

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7032blc44-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3. MAX	7000B	Maximu	m User i	1/0 Pins	Note ((1)					
Device	44-Pin PLCC	44-Pin TQFP	48-Pin TQFP (2)	49-Pin 0.8-mm Ultra FineLine BGA (3)	100- Pin TQFP	100-Pin FineLine BGA (4)	144- Pin TQFP	169-Pin 0.8-mm Ultra FineLine BGA (3)	208- Pin PQFP	256- Pin BGA	256-Pin FineLine BGA (4)
EPM7032B	36	36	36	36							
EPM7064B	36	36	40	41	68	68					
EPM7128B				41	84	84	100	100			100
EPM7256B					84		120	141	164		164
EPM7512B							120	141	176	212	212

Notes:

- When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.
- (2) Contact Altera for up-to-date information on available device package options.
- (3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.
- (4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems.

MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

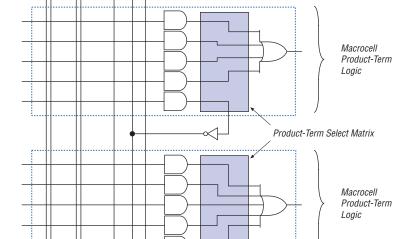
For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000B architecture includes the following elements:

- LABs
- Macrocells
- Expander product terms (shareable and parallel)
- PIA
- I/O control blocks

The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices.


Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000B architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

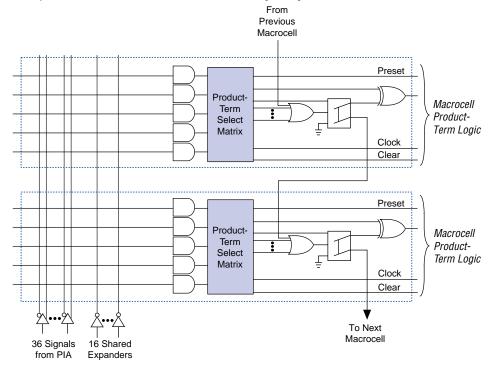
Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Figure 3. MAX 7000B Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Altera Corporation 9

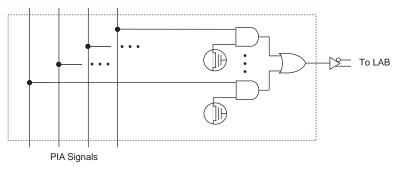
16 Shared


Expanders

36 Signals

from PIA

Figure 4. MAX 7000B Parallel Expanders


Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 5. MAX 7000B PIA Routing

While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{CC}.$ Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³4.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.

For more information on using the Jam language, see *Application Note 88* (*Using the Jam Language for ISP & ICR via an Embedded Processor*) and *Application Note 122* (*Using STAPL for ISP & ICR via an Embedded Processor*).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values									
Device Programming Stand-Alone Verification									
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EMP7032B	2.12	70,000	0.002	18,000					
EMP7064B	2.12	120,000	0.002	35,000					
EMP7128B	2.12	222,000	0.002	69,000					
EMP7256B	2.12	466,000	0.002	151,000					
EMP7512B	2.12	914,000	0.002	300,000					

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz									
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S		
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S		
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S		
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S		
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S		

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	Hz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz									
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S		
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S		
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S		
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S		
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S		

Programming with External Hardware

MAX 7000B devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device.

For more information, see the Altera Programming Hardware Data Sheet.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000B devices include the JTAG boundary-scan test circuitry defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions supported by MAX 7000B devices. The pin-out tables starting on page 59 of this data sheet show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 6. MAX 7000B	JTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary-scan test data to pass synchronously through a selected device to adjacent devices during normal operation.
CLAMP	Allows the values in the boundary-scan register to determine pin states while placing the 1-bit bypass register between the TDI and TDO pins.
IDCODE	Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO.
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO.
ISP Instructions	These instructions are used when programming MAX 7000B devices via the JTAG ports with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded processor or test equipment.

The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices.

Table 7. MAX 7000B Boundary-Sca	n Register Length
Device	Boundary-Scan Register Length
EPM7032B	96
EPM7064B	192
EPM7128B	288
EPM7256B	480
EPM7512B	624

Table 8. 32-1	Table 8. 32-Bit MAX 7000B Device IDCODENote (1)										
Device		IDCODE (32 Bits)									
	Version (4 Bits)										
EPM7032B	0010	0111 0000 0011 0010	00001101110	1							
EPM7064B	0010	0111 0000 0110 0100	00001101110	1							
EPM7128B	0010	0111 0001 0010 1000	00001101110	1							
EPM7256B	0010	0111 0010 0101 0110	00001101110	1							
EPM7512B	0010	0111 0101 0001 0010	00001101110	1							

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing.

Figure 8 shows the timing information for the JTAG signals.

Programmable Speed/Power Control

MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters.

Output Configuration

MAX 7000B device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of $\rm V_{CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels of 2.5 V or 1.8 V incur a nominal timing delay adder.

Table 10 describes the MAX 7000B MultiVolt I/O support.

Table 10. MAX 700	Table 10. MAX 7000B MultiVolt I/O Support									
V _{CCIO} (V) Input Signal (V) Output Signal (V)										
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0		
1.8	✓	✓	✓		✓					
2.5	✓	✓	✓			✓				
3.3	✓	✓	✓				✓	✓		

Open-Drain Output Option

MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

Slew-Rate Control

The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

Advanced I/O Standard Support

The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II.

Power Sequencing & Hot-Socketing

Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user.

MAX 7000B device I/O pins will not source or sink more than 300 μ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing.

Design Security

All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow.

Table 1	6. MAX 7000B Device DC Opera	ating Conditions Note (4)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage for 3.3-V TTL/CMOS		2.0	3.9	V
	High-level input voltage for 2.5-V TTL/CMOS		1.7	3.9	V
	High-level input voltage for 1.8-V TTL/CMOS		0.65 × V _{CCIO}	3.9	V
V _{IL}	Low-level input voltage for 3.3-V TTL/CMOS and PCI compliance		-0.5	0.8	V
	Low-level input voltage for 2.5-V TTL/CMOS		-0.5	0.7	V
	Low-level input voltage for 1.8-V TTL/CMOS		-0.5	0.35 × V _{CCIO}	
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	V _{CCIO} - 0.2		V
	2.5-V high-level output voltage	$I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (5)$	2.1		V
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	2.0		V
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	1.7		V
	1.8-V high-level output voltage	$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 1.65 \text{ V } (5)$	1.2		V
V_{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V (6)		0.4	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (6)$		0.2	V
	2.5-V low-level output voltage	I_{OL} = 100 μ A DC, V_{CCIO} = 2.30 V (6)		0.2	V
		I_{OL} = 1 mA DC, V_{CCIO} = 2.30 V (6)		0.4	V
		I_{OL} = 2 mA DC, V_{CCIO} = 2.30 V (6)		0.7	V
	1.8-V low-level output voltage	I _{OL} = 2 mA DC, V _{CCIO} = 1.7 V (6)		0.4	V
I _I	Input leakage current	$V_1 = -0.5 \text{ to } 3.9 \text{ V } (7)$	-10	10	μΑ
I _{OZ}	Tri-state output off-state current	$V_1 = -0.5 \text{ to } 3.9 \text{ V } (7)$	-10	10	μΑ
R _{ISP}	Value of I/O pin pull-up resistor during in-system programming or during power up	V _{CCIO} = 1.7 to 3.6 V (8)	20	74	k¾

Symbol	Parameter	Conditions	Speed Grade							
				3	-5		-7			
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns	
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns	
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns	
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns	
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns	
t _{CH}	Global clock high time		1.5		2.0		3.0		ns	
t _{CL}	Global clock low time		1.5		2.0		3.0		ns	
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns	
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns	
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns	
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns	
t _{CNT}	Minimum global clock period	(2)		3.3		4.7		7.0	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz	
t _{ACNT}	Minimum array clock period	(2)		3.3		4.7		7.0	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz	

Symbol	Parameter	Conditions	Speed Grade							
			-	4	-7		-10		Ē	
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns	
t _{SU}	Global clock setup time	(2)	2.5		4.5		6.1		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns	
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns	
^t FZHSU	Global clock setup time of fast input with zero hold time		2.0		3.0		3.0		ns	
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.8	1.0	5.7	1.0	7.5	ns	
t _{CH}	Global clock high time		1.5		3.0		4.0		ns	
t _{CL}	Global clock low time		1.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time	(2)	1.2		2.0		2.8		ns	
t _{AH}	Array clock hold time	(2)	0.2		0.7		0.9		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.1	1.0	8.2	1.0	10.8	ns	
t _{ACH}	Array clock high time		1.5		3.0		4.0		ns	
t _{ACL}	Array clock low time		1.5		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset		1.5		3.0		4.0		ns	
t _{CNT}	Minimum global clock period	(2)		4.1		7.9		10.6	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (3)	243.9		126.6		94.3		MHz	
t _{ACNT}	Minimum array clock period	(2)		4.1		7.9		10.6	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	243.9		126.6		94.3		MHz	

Symbol	Parameter	Conditions	Speed Grade						
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	3.3		4.8		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time for fast input		1.0		1.0		1.0		ns
^t FZHSU	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	5.1	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		2.0		2.8		ns
t _{AH}	Array clock hold time	(2)	0.4		0.8		1.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.2	1.0	7.9	1.0	10.5	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.3		7.9		10.6	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	188.7		126.6		94.3		MHz
t _{ACNT}	Minimum array clock period	(2)		5.3		7.9		10.6	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	188.7		126.6		94.3		MHz

Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)									
I/O Standard	Parameter	Speed Grade						Unit	
		-5		-7		-10			
		Min	Max	Min	Max	Min	Max		
PCI	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)									
I/O Standard	Parameter	Speed Grade							
		-5		-7		-10			
		Min	Max	Min	Max	Min	Max		
PCI	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Notes to tables:

- These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

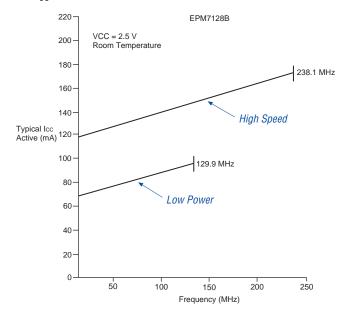
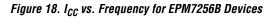



Figure 17. I_{CC} vs. Frequency for EPM7128B Devices

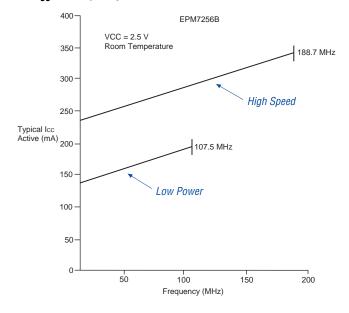
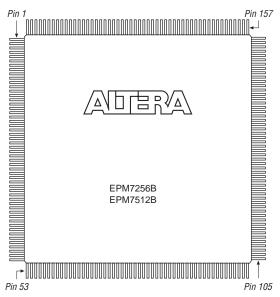



Figure 27. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

