Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Active | | Programmable Type | EE PLD | | Delay Time tpd(1) Max | 5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 68 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7064btc100-5 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # ...and More Features - System-level features - MultiVolt™ I/O interface enabling device core to run at 2.5 V, while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels - Programmable power-saving mode for 50% or greater power reduction in each macrocell - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Support for advanced I/O standards, including SSTL-2 and SSTL-3, and GTL+ - Bus-hold option on I/O pins - PCI compatible - Bus-friendly architecture including programmable slew-rate control - Open-drain output option - Programmable security bit for protection of proprietary designs - Built-in boundary-scan test circuitry compliant with IEEE Std. 1149.1 - Supports hot-socketing operation - Programmable ground pins - Advanced architecture features - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls - Two global clock signals with optional inversion - Programmable power-up states for macrocell registers - 6 to 10 pin- or logic-driven output enable signals - Advanced package options - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), space-saving FineLine BGA™, 0.8-mm Ultra FineLine BGA, and plastic J-lead chip carrier (PLCC) packages - Pin-compatibility with other MAX 7000B devices in the same package - Advanced software support - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations Figure 1. MAX 7000B Device Block Diagram #### Note: (1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enables. EPM7512B devices have ten output enables. # **Logic Array Blocks** The MAX 7000B device architecture is based on the linking of high-performance LABs. LABs consist of 16 macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells. Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times ## **Macrocells** The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell. Figure 2. MAX 7000B Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells Figure 4. MAX 7000B Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. # **Programmable Interconnect Array** Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB. Figure 6. I/O Control Block of MAX 7000B Devices #### Note: (1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # Programming with External Hardware MAX 7000B devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device. For more information, see the Altera Programming Hardware Data Sheet. The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see *Programming Hardware Manufacturers*. # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support MAX 7000B devices include the JTAG boundary-scan test circuitry defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions supported by MAX 7000B devices. The pin-out tables starting on page 59 of this data sheet show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. | Table 6. MAX 7000B | JTAG Instructions | |--------------------|---| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins. | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary-scan test data to pass synchronously through a selected device to adjacent devices during normal operation. | | CLAMP | Allows the values in the boundary-scan register to determine pin states while placing the 1-bit bypass register between the TDI and TDO pins. | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO. | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. | | ISP Instructions | These instructions are used when programming MAX 7000B devices via the JTAG ports with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded processor or test equipment. | The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices. | Table 7. MAX 7000B Boundary-Sca | n Register Length | |---------------------------------|-------------------------------| | Device | Boundary-Scan Register Length | | EPM7032B | 96 | | EPM7064B | 192 | | EPM7128B | 288 | | EPM7256B | 480 | | EPM7512B | 624 | | Table 8. 32-1 | Table 8. 32-Bit MAX 7000B Device IDCODENote (1) | | | | | | | | | | | |---------------|---|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | EPM7032B | 0010 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | EPM7064B | 0010 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | EPM7128B | 0010 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | EPM7256B | 0010 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | EPM7512B | 0010 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing. Figure 8 shows the timing information for the JTAG signals. Figure 8. MAX 7000B JTAG Waveforms Table 9 shows the JTAG timing parameters and values for MAX 7000B devices. | Table 9. Note (1) | JTAG Timing Parameters & Values for MAX 70 | 100B Dev | ices | | |--------------------------|--|----------|------|------| | Symbol | Parameter | Min | Max | Unit | | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 25 | ns | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | #### Note: (1) Timing parameters in this table apply to all $V_{\mbox{\scriptsize CCIO}}$ levels. | Table 10. MAX 7000B MultiVolt I/O Support | | | | | | | | | |---|--|----------|----------|-----|----------|----------|----------|----------| | V _{CCIO} (V) | V _{CCIO} (V) Input Signal (V) Output Signal (V) | | | | | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | 1.8 | ✓ | ✓ | ✓ | | ✓ | | | | | 2.5 | ✓ | ✓ | ✓ | | | ✓ | | | | 3.3 | ✓ | ✓ | ✓ | | | | ✓ | ✓ | # **Open-Drain Output Option** MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. # **Programmable Ground Pins** Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic. #### Slew-Rate Control The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal. # Advanced I/O Standard Support The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II. # **Programmable Pull-Up Resistor** Each MAX 7000B device I/O pin provides an optional programmable pull-up resistor during user mode. When this feature is enabled for an I/O pin, the pull-up resistor (typically 50 k¾) weakly holds the output to $V_{\rm CCIO}$ level. # **Bus Hold** Each MAX 7000B device I/O pin provides an optional bus-hold feature. When this feature is enabled for an I/O pin, the bus-hold circuitry weakly holds the signal at its last driven state. By holding the last driven state of the pin until the next input signals is present, the bus-hold feature can eliminate the need to add external pull-up or pull-down resistors to hold a signal level when the bus is tri-stated. The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. This feature can be selected individually for each I/O pin. The bus-hold output will drive no higher than $V_{\rm CCIO}$ to prevent overdriving signals. The propagation delays through the input and output buffers in MAX 7000B devices are not affected by whether the bus-hold feature is enabled or disabled. The bus-hold circuitry weakly pulls the signal level to the last driven state through a resistor with a nominal resistance (R_{BH}) of approximately 8.5 k¾. Table 12 gives specific sustaining current that will be driven through this resistor and overdrive current that will identify the next driven input level. This information is provided for each VCCIO voltage level. | Table 12. Bus Hold Par | Table 12. Bus Hold Parameters | | | | | | | | | | |-------------------------|---|-----|------|-------|-------|-----|------|-------|--|--| | Parameter | Conditions | | | VCCIO | Level | | | Units | | | | | | 1. | 8 V | 2. | 5 V | 3.3 | 3 V | | | | | | | Min | Max | Min | Max | Min | Max | | | | | Low sustaining current | $V_{IN} > V_{IL} (max)$ | 30 | | 50 | | 70 | | μΑ | | | | High sustaining current | V _{IN} < V _{IH} (min) | -30 | | -50 | | -70 | | μΑ | | | | Low overdrive current | 0 V < V _{IN} < V _{CCIO} | | 200 | | 300 | | 500 | μΑ | | | | High overdrive current | $0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$ | | -295 | | -435 | | -680 | μΑ | | | The bus-hold circuitry is active only during user operation. At power-up, the bus-hold circuit initializes its initial hold value as V_{CC} approaches the recommended operation conditions. When transitioning from ISP to User Mode with bus hold enabled, the bus-hold circuit captures the value present on the pin at the end of programming. Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode. Figure 10 shows a block diagram of the bus-hold circuit. Figure 10. Bus-Hold Circuit # PCI Compatibility MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications. | Table 13. MAX 70
Specifications | 00B Device Speed Grades tha | t Meet PCI Timing | |------------------------------------|-----------------------------|-------------------| | Device | Specif | ication | | | 33-MHz PCI | 66-MHz PCI | | EPM7032B | All speed grades | -3 | | EPM7064B | All speed grades | -3 | | EPM7128B | All speed grades | -4 | | EPM7256B | All speed grades | -5 (1) | | EPM7512B | All speed grades | -5 (1) | #### Note: (1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications. | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | |--------------------|---|----------------|-------|-------------|-------|-----|-------|-----|-----|--|--| | | | -3 | | - | 5 | - | 7 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |--------------------|---|----------------|-------|-----|--------|-------|------|------|------| | | | | - | 4 | -7 -10 | | 10 | Ē | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 2.5 | | 4.5 | | 6.1 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | ^t FZHSU | Global clock setup time of fast input with zero hold time | | 2.0 | | 3.0 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.8 | 1.0 | 5.7 | 1.0 | 7.5 | ns | | t _{CH} | Global clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.2 | | 2.0 | | 2.8 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.7 | | 0.9 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.1 | 1.0 | 8.2 | 1.0 | 10.8 | ns | | t _{ACH} | Array clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | 4 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.3 | | 2.9 | | 3.7 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.0 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.8 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.9 | | 3.8 | ns | | t _{LAC} | Logic control array delay | | | 1.4 | | 2.6 | | 3.4 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.3 | | 0.4 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.7 | | 2.2 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.7 | | 7.2 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.8 | | 3.3 | | 4.4 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.8 | | 8.3 | | 9.4 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 1.8 | | 3.3 | | 4.4 | ns | | t_{SU} | Register setup time | | 1.0 | | 1.9 | | 2.6 | | ns | | t_H | Register hold time | | 0.4 | | 0.8 | | 1.1 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 0.9 | | 0.9 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.6 | | 1.6 | | ns | | t_{RD} | Register delay | | | 0.5 | | 1.1 | | 1.4 | ns | | t_{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.4 | | 2.8 | | 3.6 | ns | | t_{EN} | Register enable time | | | 1.4 | | 2.6 | | 3.4 | ns | | t_{GLOB} | Global control delay | | | 1.1 | | 2.3 | | 3.1 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.9 | | 2.6 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.9 | | 2.6 | ns | | t_{PIA} | PIA delay | (2) | | 1.0 | | 2.0 | | 2.8 | ns | | t _{LPA} | Low-power adder | (4) | | 1.5 | | 2.8 | | 3.8 | ns | | Table 26. EPM7128 | BB Selectable I/O Standard Timing | Adder L | Delays | (Part 1 | of 2) | Note (1) |) | | |-------------------|-----------------------------------|---------|-------------|---------|-------|----------|------|----| | I/O Standard | Parameter | | Speed Grade | | | | | | | | | - | 4 | - | 7 | | 10 | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.3 | | 0.6 | | 0.8 | ns | | | Input to global clock and clear | | 0.3 | | 0.6 | | 0.8 | ns | | | Input to fast input register | | 0.2 | | 0.4 | | 0.5 | ns | | | All outputs | | 0.2 | | 0.4 | | 0.5 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.5 | | 0.9 | | 1.3 | ns | | | Input to global clock and clear | | 0.5 | | 0.9 | | 1.3 | ns | | | Input to fast input register | | 0.4 | | 0.8 | | 1.0 | ns | | | All outputs | | 1.2 | | 2.3 | | 3.0 | ns | | SSTL-2 Class I | Input to PIA | | 1.4 | | 2.6 | | 3.5 | ns | | 331L-2 Class I | Input to global clock and clear | | 1.2 | | 2.3 | | 3.0 | ns | | | Input to fast input register | | 1.0 | | 1.9 | | 2.5 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.4 | | 2.6 | | 3.5 | ns | | | Input to global clock and clear | | 1.2 | | 2.3 | | 3.0 | ns | | | Input to fast input register | | 1.0 | | 1.9 | | 2.5 | ns | | | All outputs | | -0.1 | | -0.2 | | -0.3 | ns | | SSTL-3 Class I | Input to PIA | | 1.3 | | 2.4 | | 3.3 | ns | | | Input to global clock and clear | | 1.0 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 0.9 | | 1.7 | | 2.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.3 | | 2.4 | | 3.3 | ns | | | Input to global clock and clear | | 1.0 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 0.9 | | 1.7 | | 2.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.7 | | 3.2 | | 4.3 | ns | | | Input to global clock and clear | | 1.7 | | 3.2 | | 4.3 | ns | | | Input to fast input register | | 1.6 | | 3.0 | | 4.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | |---|---------------------------------|-----|-------|-----|-------------|-----|-----|----|--| | I/O Standard | Standard Parameter | | | | Speed Grade | | | | | | | | - | -4 -7 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |--------------------|---|----------------|-------|-------------|-------|-----|------|------|-----|--| | · | | | - | 5 | - | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | (2) | 3.3 | | 4.8 | | 6.6 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | | t _{FH} | Global clock hold time for fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 5.1 | 1.0 | 6.7 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 1.4 | | 2.0 | | 2.8 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.4 | | 0.8 | | 1.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 5.2 | 1.0 | 7.9 | 1.0 | 10.5 | ns | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|--|------------|-------------|-----|-----|-----|-----|-----|------| | | | | -5 | | -7 | | -10 | | • | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.5 | | 2.5 | | 3.1 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.5 | | 3.3 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.2 | | 2.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.4 | | 1.9 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.4 | | 6.9 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.2 | | 8.3 | | 9.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t_{SU} | Register setup time | | 1.2 | | 1.8 | | 2.5 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{COMB} | Combinatorial delay | | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IC} | Array clock delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.2 | | 2.9 | ns | | t_{GLOB} | Global control delay | | | 1.3 | | 2.1 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.6 | | 2.1 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.6 | | 2.1 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.6 | | 3.3 | ns | | t _{LPA} | Low-power adder | (4) | | 2.0 | | 3.0 | | 4.0 | ns | Figure 25. 144-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 26. 169-Pin Ultra FineLine BGA Pin-Out Diagram Package outline not drawn to scale. Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the MAX 7000B Programmable Logic Device Family Data Sheet version 3.5 supersedes information published in previous versions. ## Version 3.5 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5: Updated Figure 28. ## Version 3.4 The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4: ■ Updated text in the "Power Sequencing & Hot-Socketing" section.