
MKL14Z64VFT4	64	8	40
MKL14Z32VLH4	32	4	54
MKL14Z64VLH4	64	8	54
MKL14Z32VLK4	32	4	70
MKL14Z64VLK4	64	8	70

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KL1 Family Product Brief ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL14P80M48SF0RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL14P80M48SF0 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_xN97F ²
Package	Package dimensions are provided in package drawings.	QFN 32-pin: 98ASA00473D ¹
drawing		QFN 48-pin: 98ASA00466D ¹
		LQFP 64-pin: 98ASS23234W ¹
		LQFP 80-pin: 98ASS23174W ¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

To find the associated resource, go to http://www.freescale.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

1	Rati	ngs	5
	1.1	Therm	al handling ratings5
	1.2	Moistu	re handling ratings5
	1.3	ESD h	andling ratings5
	1.4	Voltage	e and current operating ratings5
2	Ger	eral	
	2.1	AC ele	ctrical characteristics6
	2.2	Nonsw	itching electrical specifications6
		2.2.1	Voltage and current operating requirements7
		2.2.2	LVD and POR operating requirements7
		2.2.3	Voltage and current operating behaviors8
		2.2.4	Power mode transition operating behaviors9
		2.2.5	Power consumption operating behaviors 10
		2.2.6	EMC radiated emissions operating behaviors 15
		2.2.7	Designing with radiated emissions in mind16
		2.2.8	Capacitance attributes16
	2.3	Switch	ing specifications16
		2.3.1	Device clock specifications16
		2.3.2	General switching specifications 17
	2.4	Therm	al specifications17
		2.4.1	Thermal operating requirements 17
		2.4.2	Thermal attributes18
3	Peri	pheral of	operating requirements and behaviors
	3.1	Core n	nodules
		3.1.1	SWD electricals
	3.2	Systen	n modules20
	3.3	Clock r	modules
		3.3.1	MCG specifications20
		3.3.2	Oscillator electrical specifications22
	3.4	Memor	ries and memory interfaces
		3.4.1	Flash electrical specifications24
	3.5	Securit	ty and integrity modules26

	3.6	Analog	J	26
		3.6.1	ADC electrical specifications	26
		3.6.2	CMP and 6-bit DAC electrical specifications	29
	3.7	Timers	i	31
	3.8	Comm	unication interfaces	31
		3.8.1	SPI switching specifications	31
		3.8.2	Inter-Integrated Circuit Interface (I2C) timing.	35
		3.8.3	UART	37
4	Dim	ensions	3	37
	4.1	Obtain	ing package dimensions	37
5	Pino	out		37
	5.1	KL14 S	Signal Multiplexing and Pin Assignments	37
	5.2	KL14 p	pinouts	40
6	Ord	ering pa	arts	44
	6.1	Determ	nining valid orderable parts	44
7	Part	identifi	cation	44
	7.1	Descri	ption	45
	7.2	Format	t	45
	7.3	Fields.		45
	7.4	Examp	le	45
8	Terr	ninolog	y and guidelines	46
	8.1	Definiti	ion: Operating requirement	46
	8.2	Definiti	ion: Operating behavior	46
	8.3	Definiti	ion: Attribute	46
	8.4	Definiti	ion: Rating	47
	8.5	Result	of exceeding a rating	47
	8.6	Relatio	onship between ratings and operating	
		require	ements	48
	8.7	Guidel	ines for ratings and operating requirements	48
	8.8	Definiti	ion: Typical value	49
	8.9	Typica	I value conditions	50
9	Rev	ision his	story	50

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	3.1	3.8	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	2.4	3.2	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.6	2	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V	_	777		μΑ	5
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V	_	171	420	μΑ	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	204	449	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	262	509	μΑ	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	123	366	μA	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	319	343	μA	—
		at 50 °C	333	365	μA	
		at 70 °C	353	400	μA	
		at 85 °C	380	450	μA	
		at 105 °C	444	572	μA	
I _{DD_VLPS}	Very-low-power stop mode current at	at 25 °C	3.75	8.46	μA	_
	3.0 V	at 50 °C	6.66	13.41	μΑ	
		at 70 °C	12.9	25.71	μA	
		at 85 °C	22.7	44.06	μA	
		at 105 °C	48.4	90.1	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0	at 25 °C	1.68	2.09	μΑ	
	V	at 50 °C	3.05	4.04	μA	

Table 9.	Power consum	ption operating	behaviors ((continued)

Table continues on the next page...

Symbol	Description		Temperature (°C)			Unit		
		-40	25	50	70	85	105	
	the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.							

Table 10. Low power mode peripheral adders — typical value

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 4. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

 Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	13	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	12	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	7	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	М	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic

application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, $f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 48 \text{ MHz}$, $f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance		7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock		24	MHz
f _{FLASH}	Flash clock	—	24	MHz
f _{LPTMR}	LPTMR clock	—	24	MHz
	VLPR and VLPS modes ¹			
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					10
	• f _{vco} = 48 MHz	—	1350	—	ps	
	• f _{vco} = 100 MHz	_	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_		150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{ft}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	—	nA	
	• 4 MHz	_	200	—	μA	
	• 8 MHz (RANGE=01)	_	300	—	μA	
	• 16 MHz	_	950	—	μA	
		_	1.2	_	mA	

Table 19. Oscillator DC electrical specifications

Table continues on the next page ...

Peripheral operating requirements and behaviors

- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
 register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	52	452	ms	1

Table 21. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	1.8	ms	_
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	—	88	650	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0	_	18.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 12-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	6

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 7. ADC input impedance equivalency diagram

Peripheral operating requirements and behaviors

12-bit ADC electrical characteristics 3.6.1.2

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous	0	2.4	4.0	6.1	MHz	1/f _{ADACK}
		 ADLPC = 1, ADHSC = 1 	3.0	5.2	7.3	MHz	
fadack		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz	
		• ADLPC = 0, ADHSC = 1					
	Sample Time	See Reference Manual chapte	r for sample	times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
		12-bit modes		±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes		±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	_	—	±0.5	LSB ⁴	
E _{IL}	Input leakage error		I _{In} × R _{AS}			mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 26. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
41	33	25	18	PTA19	XTAL0	XTAL0	PTA19		UART1_TX	TPM_ CLKIN1		LPTMR0_ ALT1	
42	34	26	19	RESET_b	RESET_b		PTA20						
43	35	27	20	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0				
44	36	28	21	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1				
45	37	29	-	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	TPM2_CH0				
46	38	30	_	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	TPM2_CH1				
47	_	_	_	PTB8	DISABLED		PTB8		EXTRG_IN				
48	_	-	_	PTB9	DISABLED		PTB9						
49	_	_	_	PTB10	DISABLED		PTB10	SPI1_PCS0					
50	_	-	_	PTB11	DISABLED		PTB11	SPI1_SCK					
51	39	31	_	PTB16	DISABLED		PTB16	SPI1_MOSI	UART0_RX	TPM_ CLKIN0	SPI1_MISO		
52	40	32	1	PTB17	DISABLED		PTB17	SPI1_MISO	UART0_TX	TPM_ CLKIN1	SPI1_MOSI		
53	41	—	—	PTB18	DISABLED		PTB18		TPM2_CH0				
54	42	-	-	PTB19	DISABLED		PTB19		TPM2_CH1				
55	43	33	-	PTC0	ADC0_SE14	ADC0_SE14	PTC0		EXTRG_IN		CMP0_OUT		
56	44	34	22	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			
57	45	35	23	PTC2	ADC0_SE11	ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1			
58	46	36	24	PTC3/ LLWU_P7	DISABLED		PTC3/ LLWU_P7		UART1_RX	TPM0_CH2	CLKOUT		
59	47	—	—	VSS	VSS	VSS							
60	48	-	_	VDD	VDD	VDD							
61	49	37	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	TPM0_CH3			
62	50	38	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	
63	51	39	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		
64	52	40	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO			SPI0_MOSI		
65	53	Ι	-	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				
66	54	-	_	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				
67	55	_	—	PTC10	DISABLED		PTC10	I2C1_SCL					
68	56	_	-	PTC11	DISABLED		PTC11	I2C1_SDA					
69	-	—	—	PTC12	DISABLED		PTC12			TPM_ CLKIN0			
70	-	-	-	PTC13	DISABLED		PTC13			TPM_ CLKIN1			
71	-	-	-	PTC16	DISABLED		PTC16						

Kinetis KL14 Sub-Family, Rev5 08/2014.

P

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
72	-	_	-	PTC17	DISABLED		PTC17						
73	57	41	_	PTD0	DISABLED		PTD0	SPI0_PCS0		TPM0_CH0			
74	58	42	_	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1			
75	59	43	_	PTD2	DISABLED		PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO		
76	60	44	-	PTD3	DISABLED		PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI		
77	61	45	29	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4			
78	62	46	30	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5			
79	63	47	31	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	UART0_RX		SPI1_MISO		
80	64	48	32	PTD7	DISABLED		PTD7	SPI1_MISO	UART0_TX		SPI1_MOSI		

5.2 KL14 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL14 Signal Multiplexing and Pin Assignments.

Figure 18. KL14 48-pin QFN pinout diagram

Figure 19. KL14 32-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL14 and MKL14

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL14
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

Table 33. Part number fields descriptions

7.4 Example

This is an example part number:

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Revision history

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

 Table 34.
 Typical value conditions

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	۵°C
V _{DD}	3.3 V supply voltage	3.3	V

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	9/2012	Completed all the TBDs, initial public release.
3	9/2012	Updated Signal Multiplexing and Pin Assignments table to add UART2 signals.
4	3/2014	Updated the front page and restructured the chapters
	Tabl	e continues on the next page

Table 35. Revision history

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL14P80M48SF0 Revision 5 08/2014

