

Welcome to E-XFL.COM

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	-
Supplier Device Package	48-TQFP
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7032btc48-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems.

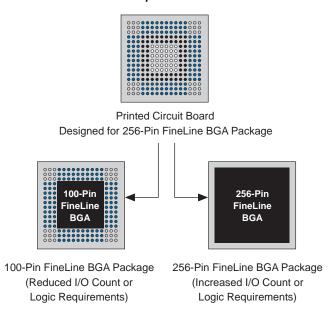
MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 7000B architecture includes the following elements:

- LABs
- Macrocells
- Expander product terms (shareable and parallel)
- PIA
- I/O control blocks


The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices.

SameFrame Pin-Outs

MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package to an EPM7512B device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example

In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³4.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.

For more information on using the Jam language, see *Application Note 88* (*Using the Jam Language for ISP & ICR via an Embedded Processor*) and *Application Note 122* (*Using STAPL for ISP & ICR via an Embedded Processor*).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PUL}	Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values											
Device	Programming Stand-Alone Verification											
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}								
EMP7032B	2.12	70,000	0.002	18,000								
EMP7064B	2.12	120,000	0.002	35,000								
EMP7128B	2.12	222,000	0.002	69,000								
EMP7256B	2.12	466,000	0.002	151,000								
EMP7512B	2.12	914,000	0.002	300,000								

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies											
Device				1	TCK				Units		
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S		
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S		
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S		
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S		
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S		

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S		
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S		
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S		
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S		
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S		

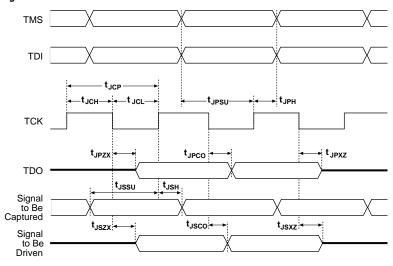


Figure 8. MAX 7000B JTAG Waveforms

Table 9 shows the JTAG timing parameters and values for MAX 7000B devices.

Table 9. Note (1)	JTAG Timing Parameters & Values for MAX 70	100B Dev	ices	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Note:

(1) Timing parameters in this table apply to all $V_{\mbox{\scriptsize CCIO}}$ levels.

Programmable Speed/Power Control

MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters.

Output Configuration

MAX 7000B device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of $\rm V_{CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels of 2.5 V or 1.8 V incur a nominal timing delay adder.

Table 10 describes the MAX 7000B MultiVolt I/O support.

Table 10. MAX 700	Table 10. MAX 7000B MultiVolt I/O Support										
V _{CCIO} (V) Input Signal (V) Output Signal (V)											
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0			
1.8	✓	✓	✓		✓						
2.5	✓	✓	✓			✓					
3.3	✓	✓	✓				✓	✓			

Open-Drain Output Option

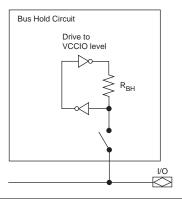
MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

Slew-Rate Control

The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.


Advanced I/O Standard Support

The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II.

Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode.

Figure 10 shows a block diagram of the bus-hold circuit.

Figure 10. Bus-Hold Circuit

PCI Compatibility

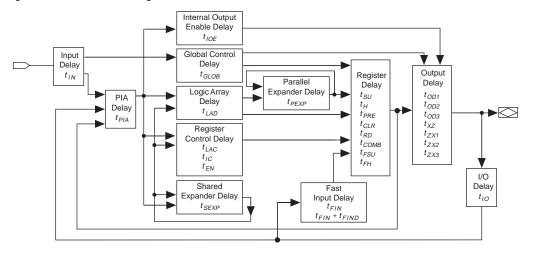
MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications.

Table 13. MAX 70 Specifications	00B Device Speed Grades tha	t Meet PCI Timing							
Device Specification									
	33-MHz PCI	66-MHz PCI							
EPM7032B	All speed grades	-3							
EPM7064B	All speed grades	-3							
EPM7128B	All speed grades	-4							
EPM7256B	All speed grades	-5 (1)							
EPM7512B	All speed grades	-5 (1)							

Note:

(1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications.

Table 1	Table 17. MAX 7000B Device Capacitance Note (9)									
Symbol	Parameter Conditions Min Max Unit									
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF					
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF					

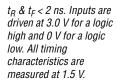

Notes to tables:

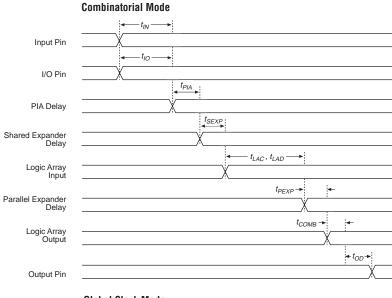
- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (7) This value is specified for normal device operation. During power-up, the maximum leakage current is ±300 μA.
- (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}.
- (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF.
- (10) The POR time for all 7000B devices does not exceed 100 µs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

Timing Model

MAX 7000B device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 13. MAX 7000B devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 13. MAX 7000B Timing Model




The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 14 shows the timing relationship between internal and external delay parameters.

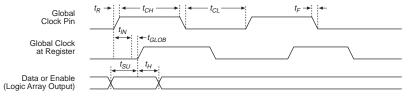
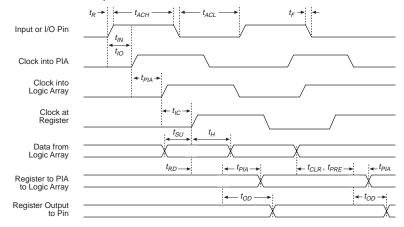

See Application Note 94 (Understanding MAX 7000 Timing) for more information.

Figure 14. MAX 7000B Switching Waveforms



Global Clock Mode

Array Clock Mode

Table 19.	EPM7032B Internal Timing I	Parameters	Notes	(1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-3	.5	-5	i.0	-7	7. 5	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		0.7	ns
t_{IO}	I/O input pad and buffer delay			0.3		0.5		0.7	ns
t _{FIN}	Fast input delay			0.9		1.3		2.0	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		3.2	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.9	ns
t_{LAD}	Logic array delay			1.4		2.0		3.1	ns
t _{LAC}	Logic control array delay			1.2		1.7		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.2		1.8	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.2		6.8	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.6		2.2		3.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		6.6		7.2		8.4	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		1.6		2.2		3.4	ns
t_{SU}	Register setup time		0.7		1.1		1.6		ns
t_H	Register hold time		0.4		0.5		0.9		ns
t _{FSU}	Register setup time of fast input		0.8		0.8		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.2		1.4		ns
t_{RD}	Register delay			0.5		0.6		0.9	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.5	ns
t _{IC}	Array clock delay			1.2		1.8		2.8	ns
t _{EN}	Register enable time			1.2		1.7		2.6	ns
t _{GLOB}	Global control delay			0.7		1.1		1.6	ns
t _{PRE}	Register preset time			1.0		1.3		1.9	ns
t _{CLR}	Register clear time			1.0		1.3		1.9	ns
t _{PIA}	PIA delay	(2)		0.7		1.0		1.4	ns
t_{LPA}	Low-power adder	(4)		1.5		2.1		3.2	ns

I/O Standard	Parameter			Speed	Grade			Unit
		-3	3.5	-5	i.0	-7	'. 5	
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to (PIA)		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.3		0.4		0.6	ns
	Input to global clock and clear		0.3		0.4		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.5		0.8		1.1	ns
	Input to global clock and clear		0.5		0.8		1.1	ns
	Input to fast input register		0.4		0.5		0.8	ns
	All outputs		1.2		1.8		2.6	ns
SSTL-2 Class I	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.6		2.3		3.4	ns
	Input to global clock and clear		1.6		2.3		3.4	ns
	Input to fast input register		1.5		2.1		3.2	ns
	All outputs		0.0		0.0		0.0	ns

I/O Standard	Parameter			Speed	Grade			Unit
		-	3	-	·5	-	7	
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.3		0.4		0.6	ns
	Input to global clock and clear		0.3		0.4		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.5		0.7		1.1	ns
	Input to global clock and clear		0.5		0.7		1.1	ns
	Input to fast input register		0.4		0.6		0.9	ns
	All outputs		1.2		1.7		2.6	ns
SSTL-2 Class I	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.7		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.7		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.2		1.7		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.2		1.7		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.6		2.3		3.4	ns
	Input to global clock and clear		1.6		2.3		3.4	ns
	Input to fast input register		1.5		2.1		3.2	ns
	All outputs		0.0		0.0		0.0	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.6		0.8	ns
t_{IO}	I/O input pad and buffer delay			0.3		0.6		0.8	ns
t _{FIN}	Fast input delay			1.3		2.9		3.7	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.8		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.8		1.0	ns
t_{LAD}	Logic array delay			1.6		2.9		3.8	ns
t _{LAC}	Logic control array delay			1.4		2.6		3.4	ns
t _{IOE}	Internal output enable delay			0.1		0.3		0.4	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.7		2.2	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.7		7.2	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.8		3.3		4.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		6.8		8.3		9.4	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		1.8		3.3		4.4	ns
t_{SU}	Register setup time		1.0		1.9		2.6		ns
t _H	Register hold time		0.4		0.8		1.1		ns
t _{FSU}	Register setup time of fast input		0.8		0.9		0.9		ns
t_{FH}	Register hold time of fast input		1.2		1.6		1.6		ns
t_{RD}	Register delay			0.5		1.1		1.4	ns
t_{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.4		2.8		3.6	ns
t_{EN}	Register enable time			1.4		2.6		3.4	ns
t_{GLOB}	Global control delay			1.1		2.3		3.1	ns
t _{PRE}	Register preset time			1.0		1.9		2.6	ns
t _{CLR}	Register clear time			1.0		1.9		2.6	ns
t_{PIA}	PIA delay	(2)		1.0		2.0		2.8	ns
t _{LPA}	Low-power adder	(4)		1.5		2.8		3.8	ns

Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 1 of 2) Note (1)									
I/O Standard	Parameter	Speed Grade						Unit	
		-4		-7		-10		1	
		Min	Max	Min	Max	Min	Max		
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	
2.5 V TTL/CMOS	Input to PIA		0.3		0.6		0.8	ns	
	Input to global clock and clear		0.3		0.6		0.8	ns	
	Input to fast input register		0.2		0.4		0.5	ns	
	All outputs		0.2		0.4		0.5	ns	
1.8 V TTL/CMOS	Input to PIA		0.5		0.9		1.3	ns	
	Input to global clock and clear		0.5		0.9		1.3	ns	
	Input to fast input register		0.4		0.8		1.0	ns	
	All outputs		1.2		2.3		3.0	ns	
SSTL-2 Class I	Input to PIA		1.4		2.6		3.5	ns	
	Input to global clock and clear		1.2		2.3		3.0	ns	
	Input to fast input register		1.0		1.9		2.5	ns	
	All outputs		0.0		0.0		0.0	ns	
SSTL-2 Class II	Input to PIA		1.4		2.6		3.5	ns	
	Input to global clock and clear		1.2		2.3		3.0	ns	
	Input to fast input register		1.0		1.9		2.5	ns	
	All outputs		-0.1		-0.2		-0.3	ns	
SSTL-3 Class I	Input to PIA		1.3		2.4		3.3	ns	
	Input to global clock and clear		1.0		1.9		2.5	ns	
	Input to fast input register		0.9		1.7		2.3	ns	
	All outputs		0.0		0.0		0.0	ns	
SSTL-3 Class II	Input to PIA		1.3		2.4		3.3	ns	
	Input to global clock and clear		1.0		1.9		2.5	ns	
	Input to fast input register		0.9		1.7		2.3	ns	
	All outputs		0.0		0.0		0.0	ns	
GTL+	Input to PIA		1.7		3.2		4.3	ns	
	Input to global clock and clear		1.7		3.2		4.3	ns	
	Input to fast input register		1.6		3.0		4.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)									
I/O Standard	Parameter		Speed Grade					Unit	
		-4		-7		-10			
		Min	Max	Min	Max	Min	Max		
PCI	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions	Speed Grade						Unit
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.4		0.6		0.8	ns
t_{IO}	I/O input pad and buffer delay			0.4		0.6		0.8	ns
t _{FIN}	Fast input delay			1.5		2.5		3.1	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.3		3.0	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.8	ns
t_{LAD}	Logic array delay			1.7		2.5		3.3	ns
t _{LAC}	Logic control array delay			1.5		2.2		2.9	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.4		1.9	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.4		6.9	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		2.2		3.3		4.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		7.2		8.3		9.5	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		2.2		3.3		4.5	ns
t_{SU}	Register setup time		1.2		1.8		2.5		ns
t_H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t_{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t_{RD}	Register delay			0.7		1.0		1.3	ns
t _{COMB}	Combinatorial delay			0.3		0.4		0.5	ns
t _{IC}	Array clock delay			1.5		2.3		3.0	ns
t_{EN}	Register enable time			1.5		2.2		2.9	ns
t_{GLOB}	Global control delay			1.3		2.1		2.7	ns
t _{PRE}	Register preset time			1.0		1.6		2.1	ns
t _{CLR}	Register clear time			1.0		1.6		2.1	ns
t_{PIA}	PIA delay	(2)		1.7		2.6		3.3	ns
t _{LPA}	Low-power adder	(4)		2.0		3.0		4.0	ns

I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		-
		Min	Max	Min	Max	Min	Max	1
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.6		0.8	ns
	Input to global clock and clear		0.3		0.5		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.6		0.9		1.2	ns
	Input to global clock and clear		0.6		0.9		1.2	ns
	Input to fast input register		0.5		0.8		1.0	ns
	All outputs		1.3		2.0		2.6	ns
SSTL-2 Class I	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		-0.1		-0.2		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.7		3.6	ns
	Input to global clock and clear		1.8		2.7		3.6	ns
	Input to fast input register		1.7		2.6		3.4	ns
	All outputs		0.0		0.0		0.0	ns

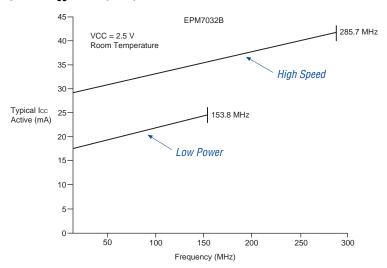
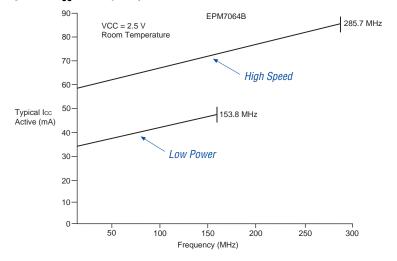



Figure 15. I_{CC} vs. Frequency for EPM7032B Devices

