

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

÷ХГ

Product Status	Obsolete
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C647xx
RAM Size	16K x 8
Interface	I ² C, USB, USART
Number of I/O	24
Voltage - Supply	3.15V ~ 3.45V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c64714-56lfxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 Functional Description

EZ-USB FX1[™] (CY7C64713/4) is a full-speed highly integrated, USB microcontroller. By integrating the USB transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a very cost-effective solution that provides superior time-to-market advantages.

Because it incorporates the USB transceiver, the EZ-USB FX1 is more economical, providing a smaller footprint solution than USB SIE or external transceiver implementations. With EZ-USB FX1, the Cypress Smart SIE handles most of the USB protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing development time to ensure USB compatibility.

The General Programmable Interface (GPIF) and Master/ Slave Endpoint FIFO (8- or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.

Three lead-free packages are defined for the family: 56 QFN, 100 TQFP, and 128 TQFP.

3.0 Applications

- DSL modems
- ATA interface
- · Memory card readers
- · Legacy conversion devices
- Home PNA
- Wireless LAN
- MP3 players
- Networking

The "Reference Designs" section of the cypress website provides additional tools for typical USB applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Please visit http://www.cypress.com for more information.

4.0 Functional Overview

4.1 USB Signaling Speed

FX1 operates at one of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000:

• Full speed, with a signaling bit rate of 12 Mbps.

FX1 does not support the low-speed signaling mode of 1.5 Mbps or the high-speed mode of 480 Mbps.

C1 24 MHz C2 V12 pF 12 pF 20 × PLL

12-pF capacitor values assumes a trace capacitance of 3 pF per side on a four-layer FR4 PCA

Figure 4-1. Crystal Configuration

1. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a "1" for UART0 and/or UART1, respectively.

Note:

4.2 8051 Microprocessor

The 8051 microprocessor embedded in the FX1 family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs.

4.2.1 8051 Clock Frequency

FX1 has an on-chip oscillator circuit that uses an external 24-MHz (±100 ppm) crystal with the following characteristics:

- Parallel resonant
- · Fundamental mode
- 500-µW drive level
- 12-pF (5% tolerance) load capacitors.

An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY, and internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically.

The CLKOUT pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency—48, 24, or 12 MHz.

4.2.2 USARTS

FX1 contains two standard 8051 USARTs, addressed via Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multiplexed with port pins.

UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230-KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48, 24, 12 MHz) such that it always presents the correct frequency for 230-KBaud operation.^[1]

4.2.3 Special Function Registers

Certain 8051 SFR addresses are populated to provide fast access to critical FX1 functions. These SFR additions are shown in *Table 4-1*. Bold type indicates non-standard, enhanced 8051 registers. The two SFR rows that end with "0" and "8" contain bit-addressable registers. The four I/O ports A–D use the SFR addresses used in the standard 8051 for ports 0–3, which are not implemented in FX1. Because of the faster and more efficient SFR addressing, the FX1 I/O ports are not addressable in external RAM space (using the MOVX instruction).

*SUDPTR, USB upload/download, I²C interface boot access

Figure 4-4. External Code Memory, EA = 1

4.11 Register Addresses

FFFF	4 KBytes EP2-EP8 buffers (8 x 512) Not all Space is available for all transfer types
F000	
EFFF	2 KBytes RESERVED
E7FF E7C0	64 Bytes EP1IN
E7BF E780	64 Bytes EP1OUT
E77F E740	64 Bytes EP0 IN/OUT
E73F E700	64 Bytes RESERVED
E6FF E500	8051 Addressable Registers (512)
E4FF E480	Reserved (128)
E47F E400	128 bytes GPIF Waveforms
E3FF E200	Reserved (512)
E1FF	
	512 bytes
E000	8051 xdata RAM

4.12 Endpoint RAM

4.12.1 Size

- 3 × 64 bytes (Endpoints 0 and 1)
- 8 × 512 bytes (Endpoints 2, 4, 6, 8)

4.12.2 Organization

- EP0—Bidirectional endpoint zero, 64-byte buffer
- EP1IN, EP1OUT—64-byte buffers, bulk or interrupt
- EP2,4,6,8—Eight 512-byte buffers, bulk, interrupt, or isochronous, of which only the transfer size is available. EP4 and EP8 can be double buffered, while EP2 and 6 can be either double, triple, or quad buffered. Regardless of the physical size of the buffer, each endpoint buffer accommodates only one full-speed packet. For bulk endpoints the maximum number of bytes it can accommodate is 64, even though the physical buffer size is 512 or 1024. For an ISOCHRONOUS endpoint the maximum number of bytes it can accommodate is 1023. For endpoint configuration options, see Figure 4-5.

4.12.3 Setup Data Buffer

A separate 8-byte buffer at 0xE6B8-0xE6BF holds the Setup data from a CONTROL transfer.

4.12.4 Endpoint Configurations

Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either BULK or INTERRUPT. The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. In full-speed, BULK mode uses only the first 64 bytes of each buffer, even though memory exists for the allocation of the isochronous transfers in BULK mode the unused endpoint buffer space is not available for other operations. An example endpoint configuration would be:

EP2—1023 double buffered; EP6—64 guad buffered (column 8).

4.12.5 Default Alternate Settings

Table 4-6.	Default	Alternate	Settings	[4,	5]	
------------	---------	-----------	----------	-----	----	--

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2×)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2×)	64 bulk out (2×)	64 bulk out (2×)
ep6	0	64 bulk in (2×)	64 int in (2×)	64 iso in (2×)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

4.13 **External FIFO Interface**

4.13.1 Architecture

The FX1 slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories, and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). The usable size of these buffers depend on the USB transfer mode as described in Section 4.12.2.

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms, the GPIF for internally generated control signals, or the slave FIFO interface for externally controlled transfers.

4.13.2 Master/Slave Control Signals

The FX1 endpoint FIFOS are implemented as eight physically distinct 256x16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually

Figure 4-5. Endpoint Configuration

Notes:

- "0" means "not implemented." "2x" means "double buffered."
- 5

CY7C64713/14

* denotes programmable polarity

* denotes programmable polarity

Table 5-1. FX1 Pin Definitions (continued)^[8]

128 TQFP	100 TQFP	56 QFN	Name	Туре	Default	Description
99	77	42	RESET#	Input	N/A	Active LOW Reset. Resets the entire chip. See section 4.9 "Reset and Wakeup" on page 5 for more details.
35			EA	Input	N/A	External Access . This pin determines where the 8051 fetches code between addresses 0x0000 and 0x3FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory.
12	11	5	XTALIN	Input	N/A	Crystal Input . Connect this signal to a 24-MHz parallel-resonant, funda- mental mode crystal and load capacitor to GND. It is also correct to drive XTALIN with an external 24 MHz square wave derived from another clock source. When driving from an external source, the driving signal should be a 3.3V square wave.
11	10	4	XTALOUT	Output	N/A	Crystal Output . Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open.
1	100	54	CLKOUT	O/Z	12 MHz	CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input clock. The 8051 defaults to 12-MHz operation. The 8051 may three-state this output by setting CPUCS.1 = 1.
Port A						
82	67	33	PA0 or INT0#	I/O/Z	І (РА0)	Multiplexed pin whose function is selected by PORTACFG.0 PA0 is a bidirectional IO port pin. INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either edge triggered (IT0 = 1) or level triggered (IT0 = 0).
83	68	34	PA1 or INT1#	I/O/Z	I (PA1)	Multiplexed pin whose function is selected by: PORTACFG.1 PA1 is a bidirectional IO port pin. INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either edge triggered (IT1 = 1) or level triggered (IT1 = 0).
84	69	35	PA2 or SLOE	I/O/Z	l (PA2)	Multiplexed pin whose function is selected by two bits: IFCONFIG[1:0]. PA2 is a bidirectional IO port pin. SLOE is an input-only output enable with programmable polarity (FIFOPIN- POLAR.4) for the slave FIFOs connected to FD[70] or FD[150].
85	70	36	PA3 or WU2	I/O/Z	I (PA3)	Multiplexed pin whose function is selected by: WAKEUP.7 and OEA.3 PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB Wakeup , enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Asserting this pin inhibits the chip from suspending, if WU2EN = 1.
89	71	37	PA4 or FIFOADR0	I/O/Z	I (PA4)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA4 is a bidirectional I/O port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
90	72	38	PA5 or FIFOADR1	I/O/Z	l (PA5)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA5 is a bidirectional I/O port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
91	73	39	PA6 or PKTEND	I/O/Z	I (PA6)	Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits. PA6 is a bidirectional I/O port pin. PKTEND is an input used to commit the FIFO packet data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5.

Table 5-1. FX1 Pin Definitions (continued)^[8]

128 TQFP	100 TQFP	56 QFN	Name	Туре	Default	Description
111	89		PE3 or RXD0OUT	I/O/Z	l (PE3)	Multiplexed pin whose function is selected by the PORTECFG.3 bit. PE3 is a bidirectional I/O port pin. RXD0OUT is an active-HIGH signal from 8051 UART0. If RXD0OUT is selected and UART0 is in Mode 0, this pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1.
112	90		PE4 or RXD1OUT	I/O/Z	l (PE4)	Multiplexed pin whose function is selected by the PORTECFG.4 bit. PE4 is a bidirectional I/O port pin. RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.
113	91		PE5 or INT6	I/O/Z	l (PE5)	Multiplexed pin whose function is selected by the PORTECFG.5 bit. PE5 is a bidirectional I/O port pin. INT6 is the 8051 INT6 interrupt request input signal. The INT6 pin is edge- sensitive, active HIGH.
114	92		PE6 or T2EX	I/O/Z	l (PE6)	Multiplexed pin whose function is selected by the PORTECFG.6 bit. PE6 is a bidirectional I/O port pin. T2EX is an active-high input signal to the 8051 Timer2. T2EX reloads timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON.
115	93		PE7 or GPIFADR8	I/O/Z	l (PE7)	Multiplexed pin whose function is selected by the PORTECFG.7 bit. PE7 is a bidirectional I/O port pin. GPIFADR8 is a GPIF address output pin.
4	3	1	RDY0 or SLRD	Input	N/A	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. RDY0 is a GPIF input signal. SLRD is the input-only read strobe with programmable polarity (FIFOPIN- POLAR.3) for the slave FIFOs connected to FD[70] or FD[150].
5	4	2	RDY1 or SLWR	Input	N/A	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. RDY1 is a GPIF input signal. SLWR is the input-only write strobe with programmable polarity (FIFOPIN- POLAR.2) for the slave FIFOs connected to FD[70] or FD[150].
6	5		RDY2	Input	N/A	RDY2 is a GPIF input signal.
7	6		RDY3	Input	N/A	RDY3 is a GPIF input signal.
8	7		RDY4	Input	N/A	RDY4 is a GPIF input signal.
9	8		RDY5	Input	N/A	RDY5 is a GPIF input signal.
69	54	29	CTL0 or FLAGA	O/Z	H	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins.
70	55	30	CTL1 or FLAGB	O/Z	H	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
71	56	31	CTL2 or FLAGC	O/Z	H	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.
66	51		CTL3	O/Z	Н	CTL3 is a GPIF control output.
67	52		CTL4	Output	H	CTL4 is a GPIF control output.
98	76		CTL5	Output	Н	CTL5 is a GPIF control output.

Table 5-1. FX1 Pin Definitions (continued)^[8]

128 TQFP	100 TQFP	56 QFN	Name	Туре	Default	Description
32	26	13	IFCLK	I/O/Z	Z	Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 = 1.
28	22		INT4	Input	N/A	INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge- sensitive, active HIGH.
106	84		INT5#	Input	N/A	INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge- sensitive, active LOW.
31	25		T2	Input	N/A	T2 is the active-HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when $C/T2 = 1$. When $C/T2 = 0$, Timer2 does not use this pin.
30	24		T1	Input	N/A	T1 is the active-HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit.
29	23		Т0	Input	N/A	T0 is the active-HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit.
53	43		RXD1	Input	N/A	RXD1 is an active-HIGH input signal for 8051 UART1, which provides data to the UART in all modes.
52	42		TXD1	Output	Н	TXD1 is an active-HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode.
51	41		RXD0	Input	N/A	RXD0 is the active-HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes.
50	40		TXD0	Output	Н	TXD0 is the active-HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode.
42			CS#	Output	Н	CS# is the active-LOW chip select for external memory.
41	32		WR#	Output	Н	WR# is the active-LOW write strobe output for external memory.
40	31		RD#	Output	н	RD# is the active-LOW read strobe output for external memory.
38			OE#	Output	н	OE# is the active-LOW output enable for external memory.
33	27	14	Reserved	Input	N/A	Reserved. Connect to ground.
	•		•	*		
101	79	44	WAKEUP	Input	N/A	USB Wakeup . If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB FX1 chip from suspending. This pin has programmable polarity (WAKEUP.4).
36	29	15	SCL	OD	Z	Clock for the I^2C interface. Connect to VCC with a 2.2K resistor, even if no I^2C peripheral is attached.
37	30	16	SDA	OD	Z	Data for I ² C interface. Connect to VCC with a 2.2K resistor, even if no I ² C peripheral is attached.
2	1	55	VCC	Power	N/A	VCC. Connect to 3.3V power source.
26	20	11	VCC	Power	N/A	VCC. Connect to 3.3V power source.
43	33	17	VCC	Power	N/A	VCC. Connect to 3.3V power source.
48	38		VCC	Power	N/A	VCC. Connect to 3.3V power source.
64	49	27	VCC	Power	N/A	VCC. Connect to 3.3V power source.
68	53		VCC	Power	N/A	VCC. Connect to 3.3V power source.
81	66	32	VCC	Power	N/A	VCC. Connect to 3.3V power source.
100	78	43	VCC	Power	N/A	VCC. Connect to 3.3V power source.
107	85		VCC	Power	N/A	VCC. Connect to 3.3V power source.

6.0 Register Summary

FX1 register bit definitions are described in the EZ-USB TRM in greater detail.

Table 6-1. FX1 Register Summary

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
		GPIF Waveform Mem	ories										
E400	129		GRIE Wayoform	D7	De	D5	D4	D2	D2	D1	DO	~~~~~	D\//
L400	120		Descriptor 0, 1, 2, 3 data	07	DO	05	D4	03	02	ы	DU	~~~~~	1
F480	128	reserved											
2.00	0												
E000	4	GENERAL CONFIGU		0	0	DODTOOTD					0054050	00000040	ande de la de la ce
E600	1	CPUCS	CPU Control & Status	0	0	PORTCSTB	CLKSPD1	CLKSPD0	CLKINV	CLKOE	8051RES	00000010	rrbbbbbr
E601	1	IFCONFIG	Interface Configuration	IFCLKSRC	3048MHZ	IFCLKOE	IFCLKPOL	ASYNC	GSTATE	IFCFG1	IFCFG0	10000000	RW
			(Ports, GPIF, slave FIFOs)										
E602	1	PINFLAGSAB	Slave FIFO FLAGA and	FLAGB3	FLAGB2	FLAGB1	FLAGB0	FLAGA3	FLAGA2	FLAGA1	FLAGA0	00000000	RW
5000	_					51 4 0 5 4		FI 4000	FI 4 0 0 0	EL A 0.04	EL A O O O		D14/
E603	1	PINFLAGSCD	Slave FIFO FLAGC and	FLAGD3	FLAGD2	FLAGD1	FLAGD0	FLAGC3	FLAGC2	FLAGC1	FLAGCO	00000000	RW
E 004	4		Peeters FIFOC to default		0	0	0	502	ED2	ED4	E DO		14/
E004	1	FIFURESEI	state	NAKALL	0	0	0	EP3	EPZ	EPI	EPU	*****	vv
FCOF	4		Draelin eint Centrel	0	0	0	0			DDEN	0	00000000	a anala la la a
E605	1		Breakpoint Control	0	0	0	0	DREAN	BPPULSE	BPEN	0	00000000	
E606	1	BPADDRH	Breakpoint Address H	A15	A14	A13	A12	A11	A10	A9	A8	XXXXXXXXX	RW
E607	1	BPADDRL	Breakpoint Address L	A7	A6	A5	A4	A3	A2	A1	A0	XXXXXXX	RW
E608	1	UART230	230 Kbaud internally	0	0	0	0	0	0	230UART1	230UART0	00000000	rrrrrbb
			generated ref. clock										
E609	1	FIFOPINPOLAR ^[9]	Slave FIFO Interface pins	0	0	PKTEND	SLOE	SLRD	SLWR	EF	FF	00000000	rrbbbbbb
			polarity										
E60A	1	REVID	Chip Revision	rv7	rv6	rv5	rv4	rv3	rv2	rv1	rv0	RevA	R
												00000001	
E60B	1	REVCTL ^[9]	Chip Revision Control	0	0	0	0	0	0	dyn_out	enh_pkt	00000000	rrrrrbb
		UDMA											
E60C	1	GPIFHOLDAMOUNT	MSTB Hold Time	0	0	0	0	0	0	HOLDTIME1	HOLDTIME0	00000000	rrrrrbb
			(for UDMA)	-	-	-	-	-	-	-			
	3	reserved											
		ENDPOINT CONFIG	URATION										
E610	1	EP1OUTCFG	Endpoint 1-OUT	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	brbbrrrr
			Configuration		-			-	-	-	-		
E611	1	EP1INCFG	Endpoint 1-IN	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	brbbrrrr
-			Configuration		-			-	-	-	-		
E612	1	EP2CFG	Endpoint 2 Configuration	VALID	DIR	TYPE1	TYPE0	SIZE	0	BUF1	BUF0	10100010	bbbbbrbb
E613	1	FP4CEG	Endpoint 4 Configuration		DIR	TYPE1	TYPE0	0	0	0	0	10100000	bbbbrrrr
E614	1	EPECEG	Endpoint 4 Configuration					0 917E	0	BI IE1	BUEO	11100010	bbbbbiiii
L014	'			VALID			TIFLO	SIZL	0	BOLL	BOLO	11100010	
E615	1	EP8CFG	Endpoint 8 Configuration	VALID	DIR	TYPE1	TYPE0	0	0	0	0	11100000	DDDDrrrr
	2	reserved											
E618	1	EP2FIFOCFG ^[9]	Endpoint 2 / slave FIFO	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
			configuration										
E619	1	EP4FIFOCFG ^[9]	Endpoint 4 / slave FIFO	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
			configuration										
E61A	1	EP6FIFOCFG ^[9]	Endpoint 6 / slave FIFO	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
			configuration										
E61B	1	EP8FIFOCFG ^[9]	Endpoint 8 / slave FIFO	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
			configuration										
E61C	4	reserved											
E620	1	EP2AUTOINLENH ^[9]	Endpoint 2 AUTOIN	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrbbb
L			Packet Length H										
E621	1	EP2AUTOINLENL ^[9]	Endpoint 2 AUTOIN	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
			Packet Length L	-	-	_							
E622	1	EP4AUTOINLENH ^[9]	Endpoint 4 AUTOIN	0	0	0	0	0	0	PL9	PL8	00000010	rrrrrbb
		101	Packet Length H										
E623	1	EP4AUTOINLENL ^[9]	Endpoint 4 AUTOIN	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	кW
				-	-	-	-						
E624	1	EP6AUTOINLENH ¹⁹	Endpoint 6 AUTOIN	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrbbb
			Packet Length H		-		-	-	-		-		
E625	1	EP6AUTOINLENL ¹³	Endpoint 6 AUTOIN	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
5000										6. 0	D I 0		
E626	1	EP8AUTOINLENH ¹³	Endpoint 8 AUTOIN	0	0	0	0	0	0	PL9	PL8	00000010	rrrrrbb
E 007				DI 7	DI A	DI C	DI 4	DI A	DI O	DI 4	DI O	00000000	DIA
E627	1	EP8AUI OINLENL ^[9]	Enapoint & AUTOIN	PL/	PL6	PL5	PL4	PL3	PL2	PL1	PLU	000000000	KVV
Free	_	500050		0	0					0	5001/	0000000	
E628	1		ECC Configuration	υ	U	U	U	U	U	U	ECCM	00000000	rmmb
E629	1	ECCRESET	ECC Reset	x	x	x	x	х	x	x	x	00000000	VV
E62A	1	ECC1B0	ECC1 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	11111111	R
E62B	1	ECC1B1	ECC1 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	11111111	R
E62C	1	ECC1B2	ECC1 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	LINE17	LINE16	11111111	R
E62D	1	ECC2B0	ECC2 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10			11111111	R
EGOL	1	ECC2P1	ECC2 Date 1 Address									11111444	 D
EU2E	I		LOUZ Dyte I Address		LINEO	LINED	LINE4	LINES			LINEU		IN

Note:

9. Read and writes to these register may require synchronization delay, see Technical Reference Manual for "Synchronization Delay."

Table 6-1. FX1 Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E62E	1	FCC2B2	ECC2 Byte 2 Address							0	0	111111111	R
2021			LOOZ Dyte Z / taalooo	0020	UUL4	0020	OOLL	OOL!	0020	0	0		
E630	1	EP2FIFOPFH ^[9]	Endpoint 2 / slave FIFO	DECIS	PKTSTAT	IN: PKTS[2]	IN: PKTS[1]	IN: PKTSI01	0	PFC9	PFC8	10001000	bbbbbrbb
2000			Programmable Flag H ISO	52010		OUT:PFC12	OUT:PFC11	OUT:PFC10	°				00000.00
			Mode										
E630	1	EP2FIFOPFH ^[9]	Endpoint 2 / slave FIFO	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2]	10001000	bbbbbrbb
			Non-ISO Mode								OU I:PFC8		
E631	1	EP2FIFOPFL ^[9]	Endpoint 2 / slave FIFO	IN:PKTS[1]	IN:PKTS[0]	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
			Programmable Flag L	OUT:PFC7	OUT:PFC6								
							1						1
E632	1	EP4FIFOPFH ^[9]	Endpoint 4 / slave FIFO	DECIS	PKTSTAT	0	IN: PKTS[1]	IN: PKTS[0]	0	0	PFC8	10001000	bbrbbrrb
			Programmable Flag H ISO				OUT:PFC10	OUT:PFC9					
E 622	4			DECIC	DIZTOTAT	0			0	0	DECO	10001000	la la ula la uula
E032	1	EP4FIFOPFn ^{ey}	Programmable Flag H	DECIS	PRISIAI	0	OUTPFCTU	OUTPFC9	0	0	PFC8	10001000	anadada
			Non-ISO Mode										
E633	1	EP4FIFOPFL ^[9]	Endpoint 4 / slave FIFO	IN: PKTS[1]	IN: PKTS[0]	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
-			Programmable Flag L	OUT:PFC7	OUT:PFC6								
E 00 4	4	FRAFIFORFU ^[9]	Factoriat 0 (alarea EIEO	DEOIO	DICTOTAT				0	DEOO	DEOO	00004000	h h h h h ah h
E034	1	EPOFIFOPFR	Programmable Flag H ISO	DECIS	PRISIAI	OUT PEC12	OUT PEC11	OUT PEC10	0	PFC9	PFC8	00001000	dataaaaa
			Mode			001		001					
E634	1	EP6FIFOPFH ^[9]	Endpoint 6 / slave FIFO	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2]	00001000	bbbbbrbb
			Programmable Flag H								OUT:PFC8		
			INON-ISO MIODE										
E625	1		Endpoint 6 / clavo EIEO			DEC5	DEC 4	DEC 3	DEC 2	DEC1	PECO	0000000	DW/
E035	'	EFORIFOFFL [®]	Programmable Flag L	OUT:PFC7	OUT:PFC6	FFC5	FFC4	FFC3	FFG2	FFCI	FFCU	00000000	RVV.
								-			-		
E636	1	EP8FIFOPFH ^[9]	Endpoint 8 / slave FIFO	DECIS	PKTSTAT	0	IN: PKTS[1]	IN: PKTS[0]	0	0	PFC8	00001000	bbrbbrrb
			Programmable Flag H ISO		_	-	OUT:PFC10	OUT:PFC9	-	-			
			Mode										
E636	1	EP8FIFOPFH ^[9]	Endpoint 8 / slave FIFO	DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
			Non-ISO Mode										
E637	1	EP8FIFOPFL ^[9]	Endpoint 8 / slave FIFO	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
		ISO Mode	Programmable Flag L										
E637	1	EP8FIFOPFL ^[9]	Endpoint 8 / slave FIFO	IN: PKTS[1]	IN: PKTS[0]	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
		Non-ISO Mode	Programmable Flag L	OUT:PFC7	OUT:PFC6								
	8	reserved											
E640	1	reserved											
E641	1	reserved											
E642	1	reserved					1						1
E643	1	reserved											
E644	4	reserved	1		1			t	t	t	1	1	1
F648	1		Force IN Packet End	Skip	0	0	0	EP3	FP2	FP1	EP0	******	w
E640	7		Force OLIT Packet End	Skin	0	~ 0	0	EP3	EP2	EP1	EP0	~~~~~	W
L049	'		I GILE OUT FACKELEND	окір	0	v	v	LFJ	LF 2		LFV	~~~~	**
				-	-	-	-						
E650	1	EP2FIFOIE ^[9]	Endpoint 2 slave FIFO	0	0	0	0	EDGEPF	PF	FF	FF	00000000	RW
E CE 4	4		Find a sint 2 aloue EIEO	0	0	0	0	0	DE			00000111	annan la la la
E001	1	EPZFIFUIKQ	Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000111	aaamm
F652	1	EP4EIEOIE ^[9]	Endpoint 4 slave EIEO	0	0	0	0	EDGEPE	PF	FF	FF	00000000	RW
2002			Flag Interrupt Enable	0	°	0	°	LDOLIT				00000000	
E653	1	EP4FIFOIRQ ^[9,10]	Endpoint 4 slave FIFO	0	0	0	0	0	PF	EF	FF	00000111	rrrrbbb
			Flag Interrupt Request	-	-	-	-	-					
E654	1	EP6FIFOIE ^[9]	Endpoint 6 slave FIFO	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
ļ			Flag Interrupt Enable										
E655	1	EP6FIFOIRQ ^[9,10]	Endpoint 6 slave FIFO	0	0	0	0	0	PF	EF	FF	00000110	rrrrbbb
5055	ļ		riag Interrupt Request										
E656	1		Endpoint 8 slave FIFO	U	U	U	U	EDGEPF	PF	FF	FF	00000000	кw
E657	1		Endpoint & clove FIEC	0	0	0	0	0	DE	CC	cc	00000110	rrrrbbb
L007	l'		Flag Interrupt Request	v	с С	°	0	0	r '		ľ	00000110	unnoon
E658	1	IBNIE	IN-BUI K-NAK Interrupt	0	0	FP8	FP6	FP4	FP2	FP1	EP0	00000000	RW
	Ľ		Enable	1-	[⁻	<u> </u>	v	I	I	I	·	20000000	· · · ·

Note:

10. SFRs not part of the standard 8051 architecture. The register can only be reset, it cannot be set.

Table 6-1. FX1 Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
81	1	SP	Stack Pointer	D7	D6	D5	D4	D3	D2	D1	D0	00000111	RW
87 87	1		Data Pointor 0 I	A7	A6	A5	Δ <i>1</i>	A3	A2	Δ1	A0	000000000	D\//
02	1	DFLO	Data Politier 0 L	A15	A0	AJ	A40	A3	A40	A1	A0	00000000	
83	1	DPH0	Data Pointer 0 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
84	1	DPL1[10]	Data Pointer 1 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
85	1	DPH1 ^[10]	Data Pointer 1 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
86	1	DPS ^[10]	Data Pointer 0/1 select	0	0	0	0	0	0	0	SEL	00000000	RW
87	1	PCON	Power Control	SMOD0	x	1	1	x	x	x	IDLE	00110000	RW
88	1	TCON	Timer/Counter Control	TF1	TR1	TEO	TRO	IF1	IT1	IE0	ITO	00000000	RW
00			(bit addressable)				110					00000000	1
89	1	TMOD	Timer/Counter Mode Control	GATE	СТ	M1	MO	GATE	СТ	M1	MO	00000000	RW
84	1	TLO	Timer () reload I	D7	De	D5	D4	D3	D2	D1	DO	00000000	RW/
	1	TLA		D7	DO	D5 D5	D4	D3	D2		DO	00000000	
8B	1	TL1	Timer 1 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8C	1	TH0	Timer 0 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1	Timer 1 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8E	1	CKCON ^[10]	Clock Control	х	х	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
8F	1	reserved											
00	•		Dort P (hit addrosaabla)	D7	De	DE	D4	D2	D2	D1	DO	~~~~~	DW/
90			Fort B (bit addressable)		D0	D5	D4	D3	D2		00	*****	RVV
91	1	EXIF	External Interrupt Flag(s)	IE5	IE4	I ² CIN I	USBNI	1	0	0	0	00001000	RW
92	1	MPAGE ^[10]	Upper Addr Byte of MOVX using @R0 / @R1	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
93	5	reserved											
98	1	SCON0	Serial Port 0 Control	SM0 0	SM1 0	SM2 0	REN 0	TB8 0	RB8 0	TI 0	RI 0	00000000	RW
			(bit addressable)										
99	1	SBUF0	Serial Port 0 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
QΔ	1	AUTOPTRH1 ^[10]	Autopointer 1 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
3A 0D	-		Autopointer 1 Address I	A15	A1 4	A15	A12	A11	A10	A.5	A0	00000000	
9B	1	AUTOPTRETUN	Autopointer 1 Address L	A7	Ab	A5	A4	A3	AZ	Al	AU	00000000	RW
9C	1	reserved											
9D	1	AUTOPTRH2 ^[10]	Autopointer 2 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9E	1	AUTOPTRL2 ^[10]	Autopointer 2 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
QF	1	reserved			-	-		-			-		
40	4		Dart C (hit addressable)	D7	DC	DE	D4	D2	Da	D4	DO		
AU	1	100,	Port C (bit addressable)	ע	D6	D5	D4	D3	D2	Di	D0	XXXXXXXX	RW
A1	1	INT2CLR ^[10]	Interrupt 2 clear	х	х	х	х	х	х	х	х	XXXXXXXX	W
A2	1	INT4CLR ^[10]	Interrupt 4 clear	х	х	х	х	х	х	х	х	XXXXXXX	W
A3	5	reserved											
48	1	IF	Interrupt Enable	FΔ	ES1	FT2	ES0	FT1	FX1	FT0	EX0	00000000	RW
7.0			(bit addressable)	273	201	L12	200	L	EXT	210	270	00000000	
A9	1	reserved	, ,										
A A			Endpoint 2.4.6.9 status			EDGE	EDGE	EDIE	EDIE	EDDE	EDDE	01011010	D
AA	1	EP24005TAT	flags	EPOF	EPOE	EPOF	EPOE	EP4F	EP4E	EPZF	EPZE	01011010	ĸ
	4		Endraint 2.4 alour FIEO	0				0	FDODE			00100010	D
АВ	1		status flags	0	EP4PF	EP4EF	EP4FF	0	EPZPF	EPZEF	EPZFF	00100010	ĸ
A.C.	4		Status Itags	0				0	EDODE			01100110	D
AC	1	EP68FIFOFLGS	Endpoint 6,8 slave FIFO	0	EP8PF	EP8EF	EP8FF	0	EP6PF	EPGEF	EPGFF	01100110	к
4.5	0		sialus llays										
AD	Z	reserved											
AF	1	AUTOPTRSETUP ^[10]	Autopointer 1&2 setup	0	0	0	0	0	APTR2INC	APTR1INC	APTREN	00000110	кW
B0	1	IOD ^[10]	Port D (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
B1	1	IOE ^[10]	Port E	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
			(NOT bit addressable)										
B2	1	OEA ^[10]	Port A Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B3	1	OEB ^[10]	Port B Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
R4	1	OEC ^[10]	Port C Output Enable	D7	De	D5	D4	D3	D2	D1	D0	00000000	RW
D5	4	050[10]		D7	50	DE		D0	D2		D0	00000000	DW/
60	1		For D Output Enable	5-	00	сu 	U4	03	D2		00	00000000	IK VV
B6	1	OFELIA	Port E Output Enable	דט	D6	D5	D4	D3	D2	1ט	00	00000000	кW
B7	1	reserved											
B8	1	IP	Interrupt Priority (bit ad-	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	10000000	RW
			dressable)										
B9	1	reserved											
BA	1	EP01STAT ^[10]	Endpoint 0&1 Status	0	0	0	0	0	EPTINBSY	EP10LITES	EP0BSY	00000000	R
	•			-	-	-	-	-		Y		20000000	· ·
BB	1	GPIETRIG ^{[10] [9]}	Endpoint 2 4 6 8 GPIE	DONE	0	0	0	0	RW	FP1	E PO	10000xxx	hrrrhhh
55	•	S. II 1100	slave FIFO Trigger	2 OI YL	č	č	-	ř					5111000
BC	1	reserved	- 33										
	1		CDIE Doto LI (40 hit mode	D15	D14	D12	D12	D11	D10	DO	D9		DW/
вD	ſ	GPIFSGLDATH. 10	GPIF Data H (16-bit mode	510	U14	013	210	ווע	010	Da	DQ	XXXXXXXX	RVV
	4		ODIE Data L (Trimer	DZ	DC	DE	D4	D2	D2	D1	Da		DW/
DE	1	GFIFSGLDATLX.10	GFIF Data L W/ Trigger	5-	00	сu 	U4	03	D2		00	*****	r vv
BF	1		GPIF Data L w/ No Trigger	7ט	D6	D5	D4	D3	D2	1ט	D0	ххххххх	ĸ
C0	1	SCON11101	Serial Port 1 Control (bit	SM0_1	SM1_1	SM2_1	REN_1	I B8_1	KB8_1	11_1	RI_1	00000000	кW
		op [10]	auuressable)							-			
C1	1	SBUF1110	Serial Port 1 Data Buffer	7ט	D6	D5	D4	D3	D2	וט	00	00000000	RW
C2	6	reserved											

Notes:

11. If no EEPROM is detected by the SIE then the default is 00000000.

10.3 **Data Memory Read**

Parameter	Description	Min.	Тур.	Max.	Unit	Notes
t _{CL}	1/CLKOUT Frequency		20.83		ns	48 MHz
			41.66		ns	24 MHz
			83.2		ns	12 MHz
t _{AV}	Delay from Clock to Valid Address			10.7	ns	
t _{STBL}	Clock to RD LOW			11	ns	
t _{STBH}	Clock to RD HIGH			11	ns	
t _{SCSL}	Clock to CS LOW			13	ns	
t _{SOEL}	Clock to OE LOW			11.1	ns	
t _{DSU}	Data Setup to Clock	9.6			ns	
t _{DH}	Data Hold Time	0			ns	

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 will only be active while either RD# or WR# are active. The address of AUTOPTR2 will be active throughout the cycle and meet the above address valid time for which is based on the stretch value.

Note:

16. t_{ACC2} and t_{ACC3} are computed from the above parameters as follows: $t_{ACC2}(24\ \text{MHz}) = 3^{*}t_{CL} - t_{AV} - t_{DSU} = 106\ \text{ns}$ $t_{ACC2}(48\ \text{MHz}) = 3^{*}t_{CL} - t_{AV} - t_{DSU} = 43\ \text{ns}$

$$\begin{split} t_{ACC3}(24 \text{ MHz}) &= 5^* t_{CL} - t_{AV} - t_{DSU} = 190 \text{ ns} \\ t_{ACC3}(48 \text{ MHz}) &= 5^* t_{CL} - t_{AV} - t_{DSU} = 86 \text{ ns}. \end{split}$$

10.5 PORTC Strobe Feature Timings

The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.

The WR# strobe will be asserted two clock cycles after PORTC is updated and will be active for two clock cycles after that as shown in *Figure 10-4*.

As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for 2 clock cycles after 3 clock cycles from the point when the 8051 has performed a read function on PORTC.

The way the feature is intended to work is that the RD# signal will prompt the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself. It is just a "prefetch" type signal to get the next data byte prepared. So, using it with that in mind should easily meet the set-up time to the next read.

The purpose of this pulsing of RD# is to let the external peripheral know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles prior to asserting the RD# signal. Once the RD# is pulsed the external logic may update the data on PORTC.

Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Section 10.3 and Section 10.4 for details on propagation delay of RD# and WR# signals.

Figure 10-4. WR# Strobe Function when PORTC is Accessed by 8051

Figure 10-5. RD# Strobe Function when PORTC is Accessed by 8051

GPIF Synchronous Signals 10.6

Figure 10-6. GPIF Synchronous Signals Timing Diagram^[17]

Table 10-4.	GPIF Synchronous	Signals Parameters with	Internally Sourced IFCLK ^[18, 19]
-------------	-------------------------	-------------------------	--

Parameter	Description	Min.	Max.	Unit
t _{IFCLK}	IFCLK Period	20.83		ns
t _{SRY}	RDY _X to Clock Setup Time	8.9		ns
t _{RYH}	Clock to RDY _X	0		ns
t _{SGD}	GPIF Data to Clock Setup Time	9.2		ns
t _{DAH}	GPIF Data Hold Time	0		ns
t _{SGA}	Clock to GPIF Address Propagation Delay		7.5	ns
t _{XGD}	Clock to GPIF Data Output Propagation Delay		11	ns
t _{XCTL}	Clock to CTL _X Output Propagation Delay		6.7	ns

Table 10-5. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK^[19]

Parameter	Description	Min.	Max.	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SRY}	RDY _X to Clock Setup Time	2.9		ns
t _{RYH}	Clock to RDY _X	3.7		ns
t _{SGD}	GPIF Data to Clock Setup Time	3.2		ns
t _{DAH}	GPIF Data Hold Time	4.5		ns
t _{SGA}	Clock to GPIF Address Propagation Delay		11.5	ns
t _{XGD}	Clock to GPIF Data Output Propagation Delay		15	ns
t _{XCTL}	Clock to CTL _X Output Propagation Delay		10.7	ns

Notes:

Dashed lines denote signals with programmable polarity.
 GPIF asynchronous RDY_x signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.
 IFCLK must not exceed 48 MHz.

10.9 Slave FIFO Synchronous Write

Figure 10-9. Slave FIFO Synchronou's Write Timing Diagram^[17]

Table 10-9. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK ^[19]

Parameter	Description	Min.	Max.	Unit
t _{IFCLK}	IFCLK Period	20.83		ns
t _{SWR}	SLWR to Clock Setup Time	18.1		ns
t _{WRH}	Clock to SLWR Hold Time	0		ns
t _{SFD}	FIFO Data to Clock Setup Time	9.2		ns
t _{FDH}	Clock to FIFO Data Hold Time	0		ns
t _{XFLG}	Clock to FLAGS Output Propagation Time		9.5	ns

Table 10-10. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK ^[19]

Parameter	Description	Min.	Max.	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to Clock Setup Time	12.1		ns
t _{WRH}	Clock to SLWR Hold Time	3.6		ns
t _{SFD}	FIFO Data to Clock Setup Time	3.2		ns
t _{FDH}	Clock to FIFO Data Hold Time	4.5		ns
t _{XFLG}	Clock to FLAGS Output Propagation Time		13.5	ns

Note:

20. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.

10.17 Sequence Diagram

10.17.1 Single and Burst Synchronous Read Example

Figure 10-18. Slave FIFO Synchronous Read Sequence and Timing Diagram

Figure 10-19. Slave FIFO Synchronous Sequence of Events Diagram

Figure 10-18 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

- At t = 0 the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied low in some applications).
 Note: t_{SFA} has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is pre-fetched and is driven on the bus when SLOE is asserted.
- At t = 2, SLRD is asserted. SLRD must meet the setup time of t_{SRD} (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of t_{RDH} (time from the IFCLK edge to the deassertion of the SLRD signal). If the SLCS signal is used, it must be asserted

with SLRD, or before SLRD is asserted (i.e. the SLCS and SLRD signals must both be asserted to start a valid read condition).

 The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of t_{XFD} (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. In order to have data on the FIFO data bus, SLOE MUST also be asserted.

The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5. Note: For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock the FIFO pointer is updated and increments to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Figure 10-22. Slave FIFO Asynchronous Read Sequence of Events Diagram

Figure 10-21 diagrams the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.

- At t = 0 the FIFO address is stable and the SLCS signal is asserted.
- At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is previous data, it data that was in the FIFO from a prior read cycle.
- At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t_{RDpwl} and minimum de-active pulse width of t_{RDpwh} . If SLCS is used then, SLCS must be in asserted with SLRD or before SLRD is asserted. (i.e., the SLCS and SLRD signals must both be asserted to start a valid read condition.)
- The data that will be driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of t_{XFD} from the activating edge of SLRD. In *Figure 10-21*, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (i.e. SLRD is asserted), SLOE MUST be in an asserted state. SLRD and SLOE can also be tied together.

The same sequence of events is also shown for a burst read marked with T = 0 through 5. **Note:** In burst read mode, during SLOE is assertion, the data bus is in a driven state and outputs the previous data. Once SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.

t_{FAF}

10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write

Figure 10-23. Slave FIFO Asynchronous Write Sequence and Timing Diagram^[17]

Figure 10-23 diagrams the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of 3 bytes and committing the 4-byte-short packet using PKTEND.

- At t = 0 the FIFO address is applied, insuring that it meets the setup time of t_{SFA}. If SLCS is used, it must also be asserted (SLCS may be tied low in some applications).
- At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of t_{WRpwl} and minimum de-active pulse width of t_{WRpwh} If the SLCS is used, it must be in asserted with SLWR or before SLWR is asserted.
- At t = 2, data must be present on the bus t_{SFD} before the deasserting edge of SLWR.
- At t = 3, deasserting SLWR will cause the data to be written from the data bus to the FIFO and then increments the FIFO

pointer. The FIFO flag is also updated after t_{XFLG} from the de-asserting edge of SLWR.

The same sequence of events are shown for a burst write and is indicated by the timing marks of T = 0 through 5. Note: In the burst write mode, once SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented.

In Figure 10-23, once the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host using the PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines are to be held constant during the PKTEND assertion.

11.0 Ordering Information

Table 11-1. Ordering Information

Ordering Code	Package Type	RAM Size	# Prog I/Os	8051 Address /Data Busses
Ideal for battery powered appli	cations			
CY7C64714-128AXC	128 TQFP – Lead-Free	16K	40	16/8 bit
CY7C64714-100AXC	100 TQFP – Lead-Free	16K	40	_
CY7C64714-56LFXC	56 QFN – Lead-Free	16K	24	_
Ideal for non-battery powered	applications			
CY7C64713-128AXC	128 TQFP - Lead-Free	16K	40	16/8 bit
CY7C64713-100AXC	100 TQFP - Lead-Free	16K	40	-
CY7C64713-56LFXC	56 QFN - Lead-Free	16K	24	-
CY3674	EZ-USB FX1 Development Kit	•		•

12.0 Package Diagrams

The FX1 is available in three packages:

- 56-pin QFN
- 100-pin TQFP
- 128-pin TQFP

Package Diagrams

Figure 12-1. 56-Lead QFN 8 x 8 mm LF56A

51-85144-*D

Figure 13-2. Plot of the Solder Mask (White Area)

Figure 13-3. X-ray Image of the Assembly

Purchase of I²C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. EZ-USB FX1, EZ-USB FX2LP, EZ-USB FX2, and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cvpress against all charges.