
Altera - EPM7032BTI44-5 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	600
Number of I/O	36
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7032bti44-5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

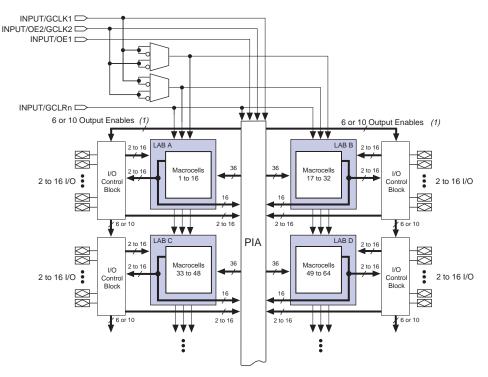
and More Features	 System-level features MultiVolt[™] I/O interface enabling device core to run at 2.5 V, while I/O mine are compatible with 2.2 V, 2.5 V, and 1.8 V logic
	while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels
	 Programmable power-saving mode for 50% or greater power
	reduction in each macrocell
	 Fast input setup times provided by a dedicated path from I/O
	pin to macrocell registers
	 Support for advanced I/O standards, including SSTL-2 and
	SSTL-3, and GTL+
	 Bus-hold option on I/O pins
	– PCI compatible
	 Bus-friendly architecture including programmable slew-rate control
	 Open-drain output option
	 Programmable security bit for protection of proprietary designs
	 Built-in boundary-scan test circuitry compliant with
	IEEE Std. 1149.1
	 Supports hot-socketing operation
	 Programmable ground pins
	 Advanced architecture features Brogrammable interconnect error (BLA) continuous routing
	 Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
	 Configurable expander product-term distribution, allowing up
	to 32 product terms per macrocell
	 Programmable macrocell registers with individual clear, preset,
	clock, and clock enable controls
	 Two global clock signals with optional inversion
	 Programmable power-up states for macrocell registers
	 6 to 10 pin- or logic-driven output enable signals
	Advanced package options
	 Pin counts ranging from 44 to 256 in a variety of thin quad flat
	pack (TQFP), plastic quad flat pack (PQFP), ball-grid array
	(BGA), space-saving FineLine BGA [™] , 0.8-mm Ultra
	FineLine BGA, and plastic J-lead chip carrier (PLCC) packages
	 Pin-compatibility with other MAX 7000B devices in the same
	package
	 Advanced software support
	- Software design support and automatic place-and-route
	provided by Altera's MAX+PLUS [®] II development system for
	Windows-based PCs and Sun SPARCstation, and HP 9000
	Series 700/800 workstations

Table 3. MA)	Table 3. MAX 7000B Maximum User I/O PinsNote (1)												
Device	44-Pin PLCC	44-Pin TQFP	48-Pin TQFP <i>(2)</i>	49-Pin 0.8-mm Ultra FineLine BGA (3)	100- Pin TQFP	100-Pin FineLine BGA (4)	144- Pin TQFP	169-Pin 0.8-mm Ultra FineLine BGA (3)	208- Pin PQFP	256- Pin BGA	256-Pin FineLine BGA (4)		
EPM7032B	36	36	36	36									
EPM7064B	36	36	40	41	68	68							
EPM7128B				41	84	84	100	100			100		
EPM7256B					84		120	141	164		164		
EPM7512B							120	141	176	212	212		

Notes:

 When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.

(2) Contact Altera for up-to-date information on available device package options.


(3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

(4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enables. EPM7512B devices have ten output enables.

Logic Array Blocks

The MAX 7000B device architecture is based on the linking of high-performance LABs. LABs consist of 16 macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

Macrocells

The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell.

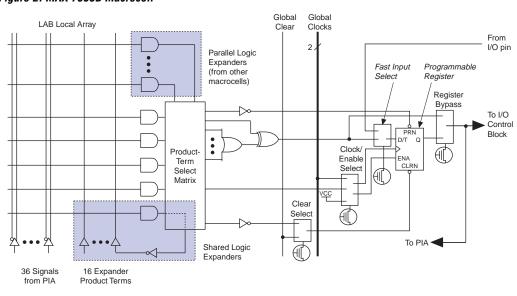


Figure 2. MAX 7000B Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

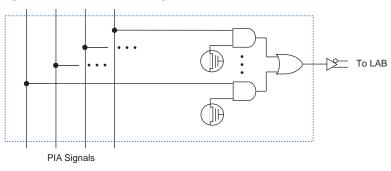


Figure 5. MAX 7000B PIA Routing

While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000B Device

The time required to program a single MAX 7000B device in-system can be calculated from the following formula:

^t PROG	= t _{PPULSE} +	^{Cycle} ртск f _{TCK}
where:	t _{PROG} t _{PPULSE}	Programming timeSum of the fixed times to erase, program, and verify the EEPROM cells
	Cycle _{PTCK} f _{TCK}	Number of TCK cycles to program a deviceTCK frequency

The ISP times for a stand-alone verification of a single MAX 7000B device can be calculated from the following formula:

$t_{VER} = t_{VPULSE} + \frac{C_2}{2}$	^{JCle} VTCK ^f TCK
where: t_{VER} t_{VPULSE} $Cycle_{VTCK}$	= Verify time= Sum of the fixed times to verify the EEPROM cells= Number of TCK cycles to verify a device

Programmable Pull-Up Resistor

Each MAX 7000B device I/O pin provides an optional programmable pull-up resistor during user mode. When this feature is enabled for an I/O pin, the pull-up resistor (typically 50 k³/₄) weakly holds the output to V_{CCIO} level.

Bus Hold

Each MAX 7000B device I/O pin provides an optional bus-hold feature. When this feature is enabled for an I/O pin, the bus-hold circuitry weakly holds the signal at its last driven state. By holding the last driven state of the pin until the next input signals is present, the bus-hold feature can eliminate the need to add external pull-up or pull-down resistors to hold a signal level when the bus is tri-stated. The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. This feature can be selected individually for each I/O pin. The bus-hold output will drive no higher than V_{CCIO} to prevent overdriving signals. The propagation delays through the input and output buffers in MAX 7000B devices are not affected by whether the bus-hold feature is enabled or disabled.

The bus-hold circuitry weakly pulls the signal level to the last driven state through a resistor with a nominal resistance (R_{BH}) of approximately 8.5 k³/₄. Table 12 gives specific sustaining current that will be driven through this resistor and overdrive current that will identify the next driven input level. This information is provided for each VCCIO voltage level.

Table 12. Bus Hold Parameters											
Parameter	Conditions			VCCIO	Level			Units			
		1.8	8 V	2.	5 V	3.3 V					
		Min	Max	Min	Max	Min	Max				
Low sustaining current	$V_{IN} > V_{IL} (max)$	30		50		70		μΑ			
High sustaining current	V _{IN} < V _{IH} (min)	-30		-50		-70		μA			
Low overdrive current	$0 V < V_{IN} < V_{CCIO}$		200		300		500	μΑ			
High overdrive current	$0 V < V_{IN} < V_{CCIO}$		-295		-435		-680	μA			

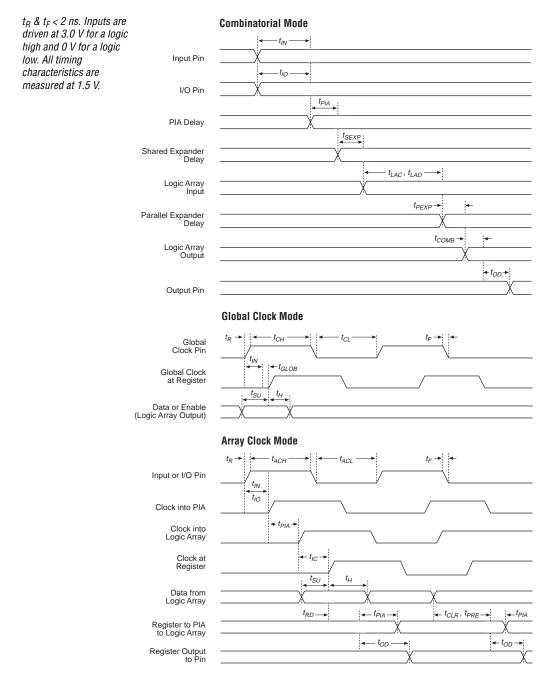

The bus-hold circuitry is active only during user operation. At power-up, the bus-hold circuit initializes its initial hold value as V_{CC} approaches the recommended operation conditions. When transitioning from ISP to User Mode with bus hold enabled, the bus-hold circuit captures the value present on the pin at the end of programming.

Table 1	Table 17. MAX 7000B Device Capacitance Note (9)								
Symbol	Parameter	Parameter Conditions Min Max Unit							
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF				

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (7) This value is specified for normal device operation. During power-up, the maximum leakage current is $\pm 300 \,\mu$ A.
- (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}.
- (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF.
- (10) The POR time for all 7000B devices does not exceed 100 μs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

Figure 14. MAX 7000B Switching Waveforms

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-3	.5	-5	.0	-7.5		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns
t _{CH}	Global clock high time		1.5		2.0		3.0		ns
t _{CL}	Global clock low time		1.5		2.0		3.0		ns
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns
^t cnt	Minimum global clock period	(2)		3.3		4.7		7.0	ns
f _{cnt}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz
t _{acnt}	Minimum array clock period	(2)		3.3		4.7		7.0	ns
facnt	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz

Tables 18 through 32 show MAX 7000B device timing parameters.

Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays Notes (1)											
I/O Standard	Parameter			Speed	Grade			Unit			
		-3.5		-5.0		-7.5					
		Min	Max	Min	Max	Min	Max				
PCI	Input to PIA		0.0		0.0		0.0	ns			
	Input to global clock and clear		0.0		0.0		0.0	ns			
	Input to fast input register		0.0		0.0		0.0	ns			
	All outputs		0.0		0.0		0.0	ns			

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	3	-	5	-	7	-
			Min	Max	Min	Max	Min	Max	-
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns
t _{CH}	Global clock high time		1.5		2.0		3.0		ns
t _{CL}	Global clock low time		1.5		2.0		3.0		ns
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns
t _{CNT}	Minimum global clock period	(2)		3.3		4.7		7.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz
t _{acnt}	Minimum array clock period	(2)		3.3		4.7		7.0	ns
f _{acnt}	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.6		0.8	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.6		0.8	ns
t _{FIN}	Fast input delay			1.3		2.9		3.7	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.8		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.8		1.0	ns
t _{LAD}	Logic array delay			1.6		2.9		3.8	ns
t _{LAC}	Logic control array delay			1.4		2.6		3.4	ns
t _{IOE}	Internal output enable delay			0.1		0.3		0.4	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.7		2.2	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.7		7.2	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		1.8		3.3		4.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		6.8		8.3		9.4	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		1.8		3.3		4.4	ns
t _{SU}	Register setup time		1.0		1.9		2.6		ns
t _H	Register hold time		0.4		0.8		1.1		ns
t _{FSU}	Register setup time of fast input		0.8		0.9		0.9		ns
t _{FH}	Register hold time of fast input		1.2		1.6		1.6		ns
t _{RD}	Register delay			0.5		1.1		1.4	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.4		2.8		3.6	ns
t _{EN}	Register enable time			1.4		2.6		3.4	ns
t _{GLOB}	Global control delay			1.1		2.3		3.1	ns
t _{PRE}	Register preset time		1	1.0		1.9		2.6	ns
t _{CLR}	Register clear time			1.0		1.9		2.6	ns
t _{PIA}	PIA delay	(2)	1	1.0		2.0		2.8	ns
t _{LPA}	Low-power adder	(4)		1.5		2.8		3.8	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.4		0.6		0.8	ns
t _{IO}	I/O input pad and buffer delay			0.4		0.6		0.8	ns
t _{FIN}	Fast input delay			1.5		2.5		3.1	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.3		3.0	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.8	ns
t _{LAD}	Logic array delay			1.7		2.5		3.3	ns
t _{LAC}	Logic control array delay			1.5		2.2		2.9	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.9		1.4		1.9	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.4		6.9	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		2.2		3.3		4.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		7.2		8.3		9.5	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		2.2		3.3		4.5	ns
t _{SU}	Register setup time		1.2		1.8		2.5		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t _{RD}	Register delay		1	0.7		1.0		1.3	ns
t _{COMB}	Combinatorial delay		1	0.3		0.4		0.5	ns
t _{IC}	Array clock delay			1.5		2.3		3.0	ns
t _{EN}	Register enable time		1	1.5		2.2		2.9	ns
t _{GLOB}	Global control delay		1	1.3		2.1		2.7	ns
t _{PRE}	Register preset time			1.0		1.6		2.1	ns
t _{CLR}	Register clear time		1	1.0		1.6		2.1	ns
t _{PIA}	PIA delay	(2)	1	1.7		2.6		3.3	ns
t _{LPA}	Low-power adder	(4)		2.0		3.0		4.0	ns

Symbol	Parameter	Conditions	Speed Grade						Unit
			-5		-7		-10		1
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.3		0.5	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		3.2		4.0	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		2.7	ns
t _{PEXP}	Parallel expander delay			0.4		0.5		0.7	ns
t _{LAD}	Logic array delay			1.7		2.3		3.0	ns
t _{LAC}	Logic control array delay			1.5		2.0		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.2	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.2		1.6	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		5.9		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		2.8		3.8		5.0	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		7.8		8.8		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		2.8		3.8		5.0	ns
t _{SU}	Register setup time		1.5		2.0		2.6		ns
t _H	Register hold time		0.4		0.5		0.7		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t _{RD}	Register delay			0.5		0.7		1.0	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.8		2.4		3.1	ns
t _{EN}	Register enable time			1.5		2.0		2.6	ns
t _{GLOB}	Global control delay			2.0		2.8		3.6	ns
t _{PRE}	Register preset time			1.0		1.4		1.9	ns
t _{CLR}	Register clear time			1.0		1.4		1.9	ns
t _{PIA}	PIA delay	(2)		2.4		3.4		4.5	ns
t _{LPA}	Low-power adder	(4)	1	2.0	1	2.7		3.6	ns

Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)										
I/O Standard	Standard Parameter Speed			Grade			Unit			
		-	-5 -7		7 -		0			
		Min	Max	Min	Max	Min	Max			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation:

 $P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

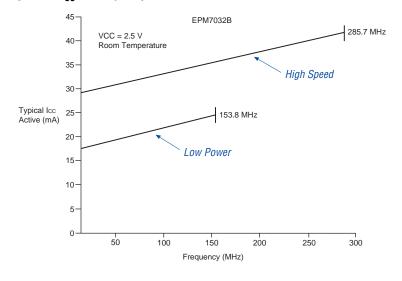
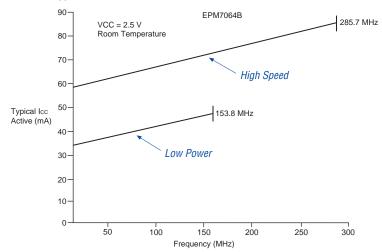
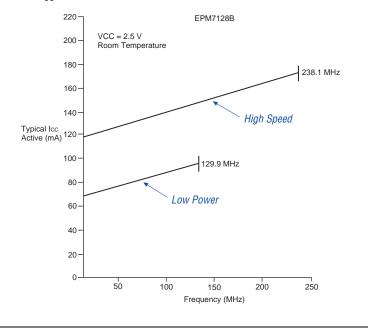
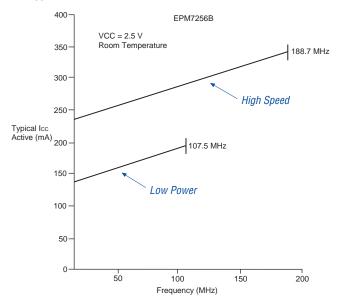
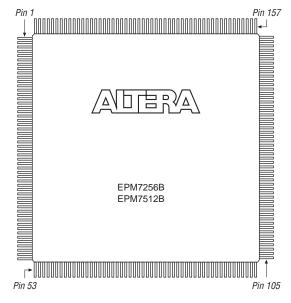



Figure 15. I_{CC} vs. Frequency for EPM7032B Devices


Figure 17. I_{CC} vs. Frequency for EPM7128B Devices

Package outline not drawn to scale.

