Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 2 | | Number of Macrocells | 32 | | Number of Gates | 600 | | Number of I/O | 36 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | - | | Supplier Device Package | 48-TQFP | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7032btc48-7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # ...and More Features - System-level features - MultiVolt™ I/O interface enabling device core to run at 2.5 V, while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels - Programmable power-saving mode for 50% or greater power reduction in each macrocell - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Support for advanced I/O standards, including SSTL-2 and SSTL-3, and GTL+ - Bus-hold option on I/O pins - PCI compatible - Bus-friendly architecture including programmable slew-rate control - Open-drain output option - Programmable security bit for protection of proprietary designs - Built-in boundary-scan test circuitry compliant with IEEE Std. 1149.1 - Supports hot-socketing operation - Programmable ground pins - Advanced architecture features - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls - Two global clock signals with optional inversion - Programmable power-up states for macrocell registers - 6 to 10 pin- or logic-driven output enable signals - Advanced package options - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), space-saving FineLine BGA™, 0.8-mm Ultra FineLine BGA, and plastic J-lead chip carrier (PLCC) packages - Pin-compatibility with other MAX 7000B devices in the same package - Advanced software support - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations | Table 3. MAX | Table 3. MAX 7000B Maximum User I/O Pins Note (1) | | | | | | | | | | | |--------------|---|----------------|-----------------------|--|---------------------|--------------------------------|---------------------|---|---------------------|--------------------|--------------------------------| | Device | 44-Pin
PLCC | 44-Pin
TQFP | 48-Pin
TQFP
(2) | 49-Pin
0.8-mm
Ultra
FineLine
BGA (3) | 100-
Pin
TQFP | 100-Pin
FineLine
BGA (4) | 144-
Pin
TQFP | 169-Pin
0.8-mm
Ultra
FineLine
BGA (3) | 208-
Pin
PQFP | 256-
Pin
BGA | 256-Pin
FineLine
BGA (4) | | EPM7032B | 36 | 36 | 36 | 36 | | | | | | | | | EPM7064B | 36 | 36 | 40 | 41 | 68 | 68 | | | | | | | EPM7128B | | | | 41 | 84 | 84 | 100 | 100 | | | 100 | | EPM7256B | | | | | 84 | | 120 | 141 | 164 | | 164 | | EPM7512B | | | | | | | 120 | 141 | 176 | 212 | 212 | #### Notes: - When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins. - (2) Contact Altera for up-to-date information on available device package options. - (3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details. - (4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details. MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the MAX+PLUS II software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - Global clock signal. This mode achieves the fastest clock-to-output performance. - Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. Two global clock signals are available in MAX 7000B devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000B device may be set to either a high or low state. This power-up state is specified at design entry. All MAX 7000B I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast input setup time. The input path from the I/O pin to the register has a programmable delay element that can be selected to either guarantee zero hold time or to get the fastest possible set-up time (as fast as 1.0 ns). Figure 6. I/O Control Block of MAX 7000B Devices ## Note: (1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. ## **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm. | Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values | | | | | | | | | | |---|---|-----------------------|-------------------------|-----------------------|--|--|--|--|--| | Device | Device Programming Stand-Alone Verification | | | | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | | EMP7032B | 2.12 | 70,000 | 0.002 | 18,000 | | | | | | | EMP7064B | 2.12 | 120,000 | 0.002 | 35,000 | | | | | | | EMP7128B | 2.12 | 222,000 | 0.002 | 69,000 | | | | | | | EMP7256B | 2.12 | 466,000 | 0.002 | 151,000 | | | | | | | EMP7512B | 2.12 | 914,000 | 0.002 | 300,000 | | | | | | Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | | | | |---|--------|--|------|------|------|------|-------|-------|---|--|--|--| | Device | | f _{TCK} | | | | | | | | | | | | | 10 MHz | MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz | | | | | | | | | | | | EMP7032B | 2.13 | 2.13 | 2.15 | 2.19 | 2.26 | 2.47 | 2.82 | 3.52 | S | | | | | EMP7064B | 2.13 | 2.14 | 2.18 | 2.24 | 2.36 | 2.72 | 3.32 | 4.52 | S | | | | | EMP7128B | 2.14 | 2.16 | 2.23 | 2.34 | 2.56 | 3.23 | 4.34 | 6.56 | S | | | | | EMP7256B | 2.17 | 2.21 | 2.35 | 2.58 | 3.05 | 4.45 | 6.78 | 11.44 | S | | | | | EMP7512B | 2.21 | 2.30 | 2.58 | 3.03 | 3.95 | 6.69 | 11.26 | 20.40 | S | | | | | Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | | | |--|--------|--|------|------|------|------|------|------|---|--|--|--| | Device | | f _{TCK} | | | | | | | | | | | | | 10 MHz | MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz | | | | | | | | | | | | EMP7032B | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.09 | 0.18 | 0.36 | S | | | | | EMP7064B | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.18 | 0.35 | 0.70 | S | | | | | EMP7128B | 0.01 | 0.02 | 0.04 | 0.07 | 0.14 | 0.35 | 0.69 | 1.38 | S | | | | | EMP7256B | 0.02 | 0.03 | 0.08 | 0.15 | 0.30 | 0.76 | 1.51 | 3.02 | S | | | | | EMP7512B | 0.03 | 0.06 | 0.15 | 0.30 | 0.60 | 1.50 | 3.00 | 6.00 | S | | | | The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices. | Table 7. MAX 7000B Boundary-Scan Register Length | | | | | | | | |--|-------------------------------|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | EPM7032B | 96 | | | | | | | | EPM7064B | 192 | | | | | | | | EPM7128B | 288 | | | | | | | | EPM7256B | 480 | | | | | | | | EPM7512B | 624 | | | | | | | | Table 8. 32-1 | Table 8. 32-Bit MAX 7000B Device IDCODENote (1) | | | | | | | | | | | |---------------|---|---------------------|-------------|---|--|--|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | | | Version
(4 Bits) | | | | | | | | | | | | EPM7032B | 0010 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | EPM7064B | 0010 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | EPM7128B | 0010 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | EPM7256B | 0010 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | EPM7512B | 0010 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing. Figure 8 shows the timing information for the JTAG signals. Figure 8. MAX 7000B JTAG Waveforms Table 9 shows the JTAG timing parameters and values for MAX 7000B devices. | Table 9. Note (1) | JTAG Timing Parameters & Values for MAX 70 | 100B Dev | ices | | |--------------------------|--|----------|------|------| | Symbol | Parameter | Min | Max | Unit | | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 25 | ns | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | #### Note: (1) Timing parameters in this table apply to all $V_{\mbox{\scriptsize CCIO}}$ levels. MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported. Figure 9 shows the arrangement of the MAX 7000B I/O banks. Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards Table 11 shows which macrocells have pins in each I/O bank. | Table 11. Macrocell Pins Contained in Each I/O Bank | | | | | | | | | |---|----------------|------------------|--|--|--|--|--|--| | Device | Bank 1 | Bank 2 | | | | | | | | EPM7032B | 1-16 | 17-32 | | | | | | | | EPM7064B | 1-32 | 33-64 | | | | | | | | EPM7128B | 1-64 | 65-128 | | | | | | | | EPM7256B | 1-128, 177-181 | 129-176, 182-256 | | | | | | | | EPM7512B | 1-265 | 266-512 | | | | | | | Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins. # Power Sequencing & Hot-Socketing Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user. MAX 7000B device I/O pins will not source or sink more than 300 μ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing. ## **Design Security** All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. ## **Generic Testing** MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow. | Table 1 | 5. MAX 7000B Device Recomm | ended Operating Conditions | | | | |--------------------|---|----------------------------|-------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (10) | 2.375 | 2.625 | V | | V _{CCIO} | Supply voltage for output drivers, 3.3-V operation | | 3.0 | 3.6 | V | | | Supply voltage for output drivers, 2.5-V operation | | 2.375 | 2.625 | V | | | Supply voltage for output drivers, 1.8-V operation | | 1.71 | 1.89 | V | | V _{CCISP} | Supply voltage during in-system programming | | 2.375 | 2.625 | V | | VI | Input voltage | (3) | -0.5 | 3.9 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use (11) | -40 | 85 | ° C | | TJ | Junction temperature | For commercial use | 0 | 90 | ° C | | | | For industrial use (11) | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 1 | Table 17. MAX 7000B Device Capacitance Note (9) | | | | | | | | | |------------------|---|-------------------------------------|--|---|----|--|--|--|--| | Symbol | Parameter Conditions Min Max Unit | | | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. - (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current. - (7) This value is specified for normal device operation. During power-up, the maximum leakage current is ±300 μA. - (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}. - (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF. - (10) The POR time for all 7000B devices does not exceed 100 µs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. Tables 18 through 32 show MAX 7000B device timing parameters. | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |--------------------|---|----------------|-------|-------------|-------|------|-------|------|-----|--| | | | | -3 | -3.5 | | -5.0 | | -7.5 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |--------------------|---|----------------|-------|-------------|-------|-----|------|------|-----|--| | | | | - | -4 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | (2) | 2.5 | | 4.5 | | 6.1 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 3.0 | | 3.0 | | ns | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.8 | 1.0 | 5.7 | 1.0 | 7.5 | ns | | | t _{CH} | Global clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 1.2 | | 2.0 | | 2.8 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.7 | | 0.9 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.1 | 1.0 | 8.2 | 1.0 | 10.8 | ns | | | t _{ACH} | Array clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |---|---------------------------------|-----|-----|------|-----|-----|-----|----|--|--| | I/O Standard | Parameter | | | Unit | | | | | | | | | | -4 | | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | ## Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|--|------------|-------------|-----|-----|-----|-----|-----|----| | | | | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.5 | | 2.5 | | 3.1 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.5 | | 3.3 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.2 | | 2.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.4 | | 1.9 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.4 | | 6.9 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.2 | | 8.3 | | 9.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t_{SU} | Register setup time | | 1.2 | | 1.8 | | 2.5 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{COMB} | Combinatorial delay | | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IC} | Array clock delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.2 | | 2.9 | ns | | t_{GLOB} | Global control delay | | | 1.3 | | 2.1 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.6 | | 2.1 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.6 | | 2.1 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.6 | | 3.3 | ns | | t _{LPA} | Low-power adder | (4) | | 2.0 | | 3.0 | | 4.0 | ns | | Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |---|---------------------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | I/O Standard | Parameter | Speed Grade | | | | | | | | | | | | -5 | | -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | ## Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |---|---------------------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | I/O Standard | Parameter | Speed Grade | | | | | | | | | | | | | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | ## Notes to tables: - These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Figure 27. 208-Pin PQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the MAX 7000B Programmable Logic Device Family Data Sheet version 3.5 supersedes information published in previous versions. ## Version 3.5 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5: Updated Figure 28. ## Version 3.4 The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4: ■ Updated text in the "Power Sequencing & Hot-Socketing" section.