E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	4 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128btc100-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. MAX 7000B Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 5. MAX 7000B PIA Routing

While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

SameFrame Pin-Outs

MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example

Printed Circuit Board Designed for 256-Pin FineLine BGA Package

 100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

Altera Corporation

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000B Device

The time required to program a single MAX 7000B device in-system can be calculated from the following formula:

^t PROG	= t _{PPULSE} ++	^{Cycle} PTCK f _{TCK}
where:	t _{PROG} t _{PPULSE}	= Programming time= Sum of the fixed times to erase, program, and verify the EEPROM cells
	Cycle _{PTCK} f _{TCK}	Number of TCK cycles to program a deviceTCK frequency

The ISP times for a stand-alone verification of a single MAX 7000B device can be calculated from the following formula:

$t_{VER} =$	$t_{VPULSE} + \frac{C_1}{2}$	^{ICLE} VTCK ^f TCK
where:	t _{VER} t _{VPULSE} Cycle _{VTCK}	= Verify time= Sum of the fixed times to verify the EEPROM cells= Number of TCK cycles to verify a device

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values									
Device	Progra	imming	Stand-Alone Verification						
	<i>t_{PPULSE}</i> (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EMP7032B	2.12	70,000	0.002	18,000					
EMP7064B	2.12	120,000	0.002	35,000					
EMP7128B	2.12	222,000	0.002	69,000					
EMP7256B	2.12	466,000	0.002	151,000					
EMP7512B	2.12	914,000	0.002	300,000					

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies									
Device		f _{TCK}							
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies									
Device	f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S

٦

Г

MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported.

Figure 9 shows the arrangement of the MAX 7000B I/O banks.

Programmable I/O Banks

Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards

Table 11 shows which macrocells have pins in each I/O bank.

Table 11. Macrocell Pins Contained in Each I/O Bank							
Device	Bank 1	Bank 2					
EPM7032B	1-16	17-32					
EPM7064B	1-32	33-64					
EPM7128B	1-64	65-128					
EPM7256B	1-128, 177-181	129-176, 182-256					
EPM7512B	1-265	266-512					

Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins.

Power Sequencing & Hot-Socketing	Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{\rm CCIO}$ and $\rm V_{\rm CCINT}$ power planes can be powered in any order.
	Signals can be driven into MAX 7000B devices before and during power- up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user.
	MAX 7000B device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing.
Design Security	All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.
Generic Testing	MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow.

Table 17. MAX 7000B Device Capacitance Note (9)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF			
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (4) These values are specified under the Recommended Operating Conditions in Table 15 on page 29.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (7) This value is specified for normal device operation. During power-up, the maximum leakage current is $\pm 300 \,\mu$ A.
- (8) This pull-up exists while devices are being programmed in-system and in unprogrammed devices during power-up. The pull-up resistor is from the pins to V_{CCIO}.
- (9) Capacitance is measured at 25° C and is sample-tested only. Two of the dedicated input pins (OE1 and GCLRN) have a maximum capacitance of 15 pF.
- (10) The POR time for all 7000B devices does not exceed 100 μs. The sufficient V_{CCINT} voltage level for POR is 2.375 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-3	8.5	-5	i.O	-7	.5	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		0.7	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.5		0.7	ns
t _{FIN}	Fast input delay			0.9		1.3		2.0	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		3.2	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.9	ns
t _{LAD}	Logic array delay			1.4		2.0		3.1	ns
t _{LAC}	Logic control array delay			1.2		1.7		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.9		1.2		1.8	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.2		6.8	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		1.6		2.2		3.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		6.6		7.2		8.4	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		1.6		2.2		3.4	ns
t _{SU}	Register setup time		0.7		1.1		1.6		ns
t _H	Register hold time		0.4		0.5		0.9		ns
t _{FSU}	Register setup time of fast input		0.8		0.8		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.2		1.4		ns
t _{RD}	Register delay			0.5		0.6		0.9	ns
t _{COMB}	Combinatorial delay			0.2	l	0.3		0.5	ns
t _{IC}	Array clock delay			1.2	l	1.8		2.8	ns
t _{EN}	Register enable time			1.2		1.7		2.6	ns
t _{GLOB}	Global control delay			0.7		1.1		1.6	ns
t _{PRE}	Register preset time			1.0	l	1.3		1.9	ns
t _{CLR}	Register clear time		1	1.0		1.3		1.9	ns
t _{PIA}	PIA delay	(2)		0.7		1.0		1.4	ns
t _{LPA}	Low-power adder	(4)		1.5		2.1		3.2	ns

Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays Notes (1)									
I/O Standard	Parameter	Speed Grade						Unit	
		-3.5		-5.0		-7.5			
		Min	Max	Min	Max	Min	Max		
PCI	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Table 27. EPM7256B External Timing Parameters Note (1)										
Symbol	Parameter	Conditions			Speed		Unit			
			-	-5		-7		-10		
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns	
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.0		7.5		10.0	ns	
t _{SU}	Global clock setup time	(2)	3.3		4.8		6.6		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		1.0	1.0			1.5		ns	
t _{FH}	Global clock hold time for fast input		1.0		1.0		1.0		ns	
t _{FZHSU}	Global clock setup time of fast input with zero hold time	clock setup time of 2.			3.0		3.0		ns	
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	5.1	1.0	6.7	ns	
t _{CH}	Global clock high time		2.0		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		3.0		4.0		ns	
t _{ASU}	Array clock setup time	(2)	1.4		2.0		2.8		ns	
t _{AH}	Array clock hold time	(2)	0.4		0.8		1.0		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.2	1.0	7.9	1.0	10.5	ns	
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns	
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset		2.0		3.0		4.0		ns	
t _{cnt}	Minimum global clock period	(2)		5.3		7.9		10.6	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (3)	188.7		126.6		94.3		MHz	
t _{acnt}	Minimum array clock period	(2)		5.3		7.9		10.6	ns	
facnt	Maximum internal array clock frequency	(2), (3)	188.7		126.6		94.3		MHz	

I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.6		0.8	ns
	Input to global clock and clear		0.3		0.5		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.6		0.9		1.2	ns
	Input to global clock and clear		0.6		0.9		1.2	ns
	Input to fast input register		0.5		0.8		1.0	ns
	All outputs		1.3		2.0		2.6	ns
SSTL-2 Class I	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		-0.1		-0.2		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.7		3.6	ns
	Input to global clock and clear		1.8		2.7		3.6	ns
	Input to fast input register		1.7		2.6		3.4	ns
	All outputs		0.0		0.0		0.0	ns

Symbol	Parameter	Conditions	Speed Grade						
			-	-5		-7		-10	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	3.6		4.9		6.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
tfzhsu	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		1.9		2.5		ns
t _{AH}	Array clock hold time	(2)	0.5		0.6		0.8		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.9	1.0	8.0	1.0	10.7	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		3.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.1		8.4		11.1	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	163.9		119.0		90.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.1		8.4		11.1	ns
f _{acnt}	Maximum internal array clock frequency	(2), (3)	163.9		119.0		90.1		MHz

I/O Standard	Parameter	Speed Grade						Unit
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.5		0.7	ns
	Input to global clock and clear		0.3		0.4		0.5	ns
	Input to fast input register		0.2		0.3		0.3	ns
	All outputs		0.2		0.3		0.3	ns
1.8 V TTL/CMOS	Input to PIA		0.7		1.0		1.3	ns
	Input to global clock and clear		0.6		0.8		1.0	ns
	Input to fast input register		0.5		0.6		0.8	ns
	All outputs		1.3		1.8		2.3	ns
SSTL-2 Class I	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.0		2.7	ns
	Input to global clock and clear		1.4		1.9		2.5	ns
	Input to fast input register		1.1		1.5		2.0	ns
	All outputs		-0.1		-0.1		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		1.9		2.5	ns
	Input to global clock and clear		1.2		1.6		2.2	ns
	Input to fast input register		1.0		1.4		1.8	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.5		3.3	ns
	Input to global clock and clear		1.9		2.6		3.5	ns
	Input to fast input register		1.8		2.5		3.3	ns
	All outputs		0.0		0.0		0.0	ns

Table 32. EPM7512B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)									
I/O Standard	Parameter	Speed Grade						Unit	
		-5		-7		-10			
		Min	Max	Min	Max	Min	Max		
PCI	Input to PIA		0.0		0.0		0.0	ns	
	Input to global clock and clear		0.0		0.0		0.0	ns	
	Input to fast input register		0.0		0.0		0.0	ns	
	All outputs		0.0		0.0		0.0	ns	

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.12 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000B devices is calculated with the following equation:

 $P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation:

 $I_{CCINT} =$

 $(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$

The parameters in this equation are:

MC _{TON}	=	Number of macrocells with the Turbo Bit TM option turned
		on, as reported in the MAX+PLUS II Report File (. rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported in
		the Report File
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
		(typically 12.5%)
A, B, C	=	Constants, shown in Table 33

Table 33. MAX 7000B I _{CC} Equation Constants									
Device	A	В	C						
EPM7032B	0.91	0.54	0.010						
EPM7064B	0.91	0.54	0.012						
EPM7128B	0.91	0.54	0.016						
EPM7256B	0.91	0.54	0.017						
EPM7512B	0.91	0.54	0.019						

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 15. I_{CC} vs. Frequency for EPM7032B Devices

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 20 through 29 show the package pin-out diagrams for MAX 7000B devices.

Package outlines not drawn to scale.

Figure 23. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 24. 100-Pin FineLine BGA Package Pin-Out Diagram

