## Intel - EPM7128BTC144-7 Datasheet





Welcome to E-XFL.COM

#### Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

#### **Applications of Embedded - CPLDs**

#### Details

| Product Status                  | Obsolete                                                   |
|---------------------------------|------------------------------------------------------------|
| Programmable Type               | In System Programmable                                     |
| Delay Time tpd(1) Max           | 7.5 ns                                                     |
| Voltage Supply - Internal       | 2.375V ~ 2.625V                                            |
| Number of Logic Elements/Blocks | 8                                                          |
| Number of Macrocells            | 128                                                        |
| Number of Gates                 | 2500                                                       |
| Number of I/O                   | 100                                                        |
| Operating Temperature           | 0°C ~ 70°C (TA)                                            |
| Mounting Type                   | Surface Mount                                              |
| Package / Case                  | 144-LQFP                                                   |
| Supplier Device Package         | 144-TQFP (20x20)                                           |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7128btc144-7 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems.

MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet* and the *Quartus Programmable Logic Development System & Software Data Sheet*.

# Functional Description

The MAX 7000B architecture includes the following elements:

- LABs
- Macrocells
- Expander product terms (shareable and parallel)
- PIA
- I/O control blocks

The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices.

### Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000B architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

#### Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay ( $t_{SEXP}$ ) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.





Shareable expanders can be shared by any or all macrocells in an LAB.

#### Figure 4. MAX 7000B Parallel Expanders



Unused product terms in a macrocell can be allocated to a neighboring macrocell.

## **Programmable Interconnect Array**

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000B dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.



Figure 5. MAX 7000B PIA Routing

While the routing delays of channel-based routing schemes in masked or field-programmable gate arrays (FPGAs) are cumulative, variable, and path-dependent, the MAX 7000B PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

## I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or  $V_{CC}$ . Figure 6 shows the I/O control block for MAX 7000B devices. The I/O control block has six or ten global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.





#### Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to  $V_{CC'}$ , the output is enabled.

The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

# SameFrame Pin-Outs

MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example

Printed Circuit Board Designed for 256-Pin FineLine BGA Package



 

 100-Pin FineLine BGA Package (Reduced I/O Count or Logic Requirements)
 256-Pin FineLine BGA Package (Increased I/O Count or Logic Requirements)

**Altera Corporation** 

# In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industrystandard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k<sup>3</sup>/<sub>4</sub>.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP\_Done bit that provides safe operation when in-system programming is interrupted. This ISP\_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.

For more information on using the Jam language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor) and Application Note 122 (Using STAPL for ISP & ICR via an Embedded Processor).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

#### Programming a Single MAX 7000B Device

The time required to program a single MAX 7000B device in-system can be calculated from the following formula:

| <sup>t</sup> PROG | = t <sub>PPULSE</sub> ++                  | <sup>Cycle</sup> PTCK<br>f <sub>TCK</sub>                                                                            |
|-------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| where:            | t <sub>PROG</sub><br>t <sub>PPULSE</sub>  | <ul><li>= Programming time</li><li>= Sum of the fixed times to erase, program, and verify the EEPROM cells</li></ul> |
|                   | Cycle <sub>PTCK</sub><br>f <sub>TCK</sub> | <ul><li>Number of TCK cycles to program a device</li><li>TCK frequency</li></ul>                                     |

The ISP times for a stand-alone verification of a single MAX 7000B device can be calculated from the following formula:

| $t_{VER} =$ | $t_{VPULSE} + \frac{C_1}{2}$                                     | <sup>ICLe</sup> VTCK<br><sup>f</sup> TCK                                                                                                      |
|-------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| where:      | t <sub>VER</sub><br>t <sub>VPULSE</sub><br>Cycle <sub>VTCK</sub> | <ul><li>= Verify time</li><li>= Sum of the fixed times to verify the EEPROM cells</li><li>= Number of TCK cycles to verify a device</li></ul> |

The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices.

| Table 7. MAX 7000B Boundary-Scan Register Length |                               |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Device                                           | Boundary-Scan Register Length |  |  |  |  |  |  |
| EPM7032B                                         | 96                            |  |  |  |  |  |  |
| EPM7064B                                         | 192                           |  |  |  |  |  |  |
| EPM7128B                                         | 288                           |  |  |  |  |  |  |
| EPM7256B                                         | 480                           |  |  |  |  |  |  |
| EPM7512B                                         | 624                           |  |  |  |  |  |  |

| Table 8. 32-Bit MAX 7000B Device IDCODE     Note (1) |                     |                       |                                      |                         |  |  |  |  |  |
|------------------------------------------------------|---------------------|-----------------------|--------------------------------------|-------------------------|--|--|--|--|--|
| Device                                               |                     | IDCODE (32 Bits)      |                                      |                         |  |  |  |  |  |
|                                                      | Version<br>(4 Bits) | Part Number (16 Bits) | Manufacturer's<br>Identity (11 Bits) | <b>1 (1 Bit)</b><br>(2) |  |  |  |  |  |
| EPM7032B                                             | 0010                | 0111 0000 0011 0010   | 00001101110                          | 1                       |  |  |  |  |  |
| EPM7064B                                             | 0010                | 0111 0000 0110 0100   | 00001101110                          | 1                       |  |  |  |  |  |
| EPM7128B                                             | 0010                | 0111 0001 0010 1000   | 00001101110                          | 1                       |  |  |  |  |  |
| EPM7256B                                             | 0010                | 0111 0010 0101 0110   | 00001101110                          | 1                       |  |  |  |  |  |
| EPM7512B                                             | 0010                | 0111 0101 0001 0010   | 00001101110                          | 1                       |  |  |  |  |  |

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See *Application Note* 39 (IEEE 1149.1 (JTAG) *Boundary-Scan Testing in Altera Devices*) for more information on JTAG boundary-scan testing.

Figure 8 shows the timing information for the JTAG signals.

#### Figure 11. MAX 7000B AC Test Conditions



# Operating Conditions

Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices.

| Table 14. MAX 7000B Device Absolute Maximum Ratings       Note (1) |                            |            |      |     |      |  |  |  |
|--------------------------------------------------------------------|----------------------------|------------|------|-----|------|--|--|--|
| Symbol                                                             | Parameter                  | Conditions | Min  | Max | Unit |  |  |  |
| V <sub>CCINT</sub>                                                 | Supply voltage             |            | -0.5 | 3.6 | V    |  |  |  |
| V <sub>CCIO</sub>                                                  | Supply voltage             |            | -0.5 | 3.6 | V    |  |  |  |
| VI                                                                 | DC input voltage           | (2)        | -2.0 | 4.6 | V    |  |  |  |
| I <sub>OUT</sub>                                                   | DC output current, per pin |            | -33  | 50  | mA   |  |  |  |
| T <sub>STG</sub>                                                   | Storage temperature        | No bias    | -65  | 150 | °C   |  |  |  |
| T <sub>A</sub>                                                     | Ambient temperature        | Under bias | -65  | 135 | °C   |  |  |  |
| TJ                                                                 | Junction temperature       | Under bias | -65  | 135 | °C   |  |  |  |

| • • •                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>-</b> .                                                                              | <b>a</b>                                                    |                            |                        |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|------------------------|------|
| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                                                                               | Conditions                                                  | IVIIN                      | Max                    | Unit |
| V <sub>IH</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | High-level input voltage for 3.3-V<br>TTL/CMOS                                          |                                                             | 2.0                        | 3.9                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | High-level input voltage for 2.5-V<br>TTL/CMOS                                          |                                                             | 1.7                        | 3.9                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | High-level input voltage for 1.8-V<br>TTL/CMOS                                          |                                                             | $0.65 \times V_{CCIO}$     | 3.9                    | V    |
| V <sub>IL</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | Low-level input voltage for 3.3-V<br>TTL/CMOS and PCI compliance                        |                                                             | -0.5                       | 0.8                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Low-level input voltage for 2.5-V<br>TTL/CMOS                                           |                                                             | -0.5                       | 0.7                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Low-level input voltage for 1.8-V<br>TTL/CMOS                                           |                                                             | -0.5                       | $0.35 \times V_{CCIO}$ |      |
| V <sub>OH</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3-V high-level TTL output voltage                                                     | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (5)$  | 2.4                        |                        | V    |
| V <sub>OH</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3-V high-level CMOS output voltage                                                    | $I_{OH}$ = -0.1 mA DC, $V_{CCIO}$ = 3.00 V (5)              | V <sub>CCIO</sub> -<br>0.2 |                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5-V high-level output voltage                                                         | $I_{OH} = -100 \ \mu A \ DC, \ V_{CCIO} = 2.30 \ V \ (5)$   | 2.1                        |                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | $I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$  | 2.0                        |                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$  | 1.7                        |                        | V    |
| Value         Io.           Symbol         V           VIH         H           T         H           T         H           T         H           VIL         L           T         T           VIL         L           T         T           VOH         3           V         2           1         V           VOL         3           V         2           1         I           Ioz         T           RISP         V | 1.8-V high-level output voltage                                                         | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 1.65 \text{ V} (5)$  | 1.2                        |                        | V    |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3-V low-level TTL output voltage                                                      | I <sub>OL</sub> = 8 mA DC, V <sub>CCIO</sub> = 3.00 V (6)   |                            | 0.4                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3-V low-level CMOS output voltage                                                     | I <sub>OL</sub> = 0.1 mA DC, V <sub>CCIO</sub> = 3.00 V (6) |                            | 0.2                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5-V low-level output voltage                                                          | $I_{OL}$ = 100 µA DC, $V_{CCIO}$ = 2.30 V (6)               |                            | 0.2                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | $I_{OL}$ = 1 mA DC, $V_{CCIO}$ = 2.30 V (6)                 |                            | 0.4                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | $I_{OL}$ = 2 mA DC, $V_{CCIO}$ = 2.30 V (6)                 |                            | 0.7                    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8-V low-level output voltage                                                          | I <sub>OL</sub> = 2 mA DC, V <sub>CCIO</sub> = 1.7 V (6)    |                            | 0.4                    | V    |
| II .                                                                                                                                                                                                                                                                                                                                                                                                                        | Input leakage current                                                                   | $V_1 = -0.5$ to 3.9 V (7)                                   | -10                        | 10                     | μA   |
| I <sub>OZ</sub>                                                                                                                                                                                                                                                                                                                                                                                                             | Tri-state output off-state current                                                      | $V_1 = -0.5 \text{ to } 3.9 \text{ V} (7)$                  | -10                        | 10                     | μΑ   |
| R <sub>ISP</sub>                                                                                                                                                                                                                                                                                                                                                                                                            | Value of I/O pin pull-up resistor<br>during in-system programming or<br>during power up | V <sub>CCIO</sub> = 1.7 to 3.6 V (8)                        | 20                         | 74                     | k¾   |

| Symbol            | Parameter                                                                            | Conditions |     |     | Speed | Grade |     |            | Unit |
|-------------------|--------------------------------------------------------------------------------------|------------|-----|-----|-------|-------|-----|------------|------|
|                   |                                                                                      |            | -3  | 8.5 | -5    | .0    | -7  | <b>.</b> 5 |      |
|                   |                                                                                      |            | Min | Max | Min   | Max   | Min | Max        |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                           |            |     | 0.3 |       | 0.5   |     | 0.7        | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                       |            |     | 0.3 |       | 0.5   |     | 0.7        | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                     |            |     | 0.9 |       | 1.3   |     | 2.0        | ns   |
| t <sub>FIND</sub> | Programmable delay adder for fast input                                              |            |     | 1.0 |       | 1.5   |     | 1.5        | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                |            |     | 1.5 |       | 2.1   |     | 3.2        | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                              |            |     | 0.4 |       | 0.6   |     | 0.9        | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                    |            |     | 1.4 |       | 2.0   |     | 3.1        | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                            |            |     | 1.2 |       | 1.7   |     | 2.6        | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                         |            |     | 0.1 |       | 0.2   |     | 0.3        | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 V$                  | C1 = 35 pF |     | 0.9 |       | 1.2   |     | 1.8        | ns   |
| t <sub>OD3</sub>  | Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$ | C1 = 35 pF |     | 5.9 |       | 6.2   |     | 6.8        | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$           | C1 = 35 pF |     | 1.6 |       | 2.2   |     | 3.4        | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$  | C1 = 35 pF |     | 6.6 |       | 7.2   |     | 8.4        | ns   |
| t <sub>XZ</sub>   | Output buffer disable delay                                                          | C1 = 5 pF  |     | 1.6 |       | 2.2   |     | 3.4        | ns   |
| t <sub>SU</sub>   | Register setup time                                                                  |            | 0.7 |     | 1.1   |       | 1.6 |            | ns   |
| t <sub>H</sub>    | Register hold time                                                                   |            | 0.4 |     | 0.5   |       | 0.9 |            | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                    |            | 0.8 |     | 0.8   |       | 1.1 |            | ns   |
| t <sub>FH</sub>   | Register hold time of fast input                                                     |            | 1.2 |     | 1.2   |       | 1.4 |            | ns   |
| t <sub>RD</sub>   | Register delay                                                                       |            |     | 0.5 |       | 0.6   |     | 0.9        | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                                  |            |     | 0.2 |       | 0.3   |     | 0.5        | ns   |
| t <sub>IC</sub>   | Array clock delay                                                                    |            |     | 1.2 | l     | 1.8   |     | 2.8        | ns   |
| t <sub>EN</sub>   | Register enable time                                                                 |            |     | 1.2 |       | 1.7   |     | 2.6        | ns   |
| t <sub>GLOB</sub> | Global control delay                                                                 |            |     | 0.7 |       | 1.1   |     | 1.6        | ns   |
| t <sub>PRE</sub>  | Register preset time                                                                 |            |     | 1.0 | l     | 1.3   |     | 1.9        | ns   |
| t <sub>CLR</sub>  | Register clear time                                                                  |            |     | 1.0 | l     | 1.3   |     | 1.9        | ns   |
| t <sub>PIA</sub>  | PIA delay                                                                            | (2)        |     | 0.7 |       | 1.0   |     | 1.4        | ns   |
| t <sub>LPA</sub>  | Low-power adder                                                                      | (4)        |     | 1.5 | 1     | 2.1   |     | 3.2        | ns   |

| Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays       Notes (1) |                                 |      |             |      |     |      |     |    |  |
|--------------------------------------------------------------------------------|---------------------------------|------|-------------|------|-----|------|-----|----|--|
| I/O Standard                                                                   | Parameter                       |      | Speed Grade |      |     |      |     |    |  |
|                                                                                |                                 | -3.5 |             | -5.0 |     | -7.5 |     |    |  |
|                                                                                |                                 | Min  | Max         | Min  | Max | Min  | Max |    |  |
| PCI                                                                            | Input to PIA                    |      | 0.0         |      | 0.0 |      | 0.0 | ns |  |
|                                                                                | Input to global clock and clear |      | 0.0         |      | 0.0 |      | 0.0 | ns |  |
|                                                                                | Input to fast input register    |      | 0.0         |      | 0.0 |      | 0.0 | ns |  |
|                                                                                | All outputs                     |      | 0.0         |      | 0.0 |      | 0.0 | ns |  |

#### Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{ACL}$ ,  $t_{CPPW}$ ,  $t_{EN}$ , and  $t_{SEXP}$  parameters for macrocells running in low-power mode.

| Symbol             | Parameter                                                       | Conditions     |       |     | Speed | Grade |       |     | Unit |
|--------------------|-----------------------------------------------------------------|----------------|-------|-----|-------|-------|-------|-----|------|
|                    |                                                                 |                | -     | 3   | -     | 5     | -     | 7   | 1    |
|                    |                                                                 |                | Min   | Max | Min   | Max   | Min   | Max |      |
| t <sub>PD1</sub>   | Input to non-registered<br>output                               | C1 = 35 pF (2) |       | 3.5 |       | 5.0   |       | 7.5 | ns   |
| t <sub>PD2</sub>   | I/O input to non-registered output                              | C1 = 35 pF (2) |       | 3.5 |       | 5.0   |       | 7.5 | ns   |
| t <sub>SU</sub>    | Global clock setup time                                         | (2)            | 2.1   |     | 3.0   |       | 4.5   |     | ns   |
| t <sub>H</sub>     | Global clock hold time                                          | (2)            | 0.0   |     | 0.0   |       | 0.0   |     | ns   |
| t <sub>FSU</sub>   | Global clock setup time of fast input                           |                | 1.0   |     | 1.0   |       | 1.5   |     | ns   |
| t <sub>FH</sub>    | Global clock hold time of<br>fast input                         |                | 1.0   |     | 1.0   |       | 1.0   |     | ns   |
| t <sub>FZHSU</sub> | Global clock setup time of<br>fast input with zero hold<br>time |                | 2.0   |     | 2.5   |       | 3.0   |     | ns   |
| t <sub>FZHH</sub>  | Global clock hold time of<br>fast input with zero hold<br>time  |                | 0.0   |     | 0.0   |       | 0.0   |     | ns   |
| t <sub>CO1</sub>   | Global clock to output delay                                    | C1 = 35 pF     | 1.0   | 2.4 | 1.0   | 3.4   | 1.0   | 5.0 | ns   |
| t <sub>CH</sub>    | Global clock high time                                          |                | 1.5   |     | 2.0   |       | 3.0   |     | ns   |
| t <sub>CL</sub>    | Global clock low time                                           |                | 1.5   |     | 2.0   |       | 3.0   |     | ns   |
| t <sub>ASU</sub>   | Array clock setup time                                          | (2)            | 0.9   |     | 1.3   |       | 1.9   |     | ns   |
| t <sub>AH</sub>    | Array clock hold time                                           | (2)            | 0.2   |     | 0.3   |       | 0.6   |     | ns   |
| t <sub>ACO1</sub>  | Array clock to output delay                                     | C1 = 35 pF (2) | 1.0   | 3.6 | 1.0   | 5.1   | 1.0   | 7.6 | ns   |
| t <sub>ACH</sub>   | Array clock high time                                           |                | 1.5   |     | 2.0   |       | 3.0   |     | ns   |
| t <sub>ACL</sub>   | Array clock low time                                            |                | 1.5   |     | 2.0   |       | 3.0   |     | ns   |
| t <sub>CPPW</sub>  | Minimum pulse width for<br>clear and preset                     |                | 1.5   |     | 2.0   |       | 3.0   |     | ns   |
| t <sub>CNT</sub>   | Minimum global clock<br>period                                  | (2)            |       | 3.3 |       | 4.7   |       | 7.0 | ns   |
| f <sub>сnт</sub>   | Maximum internal global<br>clock frequency                      | (2), (3)       | 303.0 |     | 212.8 |       | 142.9 |     | MHz  |
| t <sub>acnt</sub>  | Minimum array clock<br>period                                   | (2)            |       | 3.3 |       | 4.7   |       | 7.0 | ns   |
| facnt              | Maximum internal array<br>clock frequency                       | (2), (3)       | 303.0 |     | 212.8 |       | 142.9 |     | MHz  |

| Table 22.         | EPM7064B Internal Timing                                                          | Parameters | Note (      | 1)  |     |     |     |     |      |
|-------------------|-----------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|------|
| Symbol            | Parameter                                                                         | Conditions | Speed Grade |     |     |     |     |     | Unit |
|                   |                                                                                   |            | -           | 3   | -   | 5   | -   | 7   |      |
|                   |                                                                                   |            | Min         | Max | Min | Max | Min | Max |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                        |            |             | 0.3 |     | 0.5 |     | 0.7 | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                    |            |             | 0.3 |     | 0.5 |     | 0.7 | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                  |            |             | 0.9 |     | 1.3 |     | 2.0 | ns   |
| t <sub>FIND</sub> | Programmable delay adder for fast input                                           |            |             | 1.0 |     | 1.5 |     | 1.5 | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                             |            |             | 1.5 |     | 2.1 |     | 3.2 | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                           |            |             | 0.4 |     | 0.6 |     | 0.9 | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                 |            |             | 1.4 |     | 2.0 |     | 3.1 | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                         |            |             | 1.2 |     | 1.7 |     | 2.6 | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                      |            |             | 0.1 |     | 0.2 |     | 0.3 | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$       | C1 = 35 pF |             | 0.9 |     | 1.2 |     | 1.8 | ns   |
| t <sub>OD3</sub>  | Output buffer and pad delay<br>slow slew rate = on<br>$V_{CCIO} = 2.5$ V or 3.3 V | C1 = 35 pF |             | 5.9 |     | 6.2 |     | 6.8 | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$                | C1 = 35 pF |             | 1.6 |     | 2.2 |     | 3.4 | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay<br>slow slew rate = on<br>$V_{CCIO} = 2.5$ V or 3.3 V  | C1 = 35 pF |             | 6.6 |     | 7.2 |     | 8.4 | ns   |
| t <sub>XZ</sub>   | Output buffer disable delay                                                       | C1 = 5 pF  |             | 1.6 |     | 2.2 |     | 3.4 | ns   |
| t <sub>SU</sub>   | Register setup time                                                               |            | 0.7         |     | 1.1 |     | 1.6 |     | ns   |
| t <sub>H</sub>    | Register hold time                                                                |            | 0.4         |     | 0.5 |     | 0.9 |     | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                 |            | 0.8         |     | 0.8 |     | 1.1 |     | ns   |
| t <sub>FH</sub>   | Register hold time of fast input                                                  |            | 1.2         |     | 1.2 |     | 1.4 |     | ns   |
| t <sub>RD</sub>   | Register delay                                                                    |            |             | 0.5 |     | 0.6 |     | 0.9 | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                               |            |             | 0.2 |     | 0.3 |     | 0.5 | ns   |
| t <sub>IC</sub>   | Array clock delay                                                                 |            |             | 1.2 |     | 1.8 |     | 2.8 | ns   |
| t <sub>EN</sub>   | Register enable time                                                              |            |             | 1.2 |     | 1.7 |     | 2.6 | ns   |
| t <sub>GLOB</sub> | Global control delay                                                              |            |             | 0.7 |     | 1.1 |     | 1.6 | ns   |
| t <sub>PRE</sub>  | Register preset time                                                              |            |             | 1.0 |     | 1.3 |     | 1.9 | ns   |
| t <sub>CLR</sub>  | Register clear time                                                               |            |             | 1.0 |     | 1.3 |     | 1.9 | ns   |
| t <sub>PIA</sub>  | PIA delay                                                                         | (2)        |             | 0.7 |     | 1.0 |     | 1.4 | ns   |
| t <sub>LPA</sub>  | Low-power adder                                                                   | (4)        |             | 1.5 |     | 2.1 |     | 3.2 | ns   |

| Table 23. EPM7064B Selectable I/O Standard Timing Adder Delays (Part 2 of 2)       Note (1) |                                 |             |     |     |     |     |     |      |  |
|---------------------------------------------------------------------------------------------|---------------------------------|-------------|-----|-----|-----|-----|-----|------|--|
| I/O Standard                                                                                | Parameter                       | Speed Grade |     |     |     |     |     | Unit |  |
|                                                                                             |                                 | -3          |     | -5  |     | -7  |     |      |  |
|                                                                                             |                                 | Min         | Max | Min | Max | Min | Max |      |  |
| PCI                                                                                         | Input to PIA                    |             | 0.0 |     | 0.0 |     | 0.0 | ns   |  |
|                                                                                             | Input to global clock and clear |             | 0.0 |     | 0.0 |     | 0.0 | ns   |  |
|                                                                                             | Input to fast input register    |             | 0.0 |     | 0.0 |     | 0.0 | ns   |  |
|                                                                                             | All outputs                     |             | 0.0 |     | 0.0 |     | 0.0 | ns   |  |

#### Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{ACL}$ ,  $t_{CPPW}$ ,  $t_{EN}$ , and  $t_{SEXP}$  parameters for macrocells running in low-power mode.

| Symbol            | Parameter                                                       | Conditions     |       | Speed Grade |       |     |      |      |     |  |
|-------------------|-----------------------------------------------------------------|----------------|-------|-------------|-------|-----|------|------|-----|--|
|                   |                                                                 |                | -     | 5           | -7    |     | -10  |      | 1   |  |
|                   |                                                                 |                | Min   | Max         | Min   | Max | Min  | Max  |     |  |
| t <sub>PD1</sub>  | Input to non-registered<br>output                               | C1 = 35 pF (2) |       | 5.5         |       | 7.5 |      | 10.0 | ns  |  |
| t <sub>PD2</sub>  | I/O input to non-registered output                              | C1 = 35 pF (2) |       | 5.5         |       | 7.5 |      | 10.0 | ns  |  |
| t <sub>SU</sub>   | Global clock setup time                                         | (2)            | 3.6   |             | 4.9   |     | 6.5  |      | ns  |  |
| t <sub>H</sub>    | Global clock hold time                                          | (2)            | 0.0   |             | 0.0   |     | 0.0  |      | ns  |  |
| t <sub>FSU</sub>  | Global clock setup time of fast input                           |                | 1.0   |             | 1.5   |     | 1.5  |      | ns  |  |
| t <sub>FH</sub>   | Global clock hold time of<br>fast input                         |                | 1.0   |             | 1.0   |     | 1.0  |      | ns  |  |
| tfzhsu            | Global clock setup time of<br>fast input with zero hold<br>time |                | 2.5   |             | 3.0   |     | 3.0  |      | ns  |  |
| t <sub>FZHH</sub> | Global clock hold time of<br>fast input with zero hold<br>time  |                | 0.0   |             | 0.0   |     | 0.0  |      | ns  |  |
| t <sub>CO1</sub>  | Global clock to output delay                                    | C1 = 35 pF     | 1.0   | 3.7         | 1.0   | 5.0 | 1.0  | 6.7  | ns  |  |
| t <sub>CH</sub>   | Global clock high time                                          |                | 3.0   |             | 3.0   |     | 4.0  |      | ns  |  |
| t <sub>CL</sub>   | Global clock low time                                           |                | 3.0   |             | 3.0   |     | 4.0  |      | ns  |  |
| t <sub>ASU</sub>  | Array clock setup time                                          | (2)            | 1.4   |             | 1.9   |     | 2.5  |      | ns  |  |
| t <sub>AH</sub>   | Array clock hold time                                           | (2)            | 0.5   |             | 0.6   |     | 0.8  |      | ns  |  |
| t <sub>ACO1</sub> | Array clock to output delay                                     | C1 = 35 pF (2) | 1.0   | 5.9         | 1.0   | 8.0 | 1.0  | 10.7 | ns  |  |
| t <sub>ACH</sub>  | Array clock high time                                           |                | 3.0   |             | 3.0   |     | 4.0  |      | ns  |  |
| t <sub>ACL</sub>  | Array clock low time                                            |                | 3.0   |             | 3.0   |     | 4.0  |      | ns  |  |
| t <sub>CPPW</sub> | Minimum pulse width for<br>clear and preset                     |                | 3.0   |             | 3.0   |     | 4.0  |      | ns  |  |
| t <sub>CNT</sub>  | Minimum global clock<br>period                                  | (2)            |       | 6.1         |       | 8.4 |      | 11.1 | ns  |  |
| f <sub>CNT</sub>  | Maximum internal global<br>clock frequency                      | (2), (3)       | 163.9 |             | 119.0 |     | 90.1 |      | MHz |  |
| t <sub>acnt</sub> | Minimum array clock<br>period                                   | (2)            |       | 6.1         |       | 8.4 |      | 11.1 | ns  |  |
| facnt             | Maximum internal array clock frequency                          | (2), (3)       | 163.9 |             | 119.0 |     | 90.1 |      | MHz |  |

| I/O Standard    | Parameter                       | Speed Grade |      |     |      |     |      |    |
|-----------------|---------------------------------|-------------|------|-----|------|-----|------|----|
|                 |                                 | -5          |      | -7  |      | -10 |      |    |
|                 |                                 | Min         | Max  | Min | Max  | Min | Max  | 1  |
| 3.3 V TTL/CMOS  | Input to PIA                    |             | 0.0  |     | 0.0  |     | 0.0  | ns |
|                 | Input to global clock and clear |             | 0.0  |     | 0.0  |     | 0.0  | ns |
|                 | Input to fast input register    |             | 0.0  |     | 0.0  |     | 0.0  | ns |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns |
| 2.5 V TTL/CMOS  | Input to PIA                    |             | 0.4  |     | 0.5  |     | 0.7  | ns |
|                 | Input to global clock and clear |             | 0.3  |     | 0.4  |     | 0.5  | ns |
|                 | Input to fast input register    |             | 0.2  |     | 0.3  |     | 0.3  | ns |
|                 | All outputs                     |             | 0.2  |     | 0.3  |     | 0.3  | ns |
| 1.8 V TTL/CMOS  | Input to PIA                    |             | 0.7  |     | 1.0  |     | 1.3  | ns |
|                 | Input to global clock and clear |             | 0.6  |     | 0.8  |     | 1.0  | ns |
|                 | Input to fast input register    |             | 0.5  |     | 0.6  |     | 0.8  | ns |
|                 | All outputs                     |             | 1.3  |     | 1.8  |     | 2.3  | ns |
| SSTL-2 Class I  | Input to PIA                    |             | 1.5  |     | 2.0  |     | 2.7  | ns |
|                 | Input to global clock and clear |             | 1.4  |     | 1.9  |     | 2.5  | ns |
|                 | Input to fast input register    |             | 1.1  |     | 1.5  |     | 2.0  | ns |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns |
| SSTL-2 Class II | Input to PIA                    |             | 1.5  |     | 2.0  |     | 2.7  | ns |
|                 | Input to global clock and clear |             | 1.4  |     | 1.9  |     | 2.5  | ns |
|                 | Input to fast input register    |             | 1.1  |     | 1.5  |     | 2.0  | ns |
|                 | All outputs                     |             | -0.1 |     | -0.1 |     | -0.2 | ns |
| SSTL-3 Class I  | Input to PIA                    |             | 1.4  |     | 1.9  |     | 2.5  | ns |
|                 | Input to global clock and clear |             | 1.2  |     | 1.6  |     | 2.2  | ns |
|                 | Input to fast input register    |             | 1.0  |     | 1.4  |     | 1.8  | ns |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns |
| SSTL-3 Class II | Input to PIA                    |             | 1.4  |     | 1.9  |     | 2.5  | ns |
|                 | Input to global clock and clear |             | 1.2  |     | 1.6  |     | 2.2  | ns |
|                 | Input to fast input register    |             | 1.0  |     | 1.4  |     | 1.8  | ns |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns |
| GTL+            | Input to PIA                    |             | 1.8  |     | 2.5  |     | 3.3  | ns |
|                 | Input to global clock and clear |             | 1.9  |     | 2.6  |     | 3.5  | ns |
|                 | Input to fast input register    |             | 1.8  |     | 2.5  |     | 3.3  | ns |
|                 | All outputs                     |             | 0.0  |     | 0.0  |     | 0.0  | ns |

#### Figure 23. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.



Figure 24. 100-Pin FineLine BGA Package Pin-Out Diagram





Package outline not drawn to scale.



Figure 26. 169-Pin Ultra FineLine BGA Pin-Out Diagram

Package outline not drawn to scale.



A1 Ball