Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 3.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 40 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | - | | Supplier Device Package | 48-TQFP | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7064btc48-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### **Macrocells** The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell. Figure 2. MAX 7000B Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells Figure 6. I/O Control Block of MAX 7000B Devices #### Note: (1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals. When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled. The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. # SameFrame Pin-Outs MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package to an EPM7512B device in a 256-pin FineLine BGA package. The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7). Figure 7. SameFrame Pin-Out Example # In-System Programmability (ISP) MAX 7000B devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³4. MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm. The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors. For more information on using the Jam language, see *Application Note 88* (*Using the Jam Language for ISP & ICR via an Embedded Processor*) and *Application Note 122* (*Using STAPL for ISP & ICR via an Embedded Processor*). The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices. | Table 7. MAX 7000B Boundary-Sca | n Register Length | |---------------------------------|-------------------------------| | Device | Boundary-Scan Register Length | | EPM7032B | 96 | | EPM7064B | 192 | | EPM7128B | 288 | | EPM7256B | 480 | | EPM7512B | 624 | | Table 8. 32-1 | Table 8. 32-Bit MAX 7000B Device IDCODENote (1) | | | | | | | | | | |---------------|---|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | EPM7032B | 0010 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | EPM7064B | 0010 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | EPM7128B | 0010 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | EPM7256B | 0010 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | EPM7512B | 0010 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing. Figure 8 shows the timing information for the JTAG signals. MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported. Figure 9 shows the arrangement of the MAX 7000B I/O banks. Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards Table 11 shows which macrocells have pins in each I/O bank. | Table 11. Macrocell Pins Co | ntained in Each I/O Bank | | |-----------------------------|--------------------------|------------------| | Device | Bank 1 | Bank 2 | | EPM7032B | 1-16 | 17-32 | | EPM7064B | 1-32 | 33-64 | | EPM7128B | 1-64 | 65-128 | | EPM7256B | 1-128, 177-181 | 129-176, 182-256 | | EPM7512B | 1-265 | 266-512 | Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins. | Table 1 | 5. MAX 7000B Device Recomm | ended Operating Conditions | | | | |--------------------|---|----------------------------|-------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (10) | 2.375 | 2.625 | V | | V _{CCIO} | Supply voltage for output drivers, 3.3-V operation | | 3.0 | 3.6 | V | | | Supply voltage for output drivers, 2.5-V operation | | 2.375 | 2.625 | V | | | Supply voltage for output drivers, 1.8-V operation | | 1.71 | 1.89 | V | | V _{CCISP} | Supply voltage during in-system programming | | 2.375 | 2.625 | V | | VI | Input voltage | (3) | -0.5 | 3.9 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use (11) | -40 | 85 | ° C | | TJ | Junction temperature | For commercial use | 0 | 90 | ° C | | | | For industrial use (11) | -40 | 105 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 1 | 6. MAX 7000B Device DC Opera | ating Conditions Note (4) | | | | |------------------|---|---|--------------------------|--------------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{IH} | High-level input voltage for 3.3-V TTL/CMOS | | 2.0 | 3.9 | V | | | High-level input voltage for 2.5-V TTL/CMOS | | 1.7 | 3.9 | V | | | High-level input voltage for 1.8-V TTL/CMOS | | 0.65 × V _{CCIO} | 3.9 | V | | V _{IL} | Low-level input voltage for 3.3-V
TTL/CMOS and PCI compliance | | -0.5 | 0.8 | V | | | Low-level input voltage for 2.5-V
TTL/CMOS | | -0.5 | 0.7 | V | | | Low-level input voltage for 1.8-V TTL/CMOS | | -0.5 | 0.35 × V _{CCIO} | | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$ | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$ | V _{CCIO} - 0.2 | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (5)$ | 2.1 | | V | | | | $I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$ | 2.0 | | V | | 2 | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$ | 1.7 | | V | | | 1.8-V high-level output voltage | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 1.65 \text{ V } (5)$ | 1.2 | | V | | V_{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V (6) | | 0.4 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (6)$ | | 0.2 | V | | | 2.5-V low-level output voltage | I_{OL} = 100 μ A DC, V_{CCIO} = 2.30 V (6) | | 0.2 | V | | | | I_{OL} = 1 mA DC, V_{CCIO} = 2.30 V (6) | | 0.4 | V | | | | I_{OL} = 2 mA DC, V_{CCIO} = 2.30 V (6) | | 0.7 | V | | | 1.8-V low-level output voltage | I _{OL} = 2 mA DC, V _{CCIO} = 1.7 V (6) | | 0.4 | V | | I _I | Input leakage current | $V_1 = -0.5 \text{ to } 3.9 \text{ V } (7)$ | -10 | 10 | μΑ | | I _{OZ} | Tri-state output off-state current | $V_1 = -0.5 \text{ to } 3.9 \text{ V } (7)$ | -10 | 10 | μΑ | | R _{ISP} | Value of I/O pin pull-up resistor
during in-system programming or
during power up | V _{CCIO} = 1.7 to 3.6 V (8) | 20 | 74 | k¾ | | Table 1 | 7. MAX 7000B Device Capacita | nce Note (9) | | | | | | | |------------------|-----------------------------------|-------------------------------------|--|---|----|--|--|--| | Symbol | Parameter Conditions Min Max Unit | | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. - (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current. - (7) This value is specified for normal device operation. During power-up, the maximum leakage current is ±300 μA. - (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}. - (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF. - (10) The POR time for all 7000B devices does not exceed 100 µs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. ## **Timing Model** MAX 7000B device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 13. MAX 7000B devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. Figure 13. MAX 7000B Timing Model The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 14 shows the timing relationship between internal and external delay parameters. See Application Note 94 (Understanding MAX 7000 Timing) for more information. Tables 18 through 32 show MAX 7000B device timing parameters. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |--------------------|-----------------------------------------------------------|----------------|-------|------|-------|-------|-------|------|------| | | | | -3 | -3.5 | | -5.0 | | -7.5 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | |--------------------|-----------------------------------------------------------|----------------|-------|-------------|-------|-----|-------|-----|-----| | | | | | -3 | | -5 | | -7 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | |--------------------|-----------------------------------------------------------|----------------|-------|-------------|-------|-----|------|------|-----| | | | | - | -4 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 2.5 | | 4.5 | | 6.1 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | ^t FZHSU | Global clock setup time of fast input with zero hold time | | 2.0 | | 3.0 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.8 | 1.0 | 5.7 | 1.0 | 7.5 | ns | | t _{CH} | Global clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.2 | | 2.0 | | 2.8 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.7 | | 0.9 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.1 | 1.0 | 8.2 | 1.0 | 10.8 | ns | | t _{ACH} | Array clock high time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.1 | | 7.9 | | 10.6 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 243.9 | | 126.6 | | 94.3 | | MHz | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |--------------------|-----------------------------------------------------------|----------------|-------|-------------|-------|-----|------|------|-----|--| | | | | - | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | | t _{SU} | Global clock setup time | (2) | 3.3 | | 4.8 | | 6.6 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | | t _{FH} | Global clock hold time for fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | ^t FZHSU | Global clock setup time of fast input with zero hold time | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 5.1 | 1.0 | 6.7 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 1.4 | | 2.0 | | 2.8 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.4 | | 0.8 | | 1.0 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 5.2 | 1.0 | 7.9 | 1.0 | 10.5 | ns | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | 5 | - | 7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.5 | | 2.5 | | 3.1 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.5 | | 3.3 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.2 | | 2.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.4 | | 1.9 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.4 | | 6.9 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.2 | | 8.3 | | 9.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t_{SU} | Register setup time | | 1.2 | | 1.8 | | 2.5 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{COMB} | Combinatorial delay | | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IC} | Array clock delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.2 | | 2.9 | ns | | t_{GLOB} | Global control delay | | | 1.3 | | 2.1 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.6 | | 2.1 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.6 | | 2.1 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.6 | | 3.3 | ns | | t _{LPA} | Low-power adder | (4) | | 2.0 | | 3.0 | | 4.0 | ns | | I/O Standard | Parameter | Speed Grade | | | | | | | |-----------------|---------------------------------|-------------|------|-----|------|-----|------|----| | | | -5 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.4 | | 0.6 | | 0.8 | ns | | | Input to global clock and clear | | 0.3 | | 0.5 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to global clock and clear | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to fast input register | | 0.5 | | 0.8 | | 1.0 | ns | | | All outputs | | 1.3 | | 2.0 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | -0.1 | | -0.2 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to global clock and clear | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to fast input register | | 1.7 | | 2.6 | | 3.4 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|------|----| | | | | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 3.2 | | 4.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 2.7 | ns | | t _{PEXP} | Parallel expander delay | _ | | 0.4 | | 0.5 | | 0.7 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.3 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.2 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.8 | | 8.8 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.5 | | 2.0 | | 2.6 | | ns | | t _H | Register hold time | | 0.4 | | 0.5 | | 0.7 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.7 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.8 | | 2.4 | | 3.1 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.8 | | 3.6 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.9 | ns | | t_{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.9 | ns | | t _{PIA} | PIA delay | (2) | | 2.4 | | 3.4 | | 4.5 | ns | | t_{LPA} | Low-power adder | (4) | | 2.0 | | 2.7 | | 3.6 | ns | | Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------|-------------|-----|-----|-----|-----|-----|----|--| | I/O Standard | Parameter | Speed Grade | | | | | | | | | | | -5 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | #### Notes to tables: - These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. # Power Consumption Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Figure 17. I_{CC} vs. Frequency for EPM7128B Devices ### Figure 28. 256-Pin BGA Package Pin-Out Diagram Package outline not drawn to scale.