Welcome to **E-XFL.COM** Understanding <u>Embedded - CPLDs (Complex Programmable Logic Devices)</u> Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|-----------------------------------------------------------| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 40 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | - | | Supplier Device Package | 48-TQFP | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7064btc48-7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems. MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000B architecture includes the following elements: - LABs - Macrocells - Expander product terms (shareable and parallel) - PIA - I/O control blocks The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices. The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the MAX+PLUS II software then selects the most efficient flipflop operation for each registered function to optimize resource utilization. Each programmable register can be clocked in three different modes: - Global clock signal. This mode achieves the fastest clock-to-output performance. - Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock. - Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins. Two global clock signals are available in MAX 7000B devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2. Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000B device may be set to either a high or low state. This power-up state is specified at design entry. All MAX 7000B I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast input setup time. The input path from the I/O pin to the register has a programmable delay element that can be selected to either guarantee zero hold time or to get the fastest possible set-up time (as fast as 1.0 ns). ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. ## **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. ## Programmable Speed/Power Control MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters. # Output Configuration MAX 7000B device outputs can be programmed to meet a variety of system-level requirements. ### MultiVolt I/O Interface The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of $\rm V_{CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels of 2.5 V or 1.8 V incur a nominal timing delay adder. Table 10 describes the MAX 7000B MultiVolt I/O support. ## Power Sequencing & Hot-Socketing Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order. Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user. MAX 7000B device I/O pins will not source or sink more than 300 μ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing. ## **Design Security** All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. ## **Generic Testing** MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow. ## Figure 11. MAX 7000B AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. Switches S1 and S2 are open for all tests except output disable timing parameters. # Operating Conditions Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices. | Table 1 | Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |--------------------|----------------------------------------------------------------|------------|------|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | V _{CCINT} | Supply voltage | | -0.5 | 3.6 | V | | | | | | | V _{CCIO} | Supply voltage | | -0.5 | 3.6 | V | | | | | | | VI | DC input voltage | (2) | -2.0 | 4.6 | V | | | | | | | I _{OUT} | DC output current, per pin | | -33 | 50 | mA | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | T _A | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | T_{J} | Junction temperature | Under bias | -65 | 135 | ° C | | | | | | | Table 15. MAX 7000B Device Recommended Operating Conditions | | | | | | | | | | |-------------------------------------------------------------|-----------------------------------------------------|-------------------------|-------|-------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (10) | 2.375 | 2.625 | V | | | | | | V _{CCIO} | Supply voltage for output drivers, 3.3-V operation | | 3.0 | 3.6 | V | | | | | | | Supply voltage for output drivers, 2.5-V operation | | 2.375 | 2.625 | V | | | | | | | Supply voltage for output drivers, 1.8-V operation | | 1.71 | 1.89 | V | | | | | | V _{CCISP} | Supply voltage during in-system programming | | 2.375 | 2.625 | V | | | | | | VI | Input voltage | (3) | -0.5 | 3.9 | V | | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | | For industrial use (11) | -40 | 85 | ° C | | | | | | TJ | Junction temperature | For commercial use | 0 | 90 | ° C | | | | | | | | For industrial use (11) | -40 | 105 | ° C | | | | | | t _R | Input rise time | | | 40 | ns | | | | | | t _F | Input fall time | | | 40 | ns | | | | | ## **Timing Model** MAX 7000B device timing can be analyzed with the Altera software, with a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 13. MAX 7000B devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The Altera software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. Figure 13. MAX 7000B Timing Model The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 14 shows the timing relationship between internal and external delay parameters. See Application Note 94 (Understanding MAX 7000 Timing) for more information. | I/O Standard | Parameter | Speed Grade | | | | | | Unit | |-----------------|---------------------------------|-------------|------|-----|------|-----|------|------| | | | -3 | 3.5 | -5 | -5.0 | | -7.5 | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to (PIA) | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to global clock and clear | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.5 | | 0.8 | | 1.1 | ns | | | Input to global clock and clear | | 0.5 | | 0.8 | | 1.1 | ns | | | Input to fast input register | | 0.4 | | 0.5 | | 0.8 | ns | | | All outputs | | 1.2 | | 1.8 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | -0.1 | | -0.1 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to global clock and clear | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to fast input register | | 1.5 | | 2.1 | | 3.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|------| | | | | - | 4 | - | 7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.3 | | 2.9 | | 3.7 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.0 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.8 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.9 | | 3.8 | ns | | t _{LAC} | Logic control array delay | | | 1.4 | | 2.6 | | 3.4 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.3 | | 0.4 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.7 | | 2.2 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.7 | | 7.2 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.8 | | 3.3 | | 4.4 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.8 | | 8.3 | | 9.4 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 1.8 | | 3.3 | | 4.4 | ns | | t_{SU} | Register setup time | | 1.0 | | 1.9 | | 2.6 | | ns | | t _H | Register hold time | | 0.4 | | 0.8 | | 1.1 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 0.9 | | 0.9 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.6 | | 1.6 | | ns | | t_{RD} | Register delay | | | 0.5 | | 1.1 | | 1.4 | ns | | t_{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.4 | | 2.8 | | 3.6 | ns | | t_{EN} | Register enable time | | | 1.4 | | 2.6 | | 3.4 | ns | | t_{GLOB} | Global control delay | | | 1.1 | | 2.3 | | 3.1 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.9 | | 2.6 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.9 | | 2.6 | ns | | t_{PIA} | PIA delay | (2) | | 1.0 | | 2.0 | | 2.8 | ns | | t _{LPA} | Low-power adder | (4) | | 1.5 | | 2.8 | | 3.8 | ns | | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |---------------------------------------------------------------------------------------|----------------------------------------|-------------|-----|-----|-----|-----|-----|------|--|--| | I/O Standard | Parameter | Speed Grade | | | | | | Unit | | | | | | -4 -7 -10 | | 10 | | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register 0.0 0.0 0 | | 0.0 | ns | | | | | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |--------------------|-----------------------------------------------------------|----------------|-------------|-----|-------|-----|------|------|-----| | | | | - | -5 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 5.0 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.3 | | 4.8 | | 6.6 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Global clock hold time for fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 5.1 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.4 | | 2.0 | | 2.8 | | ns | | t _{AH} | Array clock hold time | (2) | 0.4 | | 0.8 | | 1.0 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 5.2 | 1.0 | 7.9 | 1.0 | 10.5 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 5.3 | | 7.9 | | 10.6 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 188.7 | | 126.6 | | 94.3 | | MHz | | Table 29. EPM7256B | Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |--------------------|---------------------------------------------------------------------------------------------|----------------|-----|-------|-----|-----|-----|------|--|--|--| | I/O Standard | Parameter | Speed Grade Un | | | | | | Unit | | | | | | | -5 | | -5 -7 | | 7 | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|------|------| | | | | -5 | | -7 | | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 3.2 | | 4.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 2.7 | ns | | t _{PEXP} | Parallel expander delay | _ | | 0.4 | | 0.5 | | 0.7 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.3 | | 3.0 | ns | | t_{LAC} | Logic control array delay | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.2 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.8 | | 8.8 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.5 | | 2.0 | | 2.6 | | ns | | t _H | Register hold time | | 0.4 | | 0.5 | | 0.7 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | İ | ns | | t_{RD} | Register delay | | | 0.5 | | 0.7 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.8 | | 2.4 | | 3.1 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.8 | | 3.6 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.9 | ns | | t_{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.9 | ns | | t _{PIA} | PIA delay | (2) | | 2.4 | | 3.4 | | 4.5 | ns | | t_{LPA} | Low-power adder | (4) | | 2.0 | | 2.7 | | 3.6 | ns | The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation: $I_{CCINT} =$ $$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$ The parameters in this equation are: MC_{TON} = Number of macrocells with the Turbo BitTM option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the Report File f_{MAX} = Highest clock frequency to the device tog_{LC} = Average percentage of logic cells toggling at each clock (typically 12.5%) A, B, C = Constants, shown in Table 33 | Table 33. MAX 7000B I _{CC} Equation Constants | | | | | | | | | | |--------------------------------------------------------|------|------|-------|--|--|--|--|--|--| | Device | A | В | C | | | | | | | | EPM7032B | 0.91 | 0.54 | 0.010 | | | | | | | | EPM7064B | 0.91 | 0.54 | 0.012 | | | | | | | | EPM7128B | 0.91 | 0.54 | 0.016 | | | | | | | | EPM7256B | 0.91 | 0.54 | 0.017 | | | | | | | | EPM7512B | 0.91 | 0.54 | 0.019 | | | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 17. I_{CC} vs. Frequency for EPM7128B Devices Figure 19. I_{CC} vs. Frequency for EPM7512B Devices Figure 27. 208-Pin PQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. ## Revision History The information contained in the MAX 7000B Programmable Logic Device Family Data Sheet version 3.5 supersedes information published in previous versions. ## Version 3.5 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5: Updated Figure 28. ## Version 3.4 The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4: ■ Updated text in the "Power Sequencing & Hot-Socketing" section. ### Version 3.3 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.3: - Updated Table 3. - Added Tables 4 through 6. ### Version 3.2 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.2: Updated Note (10) and added ambient temperature (T_A) information to Table 15. #### Version 3.1 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.1: - Updated V_{IH} and V_{IL} specifications in Table 16. - Updated leakage current conditions in Table 16. #### Version 3.0 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.0: - Updated timing numbers in Table 1. - Updated Table 16. - Updated timing in Tables 18, 19, 21, 22, 24, 25, 27, 28, 30, and 31. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. LS. EN ISO 9001