
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	41
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	49-LFBGA
Supplier Device Package	49-UBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064bfc49-7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and More Features	 System-level features MultiVolt[™] I/O interface enabling device core to run at 2.5 V, while I/O mine are compatible with 2.2 V, 2.5 V, and 1.8 V logic
	while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels
	 Programmable power-saving mode for 50% or greater power
	reduction in each macrocell
	 Fast input setup times provided by a dedicated path from I/O
	pin to macrocell registers
	 Support for advanced I/O standards, including SSTL-2 and
	SSTL-3, and GTL+
	 Bus-hold option on I/O pins
	– PCI compatible
	 Bus-friendly architecture including programmable slew-rate control
	 Open-drain output option
	 Programmable security bit for protection of proprietary designs
	 Built-in boundary-scan test circuitry compliant with
	IEEE Std. 1149.1
	 Supports hot-socketing operation
	 Programmable ground pins
	 Advanced architecture features Brogrammable interconnect error (BLA) continuous routing
	 Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
	 Configurable expander product-term distribution, allowing up
	to 32 product terms per macrocell
	 Programmable macrocell registers with individual clear, preset,
	clock, and clock enable controls
	 Two global clock signals with optional inversion
	 Programmable power-up states for macrocell registers
	 6 to 10 pin- or logic-driven output enable signals
	Advanced package options
	 Pin counts ranging from 44 to 256 in a variety of thin quad flat
	pack (TQFP), plastic quad flat pack (PQFP), ball-grid array
	(BGA), space-saving FineLine BGA [™] , 0.8-mm Ultra
	FineLine BGA, and plastic J-lead chip carrier (PLCC) packages
	 Pin-compatibility with other MAX 7000B devices in the same
	package
	 Advanced software support
	- Software design support and automatic place-and-route
	provided by Altera's MAX+PLUS [®] II development system for
	Windows-based PCs and Sun SPARCstation, and HP 9000
	Series 700/800 workstations

MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems.

MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

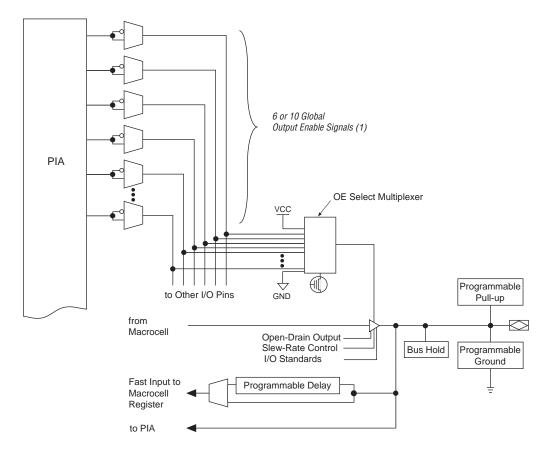
For more information on development tools, see the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet* and the *Quartus Programmable Logic Development System & Software Data Sheet*.

Functional Description

The MAX 7000B architecture includes the following elements:

- LABs
- Macrocells
- Expander product terms (shareable and parallel)
- PIA
- I/O control blocks

The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices.


Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The Altera Compiler can automatically allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8, and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell.

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to $V_{CC'}$, the output is enabled.

The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices.

Table 7. MAX 7000B Boundary-Scan Register Length							
Device	Boundary-Scan Register Length						
EPM7032B	96						
EPM7064B	192						
EPM7128B	288						
EPM7256B	480						
EPM7512B	624						

Table 8. 32-Bit MAX 7000B Device IDCODE Note (1)											
Device		IDCODE (32 Bits)									
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032B	0010	0111 0000 0011 0010	00001101110	1							
EPM7064B	0010	0111 0000 0110 0100	00001101110	1							
EPM7128B	0010	0111 0001 0010 1000	00001101110	1							
EPM7256B	0010	0111 0010 0101 0110	00001101110	1							
EPM7512B	0010	0111 0101 0001 0010	00001101110	1							

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*) for more information on JTAG boundary-scan testing.

Figure 8 shows the timing information for the JTAG signals.

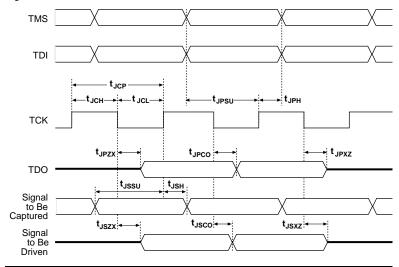
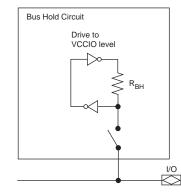


Figure 8. MAX 7000B JTAG Waveforms

Table 9 shows the JTAG timing parameters and values for MAX 7000B devices.

Table 9. Note (1)	JTAG Timing Parameters & Values for MAX 70	00B Dev	ices	
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns


Note:

(1) Timing parameters in this table apply to all V_{CCIO} levels.

Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode.

Figure 10 shows a block diagram of the bus-hold circuit.

Figure 10. Bus-Hold Circuit

PCI Compatibility

MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications.

Table 13. MAX 70 Specifications	Table 13. MAX 7000B Device Speed Grades that Meet PCI Timing Specifications								
Device	Specifi	cation							
	33-MHz PCI	66-MHz PCI							
EPM7032B	All speed grades	-3							
EPM7064B	All speed grades	-3							
EPM7128B	All speed grades	-4							
EPM7256B	All speed grades	-5 (1)							
EPM7512B	All speed grades	-5 (1)							

Note:

(1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications. Figure 12 shows the typical output drive characteristics of MAX 7000B devices.

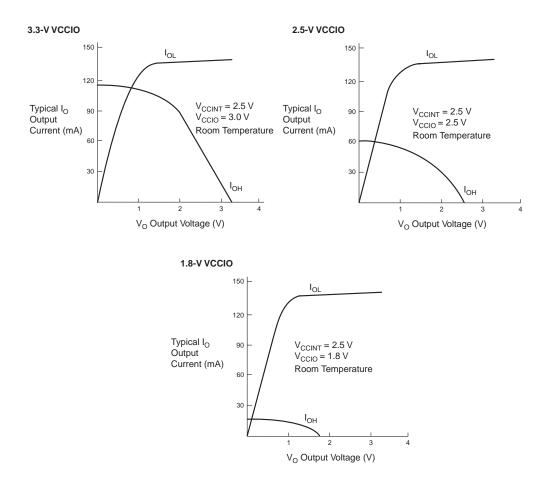


Figure 12. Output Drive Characteristics of MAX 7000B Devices

I/O Standard	Parameter	Speed Grade						Unit
		-3.5		-5	i.O	-7.5		
		Min	Мах	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to (PIA)		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.3		0.4		0.6	ns
	Input to global clock and clear		0.3		0.4		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.5		0.8		1.1	ns
	Input to global clock and clear		0.5		0.8		1.1	ns
	Input to fast input register		0.4		0.5		0.8	ns
	All outputs		1.2		1.8		2.6	ns
SSTL-2 Class I	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.6		2.3		3.4	ns
	Input to global clock and clear		1.6		2.3		3.4	ns
	Input to fast input register		1.5		2.1		3.2	ns
	All outputs		0.0		0.0		0.0	ns

Symbol	Parameter	Conditions			Speed	Grade	rade		
			-	3	-	5	-7		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		0.7	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		0.7	ns
t _{FIN}	Fast input delay			0.9		1.3		2.0	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		3.2	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.9	ns
t _{LAD}	Logic array delay			1.4		2.0		3.1	ns
t _{LAC}	Logic control array delay			1.2		1.7		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.9		1.2		1.8	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		5.9		6.2		6.8	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		1.6		2.2		3.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		6.6		7.2		8.4	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		1.6		2.2		3.4	ns
t _{SU}	Register setup time		0.7		1.1		1.6		ns
t _H	Register hold time		0.4		0.5		0.9		ns
t _{FSU}	Register setup time of fast input		0.8		0.8		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.2		1.4		ns
t _{RD}	Register delay			0.5		0.6		0.9	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.5	ns
t _{IC}	Array clock delay			1.2		1.8		2.8	ns
t _{EN}	Register enable time			1.2		1.7		2.6	ns
t _{GLOB}	Global control delay			0.7		1.1		1.6	ns
t _{PRE}	Register preset time		1	1.0		1.3		1.9	ns
t _{CLR}	Register clear time			1.0		1.3		1.9	ns
t _{PIA}	PIA delay	(2)	1	0.7		1.0		1.4	ns
t _{LPA}	Low-power adder	(4)	1	1.5	1	2.1		3.2	ns

I/O Standard	Parameter			Speed	Grade			Unit
			3	-	5	-	7	
		Min	Max	Min	Max	Min	Max	
PCI	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-4		7	-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.5		4.5		6.1		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.8	1.0	5.7	1.0	7.5	ns
t _{CH}	Global clock high time		1.5		3.0		4.0		ns
t _{CL}	Global clock low time		1.5		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.2		2.0		2.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.7		0.9		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.1	1.0	8.2	1.0	10.8	ns
t _{ACH}	Array clock high time		1.5		3.0		4.0		ns
t _{ACL}	Array clock low time		1.5		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		1.5		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.1		7.9		10.6	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	243.9		126.6		94.3		MHz
t _{acnt}	Minimum array clock period	(2)		4.1		7.9		10.6	ns
f _{acnt}	Maximum internal array clock frequency	(2), (3)	243.9		126.6		94.3		MHz

Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)										
I/O Standard	Parameter			Speed	Grade			Unit		
		-5 -7 -10								
		Min	Max	Min	Max	Min	Мах			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.5		0.7	ns
	Input to global clock and clear		0.3		0.4		0.5	ns
	Input to fast input register		0.2		0.3		0.3	ns
	All outputs		0.2		0.3		0.3	ns
1.8 V TTL/CMOS	Input to PIA		0.7		1.0		1.3	ns
	Input to global clock and clear		0.6		0.8		1.0	ns
	Input to fast input register		0.5		0.6		0.8	ns
	All outputs		1.3		1.8		2.3	ns
SSTL-2 Class I	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.5		3.3	ns
	Input to global clock and clear		1.9		2.6		3.5	ns
	Input to fast input register		1.8		2.5		3.3	ns
	All outputs		0.0		0.0		0.0	ns

Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)								
I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
PCI	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation:

 $P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

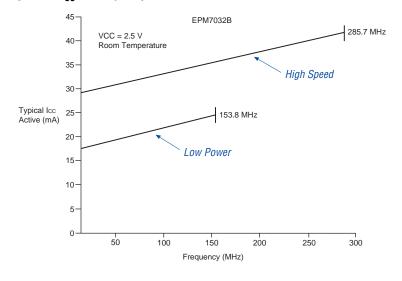
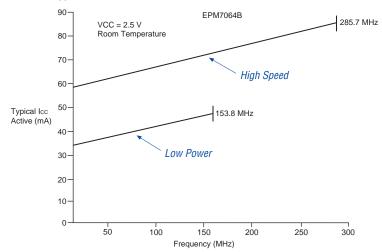
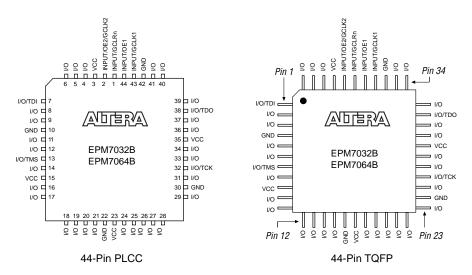



Figure 15. I_{CC} vs. Frequency for EPM7032B Devices


Device Pin-Outs

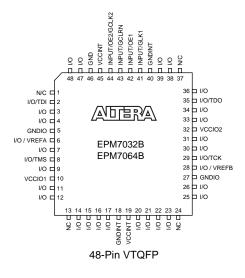
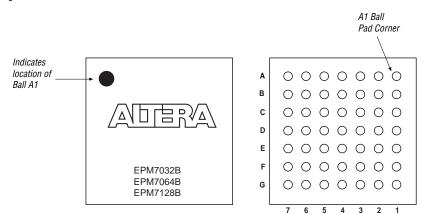
See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

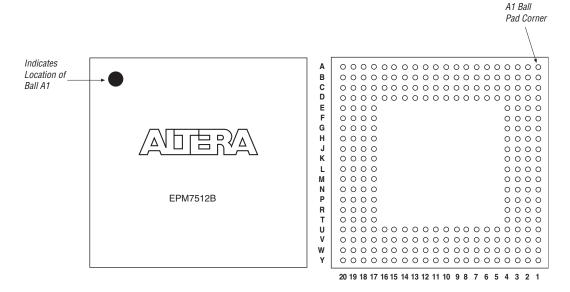
Figures 20 through 29 show the package pin-out diagrams for MAX 7000B devices.

Package outlines not drawn to scale.

Figure 21. 48-Pin VTQFP Package Pin-Out Diagram

Package outlines not drawn to scale.


Figure 22. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 28. 256-Pin BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Version 3.3

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.3:

- Updated Table 3.
- Added Tables 4 through 6.

Version 3.2

The following changes were made to the *MAX* 7000B Programmable Logic Device Family Data Sheet version 3.2:

 Updated Note (10) and added ambient temperature (T_A) information to Table 15.

Version 3.1

The following changes were made to the *MAX* 7000B Programmable Logic Device Family Data Sheet version 3.1:

- Updated V_{IH} and V_{IL} specifications in Table 16.
- Updated leakage current conditions in Table 16.

Version 3.0

The following changes were made to the *MAX* 7000B Programmable Logic Device Family Data Sheet version 3.0:

- Updated timing numbers in Table 1.
- Updated Table 16.
- Updated timing in Tables 18, 19, 21, 22, 24, 25, 27, 28, 30, and 31.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right responsibility or liability arising out of the application or use of any information, product, or

Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

1.5. 1.1 1.50 0001

Altera Corporation

66