



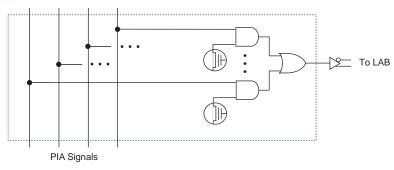
Welcome to **E-XFL.COM** 

**Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** 

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

## **Applications of Embedded - CPLDs**

| Details                         |                                                              |
|---------------------------------|--------------------------------------------------------------|
| Product Status                  | Active                                                       |
| Programmable Type               | EE PLD                                                       |
| Delay Time tpd(1) Max           | 3.5 ns                                                       |
| Voltage Supply - Internal       | 2.375V ~ 2.625V                                              |
| Number of Logic Elements/Blocks | 4                                                            |
| Number of Macrocells            | 64                                                           |
| Number of Gates                 | 1250                                                         |
| Number of I/O                   | 68                                                           |
| Operating Temperature           | 0°C ~ 70°C (TA)                                              |
| Mounting Type                   | Surface Mount                                                |
| Package / Case                  | 100-TQFP                                                     |
| Supplier Device Package         | 100-TQFP (14x14)                                             |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7064btc100-3 |


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# ...and More Features

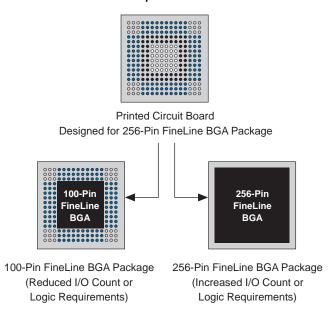
- System-level features
  - MultiVolt™ I/O interface enabling device core to run at 2.5 V, while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels
  - Programmable power-saving mode for 50% or greater power reduction in each macrocell
  - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
  - Support for advanced I/O standards, including SSTL-2 and SSTL-3, and GTL+
  - Bus-hold option on I/O pins
  - PCI compatible
  - Bus-friendly architecture including programmable slew-rate control
  - Open-drain output option
  - Programmable security bit for protection of proprietary designs
  - Built-in boundary-scan test circuitry compliant with IEEE Std. 1149.1
  - Supports hot-socketing operation
  - Programmable ground pins
- Advanced architecture features
  - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
  - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
  - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls
  - Two global clock signals with optional inversion
  - Programmable power-up states for macrocell registers
  - 6 to 10 pin- or logic-driven output enable signals
- Advanced package options
  - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), space-saving FineLine BGA™, 0.8-mm Ultra FineLine BGA, and plastic J-lead chip carrier (PLCC) packages
  - Pin-compatibility with other MAX 7000B devices in the same package
- Advanced software support
  - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

Figure 5. MAX 7000B PIA Routing



While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

### I/O Control Blocks


The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or  $V_{CC}.$  Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

# SameFrame Pin-Outs

MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package to an EPM7512B device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example



# In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k<sup>3</sup>4.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP\_Done bit that provides safe operation when in-system programming is interrupted. This ISP\_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.



For more information on using the Jam language, see *Application Note 88* (*Using the Jam Language for ISP & ICR via an Embedded Processor*) and *Application Note 122* (*Using STAPL for ISP & ICR via an Embedded Processor*).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices.

| Table 7. MAX 7000B Boundary-Sca | n Register Length             |
|---------------------------------|-------------------------------|
| Device                          | Boundary-Scan Register Length |
| EPM7032B                        | 96                            |
| EPM7064B                        | 192                           |
| EPM7128B                        | 288                           |
| EPM7256B                        | 480                           |
| EPM7512B                        | 624                           |

| Table 8. 32-1 | Table 8. 32-Bit MAX 7000B Device IDCODENote (1) |                       |                                      |                  |  |  |  |  |  |  |  |
|---------------|-------------------------------------------------|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--|
| Device        | IDCODE (32 Bits)                                |                       |                                      |                  |  |  |  |  |  |  |  |
|               | Version<br>(4 Bits)                             | Part Number (16 Bits) | Manufacturer's<br>Identity (11 Bits) | 1 (1 Bit)<br>(2) |  |  |  |  |  |  |  |
| EPM7032B      | 0010                                            | 0111 0000 0011 0010   | 00001101110                          | 1                |  |  |  |  |  |  |  |
| EPM7064B      | 0010                                            | 0111 0000 0110 0100   | 00001101110                          | 1                |  |  |  |  |  |  |  |
| EPM7128B      | 0010                                            | 0111 0001 0010 1000   | 00001101110                          | 1                |  |  |  |  |  |  |  |
| EPM7256B      | 0010                                            | 0111 0010 0101 0110   | 00001101110                          | 1                |  |  |  |  |  |  |  |
| EPM7512B      | 0010                                            | 0111 0101 0001 0010   | 00001101110                          | 1                |  |  |  |  |  |  |  |

#### Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.



See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing.

Figure 8 shows the timing information for the JTAG signals.

## Programmable Speed/Power Control

MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder ( $t_{LPA}$ ) for the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{ACL}$ ,  $t_{CPPW}$ ,  $t_{EN}$ , and  $t_{SEXP}$  parameters.

# Output Configuration

MAX 7000B device outputs can be programmed to meet a variety of system-level requirements.

### MultiVolt I/O Interface

The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of  $\rm V_{CC}$  pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with  $V_{\rm CCIO}$  levels of 2.5 V or 1.8 V incur a nominal timing delay adder.

Table 10 describes the MAX 7000B MultiVolt I/O support.

| Table 10. MAX 700                                        | Table 10. MAX 7000B MultiVolt I/O Support |          |          |     |          |          |          |          |  |
|----------------------------------------------------------|-------------------------------------------|----------|----------|-----|----------|----------|----------|----------|--|
| V <sub>CCIO</sub> (V) Input Signal (V) Output Signal (V) |                                           |          |          |     |          |          |          |          |  |
|                                                          | 1.8                                       | 2.5      | 3.3      | 5.0 | 1.8      | 2.5      | 3.3      | 5.0      |  |
| 1.8                                                      | <b>✓</b>                                  | <b>✓</b> | <b>✓</b> |     | <b>✓</b> |          |          |          |  |
| 2.5                                                      | <b>✓</b>                                  | <b>✓</b> | <b>✓</b> |     |          | <b>✓</b> |          |          |  |
| 3.3                                                      | <b>✓</b>                                  | <b>✓</b> | <b>✓</b> |     |          |          | <b>✓</b> | <b>✓</b> |  |

## **Open-Drain Output Option**

MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

## **Programmable Ground Pins**

Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

#### Slew-Rate Control

The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

## Advanced I/O Standard Support

The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II.

# Power Sequencing & Hot-Socketing

Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The  $V_{\rm CCIO}$  and  $V_{\rm CCINT}$  power planes can be powered in any order.

Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user.

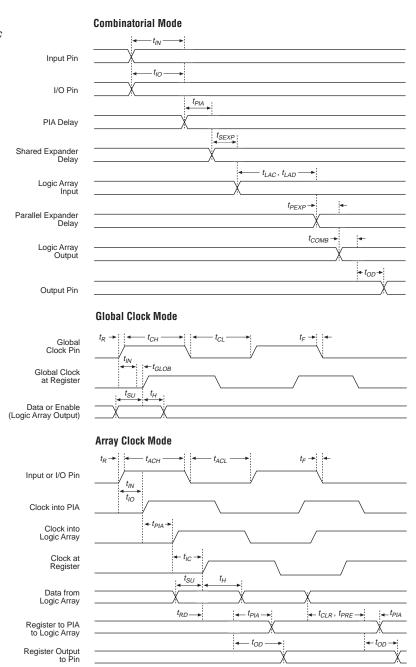
MAX 7000B device I/O pins will not source or sink more than 300  $\mu$ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing.

## **Design Security**

All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

## **Generic Testing**

MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow.


| Table 1          | Table 17. MAX 7000B Device Capacitance Note (9) |                                     |  |   |    |  |  |  |
|------------------|-------------------------------------------------|-------------------------------------|--|---|----|--|--|--|
| Symbol           | Parameter Conditions Min Max Unit               |                                     |  |   |    |  |  |  |
| C <sub>IN</sub>  | Input pin capacitance                           | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |  | 8 | pF |  |  |  |
| C <sub>I/O</sub> | I/O pin capacitance                             | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |  | 8 | pF |  |  |  |

#### Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V<sub>CCINT</sub> and V<sub>CCIO</sub> are powered.
- (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I<sub>OH</sub> parameter refers to high-level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I<sub>OL</sub> parameter refers to low-level TTL or CMOS output current.
- (7) This value is specified for normal device operation. During power-up, the maximum leakage current is ±300 μA.
- (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V<sub>CCIO</sub>.
- (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF.
- (10) The POR time for all 7000B devices does not exceed 100 µs. The sufficient V<sub>CCINT</sub> voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V<sub>CCINT</sub> reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

## Figure 14. MAX 7000B Switching Waveforms

 $t_R$  &  $t_F$  < 2 ns. Inputs are driven at 3.0 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V.



| Table 20. EPM7032B | Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays Notes (1) |      |             |           |     |     |      |    |  |  |
|--------------------|--------------------------------------------------------------------------|------|-------------|-----------|-----|-----|------|----|--|--|
| I/O Standard       | Parameter                                                                |      | Speed Grade |           |     |     |      |    |  |  |
|                    |                                                                          | -3.5 |             | -3.5 -5.0 |     | .0  | -7.5 |    |  |  |
|                    |                                                                          | Min  | Max         | Min       | Max | Min | Max  |    |  |  |
| PCI                | Input to PIA                                                             |      | 0.0         |           | 0.0 |     | 0.0  | ns |  |  |
|                    | Input to global clock and clear                                          |      | 0.0         |           | 0.0 |     | 0.0  | ns |  |  |
|                    | Input to fast input register                                             |      | 0.0         |           | 0.0 |     | 0.0  | ns |  |  |
|                    | All outputs                                                              |      | 0.0         |           | 0.0 |     | 0.0  | ns |  |  |

#### Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of all LABs.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{ACL}$ ,  $t_{CPPW}$ ,  $t_{EN}$ , and  $t_{SEXP}$  parameters for macrocells running in low-power mode.

| I/O Standard    | Parameter                       | Speed Grade |      |     |      |     |      | Unit |
|-----------------|---------------------------------|-------------|------|-----|------|-----|------|------|
|                 |                                 | -3          |      | -5  |      | -7  |      |      |
|                 |                                 | Min         | Max  | Min | Max  | Min | Max  |      |
| 3.3 V TTL/CMOS  | Input to PIA                    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to global clock and clear |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to fast input register    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| 2.5 V TTL/CMOS  | Input to PIA                    |             | 0.3  |     | 0.4  |     | 0.6  | ns   |
|                 | Input to global clock and clear |             | 0.3  |     | 0.4  |     | 0.6  | ns   |
|                 | Input to fast input register    |             | 0.2  |     | 0.3  |     | 0.4  | ns   |
|                 | All outputs                     |             | 0.2  |     | 0.3  |     | 0.4  | ns   |
| 1.8 V TTL/CMOS  | Input to PIA                    |             | 0.5  |     | 0.7  |     | 1.1  | ns   |
|                 | Input to global clock and clear |             | 0.5  |     | 0.7  |     | 1.1  | ns   |
|                 | Input to fast input register    |             | 0.4  |     | 0.6  |     | 0.9  | ns   |
|                 | All outputs                     |             | 1.2  |     | 1.7  |     | 2.6  | ns   |
| SSTL-2 Class I  | Input to PIA                    |             | 1.3  |     | 1.9  |     | 2.8  | ns   |
|                 | Input to global clock and clear |             | 1.2  |     | 1.7  |     | 2.6  | ns   |
|                 | Input to fast input register    |             | 0.9  |     | 1.3  |     | 1.9  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-2 Class II | Input to PIA                    |             | 1.3  |     | 1.9  |     | 2.8  | ns   |
|                 | Input to global clock and clear |             | 1.2  |     | 1.7  |     | 2.6  | ns   |
|                 | Input to fast input register    |             | 0.9  |     | 1.3  |     | 1.9  | ns   |
|                 | All outputs                     |             | -0.1 |     | -0.1 |     | -0.2 | ns   |
| SSTL-3 Class I  | Input to PIA                    |             | 1.2  |     | 1.7  |     | 2.6  | ns   |
|                 | Input to global clock and clear |             | 0.9  |     | 1.3  |     | 1.9  | ns   |
|                 | Input to fast input register    |             | 0.8  |     | 1.1  |     | 1.7  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-3 Class II | Input to PIA                    |             | 1.2  |     | 1.7  |     | 2.6  | ns   |
|                 | Input to global clock and clear |             | 0.9  |     | 1.3  |     | 1.9  | ns   |
|                 | Input to fast input register    |             | 0.8  |     | 1.1  |     | 1.7  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| GTL+            | Input to PIA                    |             | 1.6  |     | 2.3  |     | 3.4  | ns   |
|                 | Input to global clock and clear |             | 1.6  |     | 2.3  |     | 3.4  | ns   |
|                 | Input to fast input register    |             | 1.5  |     | 2.1  |     | 3.2  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |

| Symbol             | Parameter                                                 | Conditions     | Speed Grade |     |       |     |      |      |     |
|--------------------|-----------------------------------------------------------|----------------|-------------|-----|-------|-----|------|------|-----|
| -                  |                                                           |                | -           | 5   | -7    |     | -10  |      | 1   |
|                    |                                                           |                | Min         | Max | Min   | Max | Min  | Max  |     |
| t <sub>PD1</sub>   | Input to non-registered output                            | C1 = 35 pF (2) |             | 5.0 |       | 7.5 |      | 10.0 | ns  |
| t <sub>PD2</sub>   | I/O input to non-registered output                        | C1 = 35 pF (2) |             | 5.0 |       | 7.5 |      | 10.0 | ns  |
| t <sub>SU</sub>    | Global clock setup time                                   | (2)            | 3.3         |     | 4.8   |     | 6.6  |      | ns  |
| t <sub>H</sub>     | Global clock hold time                                    | (2)            | 0.0         |     | 0.0   |     | 0.0  |      | ns  |
| t <sub>FSU</sub>   | Global clock setup time of fast input                     |                | 1.0         |     | 1.5   |     | 1.5  |      | ns  |
| t <sub>FH</sub>    | Global clock hold time for fast input                     |                | 1.0         |     | 1.0   |     | 1.0  |      | ns  |
| t <sub>FZHSU</sub> | Global clock setup time of fast input with zero hold time |                | 2.5         |     | 3.0   |     | 3.0  |      | ns  |
| t <sub>FZHH</sub>  | Global clock hold time of fast input with zero hold time  |                | 0.0         |     | 0.0   |     | 0.0  |      | ns  |
| t <sub>CO1</sub>   | Global clock to output delay                              | C1 = 35 pF     | 1.0         | 3.3 | 1.0   | 5.1 | 1.0  | 6.7  | ns  |
| t <sub>CH</sub>    | Global clock high time                                    |                | 2.0         |     | 3.0   |     | 4.0  |      | ns  |
| t <sub>CL</sub>    | Global clock low time                                     |                | 2.0         |     | 3.0   |     | 4.0  |      | ns  |
| t <sub>ASU</sub>   | Array clock setup time                                    | (2)            | 1.4         |     | 2.0   |     | 2.8  |      | ns  |
| t <sub>AH</sub>    | Array clock hold time                                     | (2)            | 0.4         |     | 0.8   |     | 1.0  |      | ns  |
| t <sub>ACO1</sub>  | Array clock to output delay                               | C1 = 35 pF (2) | 1.0         | 5.2 | 1.0   | 7.9 | 1.0  | 10.5 | ns  |
| t <sub>ACH</sub>   | Array clock high time                                     |                | 2.0         |     | 3.0   |     | 4.0  |      | ns  |
| t <sub>ACL</sub>   | Array clock low time                                      |                | 2.0         |     | 3.0   |     | 4.0  |      | ns  |
| t <sub>CPPW</sub>  | Minimum pulse width for clear and preset                  |                | 2.0         |     | 3.0   |     | 4.0  |      | ns  |
| t <sub>CNT</sub>   | Minimum global clock period                               | (2)            |             | 5.3 |       | 7.9 |      | 10.6 | ns  |
| f <sub>CNT</sub>   | Maximum internal global clock frequency                   | (2), (3)       | 188.7       |     | 126.6 |     | 94.3 |      | MHz |
| t <sub>ACNT</sub>  | Minimum array clock period                                | (2)            |             | 5.3 |       | 7.9 |      | 10.6 | ns  |
| f <sub>ACNT</sub>  | Maximum internal array clock frequency                    | (2), (3)       | 188.7       |     | 126.6 |     | 94.3 |      | MHz |

| Symbol            | Parameter                                                                          | Conditions | Speed Grade |     |     |     |     |     |    |
|-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|----|
|                   |                                                                                    |            | -           | 5   | -   | 7   | -1  | 10  |    |
|                   |                                                                                    |            | Min         | Max | Min | Max | Min | Max |    |
| t <sub>IN</sub>   | Input pad and buffer delay                                                         |            |             | 0.4 |     | 0.6 |     | 0.8 | ns |
| $t_{IO}$          | I/O input pad and buffer delay                                                     |            |             | 0.4 |     | 0.6 |     | 0.8 | ns |
| t <sub>FIN</sub>  | Fast input delay                                                                   |            |             | 1.5 |     | 2.5 |     | 3.1 | ns |
| t <sub>FIND</sub> | Programmable delay adder for fast input                                            |            |             | 1.5 |     | 1.5 |     | 1.5 | ns |
| t <sub>SEXP</sub> | Shared expander delay                                                              |            |             | 1.5 |     | 2.3 |     | 3.0 | ns |
| t <sub>PEXP</sub> | Parallel expander delay                                                            |            |             | 0.4 |     | 0.6 |     | 0.8 | ns |
| $t_{LAD}$         | Logic array delay                                                                  |            |             | 1.7 |     | 2.5 |     | 3.3 | ns |
| t <sub>LAC</sub>  | Logic control array delay                                                          |            |             | 1.5 |     | 2.2 |     | 2.9 | ns |
| t <sub>IOE</sub>  | Internal output enable delay                                                       |            |             | 0.1 |     | 0.2 |     | 0.3 | ns |
| t <sub>OD1</sub>  | Output buffer and pad delay slow slew rate = off V <sub>CCIO</sub> = 3.3 V         | C1 = 35 pF |             | 0.9 |     | 1.4 |     | 1.9 | ns |
| t <sub>OD3</sub>  | Output buffer and pad delay slow slew rate = on V <sub>CCIO</sub> = 2.5 V or 3.3 V | C1 = 35 pF |             | 5.9 |     | 6.4 |     | 6.9 | ns |
| t <sub>ZX1</sub>  | Output buffer enable delay slow slew rate = off V <sub>CCIO</sub> = 3.3 V          | C1 = 35 pF |             | 2.2 |     | 3.3 |     | 4.5 | ns |
| t <sub>ZX3</sub>  | Output buffer enable delay slow slew rate = on V <sub>CCIO</sub> = 2.5 V or 3.3 V  | C1 = 35 pF |             | 7.2 |     | 8.3 |     | 9.5 | ns |
| $t_{XZ}$          | Output buffer disable delay                                                        | C1 = 5 pF  |             | 2.2 |     | 3.3 |     | 4.5 | ns |
| $t_{SU}$          | Register setup time                                                                |            | 1.2         |     | 1.8 |     | 2.5 |     | ns |
| t <sub>H</sub>    | Register hold time                                                                 |            | 0.6         |     | 1.0 |     | 1.3 |     | ns |
| t <sub>FSU</sub>  | Register setup time of fast input                                                  |            | 0.8         |     | 1.1 |     | 1.1 |     | ns |
| $t_{FH}$          | Register hold time of fast input                                                   |            | 1.2         |     | 1.4 |     | 1.4 |     | ns |
| $t_{RD}$          | Register delay                                                                     |            |             | 0.7 |     | 1.0 |     | 1.3 | ns |
| t <sub>COMB</sub> | Combinatorial delay                                                                |            |             | 0.3 |     | 0.4 |     | 0.5 | ns |
| t <sub>IC</sub>   | Array clock delay                                                                  |            |             | 1.5 |     | 2.3 |     | 3.0 | ns |
| $t_{EN}$          | Register enable time                                                               |            |             | 1.5 |     | 2.2 |     | 2.9 | ns |
| $t_{GLOB}$        | Global control delay                                                               |            |             | 1.3 |     | 2.1 |     | 2.7 | ns |
| t <sub>PRE</sub>  | Register preset time                                                               |            |             | 1.0 |     | 1.6 |     | 2.1 | ns |
| t <sub>CLR</sub>  | Register clear time                                                                |            |             | 1.0 |     | 1.6 |     | 2.1 | ns |
| $t_{PIA}$         | PIA delay                                                                          | (2)        |             | 1.7 |     | 2.6 |     | 3.3 | ns |
| t <sub>LPA</sub>  | Low-power adder                                                                    | (4)        |             | 2.0 |     | 3.0 |     | 4.0 | ns |

| I/O Standard    | Parameter                       | Speed Grade |      |     |      |     |      | Unit |
|-----------------|---------------------------------|-------------|------|-----|------|-----|------|------|
|                 |                                 | -           | -5   |     | -7   |     | -10  |      |
|                 |                                 | Min         | Max  | Min | Max  | Min | Max  |      |
| 3.3 V TTL/CMOS  | Input to PIA                    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to global clock and clear |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to fast input register    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| 2.5 V TTL/CMOS  | Input to PIA                    |             | 0.4  |     | 0.6  |     | 0.8  | ns   |
|                 | Input to global clock and clear |             | 0.3  |     | 0.5  |     | 0.6  | ns   |
|                 | Input to fast input register    |             | 0.2  |     | 0.3  |     | 0.4  | ns   |
|                 | All outputs                     |             | 0.2  |     | 0.3  |     | 0.4  | ns   |
| 1.8 V TTL/CMOS  | Input to PIA                    |             | 0.6  |     | 0.9  |     | 1.2  | ns   |
|                 | Input to global clock and clear |             | 0.6  |     | 0.9  |     | 1.2  | ns   |
|                 | Input to fast input register    |             | 0.5  |     | 0.8  |     | 1.0  | ns   |
|                 | All outputs                     |             | 1.3  |     | 2.0  |     | 2.6  | ns   |
| SSTL-2 Class I  | Input to PIA                    |             | 1.5  |     | 2.3  |     | 3.0  | ns   |
|                 | Input to global clock and clear |             | 1.3  |     | 2.0  |     | 2.6  | ns   |
|                 | Input to fast input register    |             | 1.1  |     | 1.7  |     | 2.2  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-2 Class II | Input to PIA                    |             | 1.5  |     | 2.3  |     | 3.0  | ns   |
|                 | Input to global clock and clear |             | 1.3  |     | 2.0  |     | 2.6  | ns   |
|                 | Input to fast input register    |             | 1.1  |     | 1.7  |     | 2.2  | ns   |
|                 | All outputs                     |             | -0.1 |     | -0.2 |     | -0.2 | ns   |
| SSTL-3 Class I  | Input to PIA                    |             | 1.4  |     | 2.1  |     | 2.8  | ns   |
|                 | Input to global clock and clear |             | 1.1  |     | 1.7  |     | 2.2  | ns   |
|                 | Input to fast input register    |             | 1.0  |     | 1.5  |     | 2.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-3 Class II | Input to PIA                    |             | 1.4  |     | 2.1  |     | 2.8  | ns   |
|                 | Input to global clock and clear |             | 1.1  |     | 1.7  |     | 2.2  | ns   |
|                 | Input to fast input register    |             | 1.0  |     | 1.5  |     | 2.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| GTL+            | Input to PIA                    |             | 1.8  |     | 2.7  |     | 3.6  | ns   |
|                 | Input to global clock and clear |             | 1.8  |     | 2.7  |     | 3.6  | ns   |
|                 | Input to fast input register    |             | 1.7  |     | 2.6  |     | 3.4  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |

| I/O Standard    | Parameter                       | Speed Grade |      |     |      |     |      | Unit |
|-----------------|---------------------------------|-------------|------|-----|------|-----|------|------|
|                 |                                 | -5          |      | -7  |      | -10 |      |      |
|                 |                                 | Min         | Max  | Min | Max  | Min | Max  |      |
| 3.3 V TTL/CMOS  | Input to PIA                    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to global clock and clear |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | Input to fast input register    |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| 2.5 V TTL/CMOS  | Input to PIA                    |             | 0.4  |     | 0.5  |     | 0.7  | ns   |
|                 | Input to global clock and clear |             | 0.3  |     | 0.4  |     | 0.5  | ns   |
|                 | Input to fast input register    |             | 0.2  |     | 0.3  |     | 0.3  | ns   |
|                 | All outputs                     |             | 0.2  |     | 0.3  |     | 0.3  | ns   |
| 1.8 V TTL/CMOS  | Input to PIA                    |             | 0.7  |     | 1.0  |     | 1.3  | ns   |
|                 | Input to global clock and clear |             | 0.6  |     | 0.8  |     | 1.0  | ns   |
|                 | Input to fast input register    |             | 0.5  |     | 0.6  |     | 0.8  | ns   |
|                 | All outputs                     |             | 1.3  |     | 1.8  |     | 2.3  | ns   |
| SSTL-2 Class I  | Input to PIA                    |             | 1.5  |     | 2.0  |     | 2.7  | ns   |
|                 | Input to global clock and clear |             | 1.4  |     | 1.9  |     | 2.5  | ns   |
|                 | Input to fast input register    |             | 1.1  |     | 1.5  |     | 2.0  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-2 Class II | Input to PIA                    |             | 1.5  |     | 2.0  |     | 2.7  | ns   |
|                 | Input to global clock and clear |             | 1.4  |     | 1.9  |     | 2.5  | ns   |
|                 | Input to fast input register    |             | 1.1  |     | 1.5  |     | 2.0  | ns   |
|                 | All outputs                     |             | -0.1 |     | -0.1 |     | -0.2 | ns   |
| SSTL-3 Class I  | Input to PIA                    |             | 1.4  |     | 1.9  |     | 2.5  | ns   |
|                 | Input to global clock and clear |             | 1.2  |     | 1.6  |     | 2.2  | ns   |
|                 | Input to fast input register    |             | 1.0  |     | 1.4  |     | 1.8  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| SSTL-3 Class II | Input to PIA                    |             | 1.4  |     | 1.9  |     | 2.5  | ns   |
|                 | Input to global clock and clear |             | 1.2  |     | 1.6  |     | 2.2  | ns   |
|                 | Input to fast input register    |             | 1.0  |     | 1.4  |     | 1.8  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |
| GTL+            | Input to PIA                    |             | 1.8  |     | 2.5  |     | 3.3  | ns   |
|                 | Input to global clock and clear |             | 1.9  | İ   | 2.6  |     | 3.5  | ns   |
|                 | Input to fast input register    |             | 1.8  |     | 2.5  |     | 3.3  | ns   |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns   |

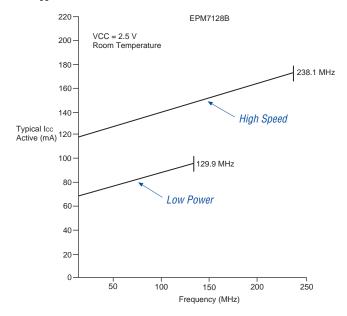
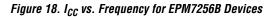
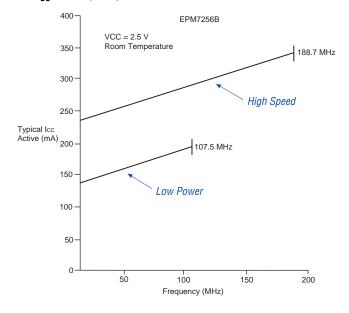





Figure 17.  $I_{CC}$  vs. Frequency for EPM7128B Devices





# Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 20 through 29 show the package pin-out diagrams for MAX 7000B devices.

Figure 20. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

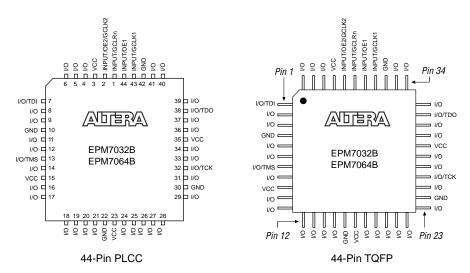



Figure 27. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

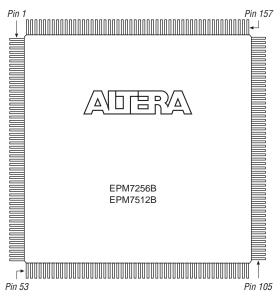
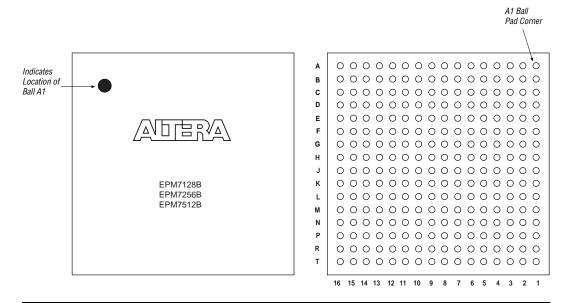




Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.



## Revision History

The information contained in the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5 supersedes information published in previous versions.

## Version 3.5

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5:

Updated Figure 28.

## Version 3.4

The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4:

■ Updated text in the "Power Sequencing & Hot-Socketing" section.