Welcome to E-XFL.COM **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. #### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 100 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 169-LFBGA | | Supplier Device Package | 169-UBGA (11x11) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128bfc169-7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems. MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000B architecture includes the following elements: - LABs - Macrocells - Expander product terms (shareable and parallel) - PIA - I/O control blocks The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices. Figure 5. MAX 7000B PIA Routing While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict. #### I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{CC}.$ Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. # Programming with External Hardware MAX 7000B devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device. For more information, see the Altera Programming Hardware Data Sheet. The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see *Programming Hardware Manufacturers*. ### IEEE Std. 1149.1 (JTAG) Boundary-Scan Support MAX 7000B devices include the JTAG boundary-scan test circuitry defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions supported by MAX 7000B devices. The pin-out tables starting on page 59 of this data sheet show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. | Table 6. MAX 7000B | JTAG Instructions | |--------------------|---| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins. | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary-scan test data to pass synchronously through a selected device to adjacent devices during normal operation. | | CLAMP | Allows the values in the boundary-scan register to determine pin states while placing the 1-bit bypass register between the TDI and TDO pins. | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO. | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. | | ISP Instructions | These instructions are used when programming MAX 7000B devices via the JTAG ports with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded processor or test equipment. | Figure 8. MAX 7000B JTAG Waveforms Table 9 shows the JTAG timing parameters and values for MAX 7000B devices. | Table 9. Note (1) | JTAG Timing Parameters & Values for MAX 70 | 100B Dev | ices | | |--------------------------|--|----------|------|------| | Symbol | Parameter | Min | Max | Unit | | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 25 | ns | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | #### Note: (1) Timing parameters in this table apply to all $V_{\mbox{\scriptsize CCIO}}$ levels. MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported. Figure 9 shows the arrangement of the MAX 7000B I/O banks. Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards Table 11 shows which macrocells have pins in each I/O bank. | Table 11. Macrocell Pins Contained in Each I/O Bank | | | | | | | | | |---|----------------|------------------|--|--|--|--|--|--| | Device | Bank 1 | Bank 2 | | | | | | | | EPM7032B | 1-16 | 17-32 | | | | | | | | EPM7064B | 1-32 | 33-64 | | | | | | | | EPM7128B | 1-64 | 65-128 | | | | | | | | EPM7256B | 1-128, 177-181 | 129-176, 182-256 | | | | | | | | EPM7512B | 1-265 | 266-512 | | | | | | | Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins. Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode. Figure 10 shows a block diagram of the bus-hold circuit. Figure 10. Bus-Hold Circuit ### PCI Compatibility MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications. | Table 13. MAX 70
Specifications | 00B Device Speed Grades tha | t Meet PCI Timing | |------------------------------------|-----------------------------|-------------------| | Device | Specif | ication | | | 33-MHz PCI | 66-MHz PCI | | EPM7032B | All speed grades | -3 | | EPM7064B | All speed grades | -3 | | EPM7128B | All speed grades | -4 | | EPM7256B | All speed grades | -5 (1) | | EPM7512B | All speed grades | -5 (1) | #### Note: (1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications. #### Figure 11. MAX 7000B AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. Switches S1 and S2 are open for all tests except output disable timing parameters. ### Operating Conditions Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices. | Table 1 | Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |--------------------|--------------------------------------------------------------|------------|------|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | V _{CCINT} | Supply voltage | | -0.5 | 3.6 | V | | | | | | | V _{CCIO} | Supply voltage | | -0.5 | 3.6 | V | | | | | | | VI | DC input voltage | (2) | -2.0 | 4.6 | V | | | | | | | I _{OUT} | DC output current, per pin | | -33 | 50 | mA | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | | T _A | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | | T_{J} | Junction temperature | Under bias | -65 | 135 | ° C | | | | | | | Table 1 | Table 17. MAX 7000B Device Capacitance Note (9) | | | | | | | | |------------------|-------------------------------------------------|-------------------------------------|--|---|----|--|--|--| | Symbol | Parameter | Conditions Min Max | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. - (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current. - (7) This value is specified for normal device operation. During power-up, the maximum leakage current is ±300 μA. - (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}. - (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF. - (10) The POR time for all 7000B devices does not exceed 100 µs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. Figure 12 shows the typical output drive characteristics of MAX 7000B devices. Figure 12. Output Drive Characteristics of MAX 7000B Devices Tables 18 through 32 show MAX 7000B device timing parameters. | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |--------------------|-----------------------------------------------------------|----------------|-------|-------------|-------|------|-------|------|-----|--| | | | | -3 | -3.5 | | -5.0 | | -7.5 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|------| | | | | -3 | | -5 | | -7 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t _{FIN} | Fast input delay | | | 0.9 | | 1.3 | | 2.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.0 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 3.2 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.4 | | 2.0 | | 3.1 | ns | | t_{LAC} | Logic control array delay | | | 1.2 | | 1.7 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.8 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.8 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.6 | | 7.2 | | 8.4 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t _{SU} | Register setup time | | 0.7 | | 1.1 | | 1.6 | | ns | | t_H | Register hold time | | 0.4 | | 0.5 | | 0.9 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 0.8 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.2 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.6 | | 0.9 | ns | | t_{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.5 | ns | | t _{IC} | Array clock delay | | İ | 1.2 | | 1.8 | | 2.8 | ns | | t_{EN} | Register enable time | | İ | 1.2 | | 1.7 | | 2.6 | ns | | t_{GLOB} | Global control delay | | İ | 0.7 | | 1.1 | | 1.6 | ns | | t_{PRE} | Register preset time | | | 1.0 | | 1.3 | | 1.9 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.3 | | 1.9 | ns | | t_{PIA} | PIA delay | (2) | | 0.7 | | 1.0 | | 1.4 | ns | | t_{LPA} | Low-power adder | (4) | | 1.5 | | 2.1 | | 3.2 | ns | | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | |-------------------------------------------------------------------------------------------|---------------------------------|-----|-------------|-----|-----|-------|-----|-----|--|--| | I/O Standard | Parameter | | Speed Grade | | | | | | | | | | | -4 | | -4 | | -4 -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|------| | | | | - | -5 | | 7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t _{FIN} | Fast input delay | | | 1.5 | | 2.5 | | 3.1 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.8 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.5 | | 3.3 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.2 | | 2.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.4 | | 1.9 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.4 | | 6.9 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.2 | | 8.3 | | 9.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.2 | | 3.3 | | 4.5 | ns | | t_{SU} | Register setup time | | 1.2 | | 1.8 | | 2.5 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{COMB} | Combinatorial delay | | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IC} | Array clock delay | | | 1.5 | | 2.3 | | 3.0 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.2 | | 2.9 | ns | | t_{GLOB} | Global control delay | | | 1.3 | | 2.1 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.6 | | 2.1 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.6 | | 2.1 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.6 | | 3.3 | ns | | t _{LPA} | Low-power adder | (4) | | 2.0 | | 3.0 | | 4.0 | ns | | Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------|-------------|-----|-----|-----|------|-----|------|--|--|--| | I/O Standard | Parameter | Speed Grade | | | | | | Unit | | | | | | | -5 | | -5 | | 5 -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|------|------| | | | | -5 | | -7 | | -10 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 3.2 | | 4.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 2.7 | ns | | t _{PEXP} | Parallel expander delay | _ | | 0.4 | | 0.5 | | 0.7 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.3 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.2 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.8 | | 8.8 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.5 | | 2.0 | | 2.6 | | ns | | t _H | Register hold time | | 0.4 | | 0.5 | | 0.7 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.7 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.8 | | 2.4 | | 3.1 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.8 | | 3.6 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.9 | ns | | t_{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.9 | ns | | t _{PIA} | PIA delay | (2) | | 2.4 | | 3.4 | | 4.5 | ns | | t_{LPA} | Low-power adder | (4) | | 2.0 | | 2.7 | | 3.6 | ns | | I/O Standard | Parameter | Speed Grade | | | | | | Unit | |-----------------|---------------------------------|-------------|------|-----|------|-----|------|------| | | | -5 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.4 | | 0.5 | | 0.7 | ns | | | Input to global clock and clear | | 0.3 | | 0.4 | | 0.5 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.3 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.3 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.7 | | 1.0 | | 1.3 | ns | | | Input to global clock and clear | | 0.6 | | 0.8 | | 1.0 | ns | | | Input to fast input register | | 0.5 | | 0.6 | | 0.8 | ns | | | All outputs | | 1.3 | | 1.8 | | 2.3 | ns | | SSTL-2 Class I | Input to PIA | | 1.5 | | 2.0 | | 2.7 | ns | | | Input to global clock and clear | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 1.1 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.5 | | 2.0 | | 2.7 | ns | | | Input to global clock and clear | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 1.1 | | 1.5 | | 2.0 | ns | | | All outputs | | -0.1 | | -0.1 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to global clock and clear | | 1.2 | | 1.6 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.4 | | 1.8 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to global clock and clear | | 1.2 | | 1.6 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.4 | | 1.8 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.8 | | 2.5 | | 3.3 | ns | | | Input to global clock and clear | | 1.9 | | 2.6 | | 3.5 | ns | | | Input to fast input register | | 1.8 | | 2.5 | | 3.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation: $I_{CCINT} =$ $$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$ The parameters in this equation are: MC_{TON} = Number of macrocells with the Turbo BitTM option turned on, as reported in the MAX+PLUS II Report File (.rpt) MC_{DEV} = Number of macrocells in the device MC_{USED} = Total number of macrocells in the design, as reported in the Report File f_{MAX} = Highest clock frequency to the device tog_{LC} = Average percentage of logic cells toggling at each clock (typically 12.5%) A, B, C = Constants, shown in Table 33 | Table 33. MAX 7000B I _{CC} Equation Constants | | | | | | | | |--------------------------------------------------------|------|------|-------|--|--|--|--| | Device | A | В | C | | | | | | EPM7032B | 0.91 | 0.54 | 0.010 | | | | | | EPM7064B | 0.91 | 0.54 | 0.012 | | | | | | EPM7128B | 0.91 | 0.54 | 0.016 | | | | | | EPM7256B | 0.91 | 0.54 | 0.017 | | | | | | EPM7512B | 0.91 | 0.54 | 0.019 | | | | | This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 19. I_{CC} vs. Frequency for EPM7512B Devices Figure 25. 144-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 26. 169-Pin Ultra FineLine BGA Pin-Out Diagram Package outline not drawn to scale. Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. ## Revision History The information contained in the MAX 7000B Programmable Logic Device Family Data Sheet version 3.5 supersedes information published in previous versions. #### Version 3.5 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5: Updated Figure 28. #### Version 3.4 The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4: ■ Updated text in the "Power Sequencing & Hot-Socketing" section.