

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	100
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-UBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128bfc169-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- System-level features
 - MultiVolt™ I/O interface enabling device core to run at 2.5 V, while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels
 - Programmable power-saving mode for 50% or greater power reduction in each macrocell
 - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
 - Support for advanced I/O standards, including SSTL-2 and SSTL-3, and GTL+
 - Bus-hold option on I/O pins
 - PCI compatible
 - Bus-friendly architecture including programmable slew-rate control
 - Open-drain output option
 - Programmable security bit for protection of proprietary designs
 - Built-in boundary-scan test circuitry compliant with IEEE Std. 1149.1
 - Supports hot-socketing operation
 - Programmable ground pins
- Advanced architecture features
 - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
 - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
 - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls
 - Two global clock signals with optional inversion
 - Programmable power-up states for macrocell registers
 - 6 to 10 pin- or logic-driven output enable signals
- Advanced package options
 - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), space-saving FineLine BGA™, 0.8-mm Ultra FineLine BGA, and plastic J-lead chip carrier (PLCC) packages
 - Pin-compatibility with other MAX 7000B devices in the same package
- Advanced software support
 - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations

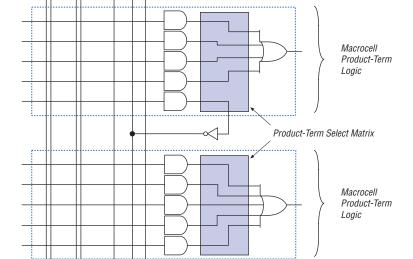
Table 3. MAX	Table 3. MAX 7000B Maximum User I/O Pins Note (1)										
Device	44-Pin PLCC	44-Pin TQFP	48-Pin TQFP (2)	49-Pin 0.8-mm Ultra FineLine BGA (3)	100- Pin TQFP	100-Pin FineLine BGA (4)	144- Pin TQFP	169-Pin 0.8-mm Ultra FineLine BGA (3)	208- Pin PQFP	256- Pin BGA	256-Pin FineLine BGA (4)
EPM7032B	36	36	36	36							
EPM7064B	36	36	40	41	68	68					
EPM7128B				41	84	84	100	100			100
EPM7256B					84		120	141	164		164
EPM7512B							120	141	176	212	212

Notes:

- When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.
- (2) Contact Altera for up-to-date information on available device package options.
- (3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.
- (4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details.

MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.


Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000B architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Figure 3. MAX 7000B Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Altera Corporation 9

16 Shared

Expanders

36 Signals

from PIA

In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³4.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.

For more information on using the Jam language, see *Application Note 88* (*Using the Jam Language for ISP & ICR via an Embedded Processor*) and *Application Note 122* (*Using STAPL for ISP & ICR via an Embedded Processor*).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values									
Device	Progra	nmming	Stand-Alone	Verification					
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EMP7032B	2.12	70,000	0.002	18,000					
EMP7064B	2.12	120,000	0.002	35,000					
EMP7128B	2.12	222,000	0.002	69,000					
EMP7256B	2.12	466,000	0.002	151,000					
EMP7512B	2.12	914,000	0.002	300,000					

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies									
Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies									
Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S

Programming with External Hardware

MAX 7000B devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device.

For more information, see the Altera Programming Hardware Data Sheet.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000B devices include the JTAG boundary-scan test circuitry defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions supported by MAX 7000B devices. The pin-out tables starting on page 59 of this data sheet show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 6. MAX 7000B	JTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary-scan test data to pass synchronously through a selected device to adjacent devices during normal operation.
CLAMP	Allows the values in the boundary-scan register to determine pin states while placing the 1-bit bypass register between the TDI and TDO pins.
IDCODE	Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO.
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO.
ISP Instructions	These instructions are used when programming MAX 7000B devices via the JTAG ports with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded processor or test equipment.

Programmable Speed/Power Control

MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters.

Output Configuration

MAX 7000B device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of $\rm V_{CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels of 2.5 V or 1.8 V incur a nominal timing delay adder.

Table 10 describes the MAX 7000B MultiVolt I/O support.

Table 10. MAX 7000B MultiVolt I/O Support								
V _{CCIO} (V)	CIO (V) Input Signal (V) Output Signal (V)							
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	✓	✓	✓		✓			
2.5	✓	✓	✓			✓		
3.3	✓	✓	✓				✓	✓

Open-Drain Output Option

MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

Slew-Rate Control

The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

Advanced I/O Standard Support

The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II.

MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported.

Figure 9 shows the arrangement of the MAX 7000B I/O banks.

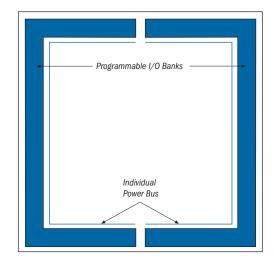
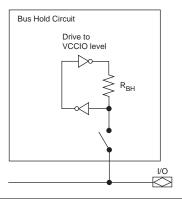


Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards

Table 11 shows which macrocells have pins in each I/O bank.


Table 11. Macrocell Pins Contained in Each I/O Bank							
Device	Bank 1	Bank 2					
EPM7032B	1-16	17-32					
EPM7064B	1-32	33-64					
EPM7128B	1-64	65-128					
EPM7256B	1-128, 177-181	129-176, 182-256					
EPM7512B	1-265	266-512					

Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins.

Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode.

Figure 10 shows a block diagram of the bus-hold circuit.

Figure 10. Bus-Hold Circuit

PCI Compatibility

MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications.

Table 13. MAX 70 Specifications	Table 13. MAX 7000B Device Speed Grades that Meet PCI Timing Specifications							
Device	Specification							
	33-MHz PCI	66-MHz PCI						
EPM7032B	All speed grades	-3						
EPM7064B	All speed grades	-3						
EPM7128B	All speed grades	-4						
EPM7256B	All speed grades	-5 (1)						
EPM7512B	All speed grades	-5 (1)						

Note:

(1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications.

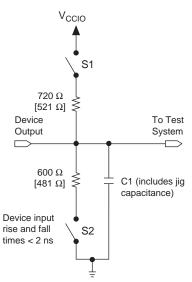
Power Sequencing & Hot-Socketing

Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user.

MAX 7000B device I/O pins will not source or sink more than 300 μ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing.

Design Security


All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow.

Figure 11. MAX 7000B AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. Switches S1 and S2 are open for all tests except output disable timing parameters.

Operating Conditions

Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices.

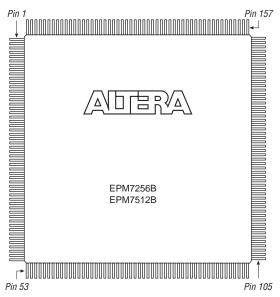
Table 1	Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage		-0.5	3.6	V					
V _{CCIO}	Supply voltage		-0.5	3.6	V					
VI	DC input voltage	(2)	-2.0	4.6	V					
I _{OUT}	DC output current, per pin		-33	50	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _A	Ambient temperature	Under bias	-65	135	°C					
T_{J}	Junction temperature	Under bias	-65	135	° C					

I/O Standard	Parameter	Speed Grade						
		-3	3.5	-5	i.0	-7.5		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to (PIA)		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.3		0.4		0.6	ns
	Input to global clock and clear		0.3		0.4		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.5		0.8		1.1	ns
	Input to global clock and clear		0.5		0.8		1.1	ns
	Input to fast input register		0.4		0.5		0.8	ns
	All outputs		1.2		1.8		2.6	ns
SSTL-2 Class I	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.3		1.9		2.8	ns
	Input to global clock and clear		1.2		1.8		2.6	ns
	Input to fast input register		0.9		1.3		1.9	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.2		1.8		2.6	ns
	Input to global clock and clear		0.9		1.3		1.9	ns
	Input to fast input register		0.8		1.1		1.7	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.6		2.3		3.4	ns
	Input to global clock and clear		1.6		2.3		3.4	ns
	Input to fast input register		1.5		2.1		3.2	ns
	All outputs		0.0		0.0		0.0	ns

Table 23. EPM7064B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)										
I/O Standard	Parameter			Speed	Grade			Unit		
		-	3	-	5	-	7			
		Min	Max	Min	Max	Min	Max			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of all LABs.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.


Symbol	Parameter	Conditions		Speed Grade						
			-4			-7		-10		
			Min	Max	Min	Max	Min	Max	1	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.0		7.5		10.0	ns	
t _{SU}	Global clock setup time	(2)	2.5		4.5		6.1		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns	
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns	
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		3.0		3.0		ns	
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.8	1.0	5.7	1.0	7.5	ns	
t _{CH}	Global clock high time		1.5		3.0		4.0		ns	
t _{CL}	Global clock low time		1.5		3.0		4.0		ns	
t _{ASU}	Array clock setup time	(2)	1.2		2.0		2.8		ns	
t _{AH}	Array clock hold time	(2)	0.2		0.7		0.9		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.1	1.0	8.2	1.0	10.8	ns	
t _{ACH}	Array clock high time		1.5		3.0		4.0		ns	
t _{ACL}	Array clock low time		1.5		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset		1.5		3.0		4.0		ns	
t _{CNT}	Minimum global clock period	(2)		4.1		7.9		10.6	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (3)	243.9		126.6		94.3		MHz	
t _{ACNT}	Minimum array clock period	(2)		4.1		7.9		10.6	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	243.9		126.6		94.3		MHz	

Symbol	Parameter	Conditions	Speed Grade						
			-	5	-7		-10		-
			Min	Max	Min	Max	Min	Max	=
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	3.3		4.8		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time for fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	5.1	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		2.0		2.8		ns
t _{AH}	Array clock hold time	(2)	0.4		0.8		1.0		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.2	1.0	7.9	1.0	10.5	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.3		7.9		10.6	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	188.7		126.6		94.3		MHz
t _{ACNT}	Minimum array clock period	(2)		5.3		7.9		10.6	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	188.7		126.6		94.3		MHz

Symbol	Parameter	Conditions	Speed Grade						
			-5		-7		-10		1
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.3		0.5	ns
t_{IO}	I/O input pad and buffer delay			0.3		0.3		0.5	ns
t _{FIN}	Fast input delay			2.2		3.2		4.0	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		2.7	ns
t _{PEXP}	Parallel expander delay	_		0.4		0.5		0.7	ns
t_{LAD}	Logic array delay			1.7		2.3		3.0	ns
t _{LAC}	Logic control array delay			1.5		2.0		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.2	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.2		1.6	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		2.8		3.8		5.0	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		7.8		8.8		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		2.8		3.8		5.0	ns
t_{SU}	Register setup time		1.5		2.0		2.6		ns
t _H	Register hold time		0.4		0.5		0.7		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t_{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t_{RD}	Register delay			0.5		0.7		1.0	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.4	ns
t _{IC}	Array clock delay			1.8		2.4		3.1	ns
t_{EN}	Register enable time			1.5		2.0		2.6	ns
t _{GLOB}	Global control delay			2.0		2.8		3.6	ns
t _{PRE}	Register preset time			1.0		1.4		1.9	ns
t_{CLR}	Register clear time			1.0		1.4		1.9	ns
t _{PIA}	PIA delay	(2)		2.4		3.4		4.5	ns
t_{LPA}	Low-power adder	(4)		2.0		2.7		3.6	ns

Figure 27. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

Version 3.3

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.3:

- Updated Table 3.
- Added Tables 4 through 6.

Version 3.2

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.2:

 Updated Note (10) and added ambient temperature (T_A) information to Table 15.

Version 3.1

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.1:

- Updated V_{IH} and V_{IL} specifications in Table 16.
- Updated leakage current conditions in Table 16.

Version 3.0

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.0:

- Updated timing numbers in Table 1.
- Updated Table 16.
- Updated timing in Tables 18, 19, 21, 22, 24, 25, 27, 28, 30, and 31.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
lit_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

LS. EN ISO 9001

