E·XFL

Altera - EPM7032BTC44-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7032btc44-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3. MAX	Table 3. MAX 7000B Maximum User I/O Pins Note (1)												
Device	44-Pin PLCC	44-Pin TQFP	48-Pin TQFP <i>(2)</i>	49-Pin 0.8-mm Ultra FineLine BGA (3)	100- Pin TQFP	100-Pin FineLine BGA (4)	144- Pin TQFP	169-Pin 0.8-mm Ultra FineLine BGA (3)	208- Pin PQFP	256- Pin BGA	256-Pin FineLine BGA (4)		
EPM7032B	36	36	36	36									
EPM7064B	36	36	40	41	68	68							
EPM7128B				41	84	84	100	100			100		
EPM7256B					84		120	141	164		164		
EPM7512B							120	141	176	212	212		

Notes:

 When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.

(2) Contact Altera for up-to-date information on available device package options.

(3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

(4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enables. EPM7512B devices have ten output enables.

Logic Array Blocks

The MAX 7000B device architecture is based on the linking of high-performance LABs. LABs consist of 16 macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

Macrocells

The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell.

Figure 2. MAX 7000B Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

Figure 4. MAX 7000B Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to $V_{CC'}$, the output is enabled.

The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values											
Device	Progra	imming	Stand-Alone Verification								
	<i>t_{PPULSE}</i> (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}							
EMP7032B	2.12	70,000	0.002	18,000							
EMP7064B	2.12	120,000	0.002	35,000							
EMP7128B	2.12	222,000	0.002	69,000							
EMP7256B	2.12	466,000	0.002	151,000							
EMP7512B	2.12	914,000	0.002	300,000							

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies											
Device		f _{тск}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S		
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S		
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S		
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S		
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S		

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies												
Device		f _{TCK}										
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz				
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S			
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S			
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S			
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S			
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S			

٦

Г

Figure 11. MAX 7000B AC Test Conditions

Operating Conditions

Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices.

Table 1	Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1)											
Symbol	Parameter	Conditions	Min	Max	Unit							
V _{CCINT}	Supply voltage		-0.5	3.6	V							
V _{CCIO}	Supply voltage		-0.5	3.6	V							
VI	DC input voltage	(2)	-2.0	4.6	V							
I _{OUT}	DC output current, per pin		-33	50	mA							
T _{STG}	Storage temperature	No bias	-65	150	°C							
T _A	Ambient temperature	Under bias	-65	135	°C							
TJ	Junction temperature	Under bias	-65	135	°C							

Table 1	5. MAX 7000B Device Recomm	ended Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(10)	2.375	2.625	V
V _{CCIO}	Supply voltage for output drivers, 3.3-V operation		3.0	3.6	V
	Supply voltage for output drivers, 2.5-V operation		2.375	2.625	V
	Supply voltage for output drivers, 1.8-V operation		1.71	1.89	V
V _{CCISP}	Supply voltage during in-system programming		2.375	2.625	V
VI	Input voltage	(3)	-0.5	3.9	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use (11)	-40	85	°C
TJ	Junction temperature	For commercial use	0	90	°C
		For industrial use (11)	-40	105	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Timing Model

MAX 7000B device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 13. MAX 7000B devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 13. MAX 7000B Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 14 shows the timing relationship between internal and external delay parameters.

See *Application Note 94* (*Understanding MAX 7000 Timing*) for more information.

Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays Notes (1)										
I/O Standard	Parameter		Speed Grade							
		-3.5 -5.0 -7.5			.5					
		Min	Max	Min	Max	Min	Max			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions	Speed Grade							
			-	3	-	5	-	7	1	
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns	
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns	
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns	
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns	
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns	
t _{CH}	Global clock high time		1.5		2.0		3.0		ns	
t _{CL}	Global clock low time		1.5		2.0		3.0		ns	
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns	
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns	
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns	
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns	
t _{CNT}	Minimum global clock period	(2)		3.3		4.7		7.0	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz	
t _{acnt}	Minimum array clock period	(2)		3.3		4.7		7.0	ns	
facnt	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz	

Table 25.	EPM7128B Internal Timing	Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7	-	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.6		0.8	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.6		0.8	ns
t _{FIN}	Fast input delay			1.3		2.9		3.7	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.8		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.8		1.0	ns
t _{LAD}	Logic array delay			1.6		2.9		3.8	ns
t _{LAC}	Logic control array delay			1.4		2.6		3.4	ns
t _{IOE}	Internal output enable delay			0.1		0.3		0.4	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.7		2.2	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.7		7.2	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		1.8		3.3		4.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		6.8		8.3		9.4	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		1.8		3.3		4.4	ns
t _{SU}	Register setup time		1.0		1.9		2.6		ns
t _H	Register hold time		0.4		0.8		1.1		ns
t _{FSU}	Register setup time of fast input		0.8		0.9		0.9		ns
t _{FH}	Register hold time of fast input		1.2		1.6		1.6		ns
t _{RD}	Register delay			0.5		1.1		1.4	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.4		2.8		3.6	ns
t _{EN}	Register enable time			1.4		2.6		3.4	ns
t _{GLOB}	Global control delay			1.1		2.3		3.1	ns
t _{PRE}	Register preset time			1.0		1.9		2.6	ns
t _{CLR}	Register clear time			1.0		1.9		2.6	ns
t _{PIA}	PIA delay	(2)		1.0		2.0		2.8	ns
t _{LPA}	Low-power adder	(4)		1.5		2.8		3.8	ns

Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)											
I/O Standard	Parameter	Speed Grade									
	-4 -7 -10										
		Min	Max	Min	Max	Min	Max				
PCI	Input to PIA		0.0		0.0		0.0	ns			
	Input to global clock and clear		0.0		0.0		0.0	ns			
	Input to fast input register		0.0		0.0		0.0	ns			
	All outputs		0.0		0.0		0.0	ns			

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Table 27	7. EPM7256B External Ti	ming Parameters	Note	(1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	3.3		4.8		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time for fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	5.1	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		2.0		2.8		ns
t _{AH}	Array clock hold time	(2)	0.4		0.8		1.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.2	1.0	7.9	1.0	10.5	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		2.0		3.0		4.0		ns
t _{cnt}	Minimum global clock period	(2)		5.3		7.9		10.6	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	188.7		126.6		94.3		MHz
t _{acnt}	Minimum array clock period	(2)		5.3		7.9		10.6	ns
facnt	Maximum internal array clock frequency	(2), (3)	188.7		126.6		94.3		MHz

Table 28. EPM7256B Internal Timing Parameters Note (1)									
Symbol	Parameter	Conditions	Speed Grade						Unit
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.4		0.6		0.8	ns
t _{IO}	I/O input pad and buffer delay			0.4		0.6		0.8	ns
t _{FIN}	Fast input delay			1.5		2.5		3.1	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.3		3.0	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.8	ns
t _{LAD}	Logic array delay			1.7		2.5		3.3	ns
t _{LAC}	Logic control array delay			1.5		2.2		2.9	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.9		1.4		1.9	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.4		6.9	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		2.2		3.3		4.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		7.2		8.3		9.5	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		2.2		3.3		4.5	ns
t _{SU}	Register setup time		1.2		1.8		2.5		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t _{RD}	Register delay			0.7		1.0		1.3	ns
t _{COMB}	Combinatorial delay			0.3		0.4		0.5	ns
t _{IC}	Array clock delay			1.5		2.3		3.0	ns
t _{EN}	Register enable time			1.5		2.2		2.9	ns
t _{GLOB}	Global control delay			1.3		2.1		2.7	ns
t _{PRE}	Register preset time			1.0		1.6		2.1	ns
t _{CLR}	Register clear time			1.0		1.6		2.1	ns
t _{PIA}	PIA delay	(2)		1.7		2.6		3.3	ns
t _{LPA}	Low-power adder	(4)		2.0		3.0		4.0	ns

Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)										
I/O Standard	Parameter	Speed Grade					Unit			
		-5		-7		0				
		Min	Max	Min	Max	Min	Max			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Table 31. EPM7512B Internal Timing Parameters Note (1)									
Symbol	Parameter	Conditions	Speed Grade						Unit
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		3.2		4.0	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		2.7	ns
t _{PEXP}	Parallel expander delay			0.4		0.5		0.7	ns
t _{LAD}	Logic array delay			1.7		2.3		3.0	ns
t _{LAC}	Logic control array delay			1.5		2.0		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.2	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.2		1.6	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		2.8		3.8		5.0	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		7.8		8.8		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		2.8		3.8		5.0	ns
t _{SU}	Register setup time		1.5		2.0		2.6		ns
t _H	Register hold time		0.4		0.5		0.7		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t _{RD}	Register delay			0.5		0.7		1.0	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.8		2.4		3.1	ns
t _{EN}	Register enable time			1.5		2.0		2.6	ns
t _{GLOB}	Global control delay			2.0		2.8		3.6	ns
t _{PRE}	Register preset time			1.0		1.4		1.9	ns
t _{CLR}	Register clear time			1.0		1.4		1.9	ns
t _{PIA}	PIA delay	(2)		2.4		3.4		4.5	ns
t _{LPA}	Low-power adder	(4)		2.0		2.7		3.6	ns

I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.5		0.7	ns
	Input to global clock and clear		0.3		0.4		0.5	ns
	Input to fast input register		0.2		0.3		0.3	ns
	All outputs		0.2		0.3		0.3	ns
1.8 V TTL/CMOS	Input to PIA		0.7		1.0		1.3	ns
	Input to global clock and clear		0.6		0.8		1.0	ns
	Input to fast input register		0.5		0.6		0.8	ns
	All outputs		1.3		1.8		2.3	ns
SSTL-2 Class I	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.5		3.3	ns
	Input to global clock and clear		1.9		2.6		3.5	ns
	Input to fast input register		1.8		2.5		3.3	ns
	All outputs		0.0		0.0		0.0	ns

Figure 15. I_{CC} vs. Frequency for EPM7032B Devices

Figure 23. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 24. 100-Pin FineLine BGA Package Pin-Out Diagram

