Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 5.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LBGA | | Supplier Device Package | 100-FBGA (11x11) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256bfc100-5 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 3. MAX | 7000B | Maximu | m User i | I/O Pins | Note (| (1) | | | | | | |--------------|----------------|----------------|-----------------------|--|---------------------|--------------------------------|---------------------|---|---------------------|--------------------|--------------------------------| | Device | 44-Pin
PLCC | 44-Pin
TQFP | 48-Pin
TQFP
(2) | 49-Pin
0.8-mm
Ultra
FineLine
BGA (3) | 100-
Pin
TQFP | 100-Pin
FineLine
BGA (4) | 144-
Pin
TQFP | 169-Pin
0.8-mm
Ultra
FineLine
BGA (3) | 208-
Pin
PQFP | 256-
Pin
BGA | 256-Pin
FineLine
BGA (4) | | EPM7032B | 36 | 36 | 36 | 36 | | | | | | | | | EPM7064B | 36 | 36 | 40 | 41 | 68 | 68 | | | | | | | EPM7128B | | | | 41 | 84 | 84 | 100 | 100 | | | 100 | | EPM7256B | | | | | 84 | | 120 | 141 | 164 | | 164 | | EPM7512B | | | | | | | 120 | 141 | 176 | 212 | 212 | #### Notes: - When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins. - (2) Contact Altera for up-to-date information on available device package options. - (3) All 0.8-mm Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details. - (4) All FineLine BGA packages are footprint-compatible via the SameFrame pin-out feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 14 for more details. MAX 7000B devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000B architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000B devices contain 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. # **Macrocells** The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell. Figure 2. MAX 7000B Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells # **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000B architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. # Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells. Figure 3. MAX 7000B Shareable Expanders Shareable expanders can be shared by any or all macrocells in an LAB. Altera Corporation 9 16 Shared Expanders 36 Signals from PIA # Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The Altera Compiler can automatically allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8, and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell. Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode. Figure 10 shows a block diagram of the bus-hold circuit. Figure 10. Bus-Hold Circuit # PCI Compatibility MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications. | Table 13. MAX 70
Specifications | 00B Device Speed Grades tha | t Meet PCI Timing | |------------------------------------|-----------------------------|-------------------| | Device | Specif | ication | | | 33-MHz PCI | 66-MHz PCI | | EPM7032B | All speed grades | -3 | | EPM7064B | All speed grades | -3 | | EPM7128B | All speed grades | -4 | | EPM7256B | All speed grades | -5 (1) | | EPM7512B | All speed grades | -5 (1) | #### Note: (1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications. ## Figure 14. MAX 7000B Switching Waveforms #### **Global Clock Mode** #### **Array Clock Mode** Tables 18 through 32 show MAX 7000B device timing parameters. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |--------------------|-----------------------------------------------------------|----------------|-------|-----|-------|-------|-------|-----|------| | | | | -3 | .5 | -5 | .0 | -7 | .5 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 3.5 | | 5.0 | | 7.5 | ns | | t _{SU} | Global clock setup time | (2) | 2.1 | | 3.0 | | 4.5 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.0 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{FZHSU} | Global clock setup time of fast input with zero hold time | | 2.0 | | 2.5 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 2.4 | 1.0 | 3.4 | 1.0 | 5.0 | ns | | t _{CH} | Global clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CL} | Global clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 0.9 | | 1.3 | | 1.9 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 3.6 | 1.0 | 5.1 | 1.0 | 7.6 | ns | | t _{ACH} | Array clock high time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{ACL} | Array clock low time | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 1.5 | | 2.0 | | 3.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 3.3 | | 4.7 | | 7.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 303.0 | | 212.8 | | 142.9 | | MHz | | Table 19. | EPM7032B Internal Timing I | Parameters | Notes | (1) | | | | | | |-------------------|------------------------------------------------------------------------------------|------------|-------|-----|-------|-------|-----|-------------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | -3 | .5 | -5 | i.0 | -7 | 7. 5 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t _{FIN} | Fast input delay | | | 0.9 | | 1.3 | | 2.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.0 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 3.2 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.4 | | 2.0 | | 3.1 | ns | | t _{LAC} | Logic control array delay | | | 1.2 | | 1.7 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.8 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.8 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.6 | | 7.2 | | 8.4 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t_{SU} | Register setup time | | 0.7 | | 1.1 | | 1.6 | | ns | | t_H | Register hold time | | 0.4 | | 0.5 | | 0.9 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 0.8 | | 1.1 | | ns | | t _{FH} | Register hold time of fast input | | 1.2 | | 1.2 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.6 | | 0.9 | ns | | t _{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.5 | ns | | t _{IC} | Array clock delay | | | 1.2 | | 1.8 | | 2.8 | ns | | t _{EN} | Register enable time | | | 1.2 | | 1.7 | | 2.6 | ns | | t _{GLOB} | Global control delay | | | 0.7 | | 1.1 | | 1.6 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.3 | | 1.9 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.3 | | 1.9 | ns | | t _{PIA} | PIA delay | (2) | | 0.7 | | 1.0 | | 1.4 | ns | | t_{LPA} | Low-power adder | (4) | | 1.5 | | 2.1 | | 3.2 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | 3 | - | 5 | - | 7 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.5 | | 0.7 | ns | | t _{FIN} | Fast input delay | | | 0.9 | | 1.3 | | 2.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.0 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 3.2 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.6 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.4 | | 2.0 | | 3.1 | ns | | t_{LAC} | Logic control array delay | | | 1.2 | | 1.7 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.3 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.8 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.8 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.6 | | 7.2 | | 8.4 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 1.6 | | 2.2 | | 3.4 | ns | | t_{SU} | Register setup time | | 0.7 | | 1.1 | | 1.6 | | ns | | t_H | Register hold time | | 0.4 | | 0.5 | | 0.9 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 0.8 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.2 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.6 | | 0.9 | ns | | t_{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.5 | ns | | t _{IC} | Array clock delay | | İ | 1.2 | | 1.8 | | 2.8 | ns | | t_{EN} | Register enable time | | İ | 1.2 | | 1.7 | | 2.6 | ns | | t_{GLOB} | Global control delay | | İ | 0.7 | | 1.1 | | 1.6 | ns | | t_{PRE} | Register preset time | | | 1.0 | | 1.3 | | 1.9 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.3 | | 1.9 | ns | | t_{PIA} | PIA delay | (2) | | 0.7 | | 1.0 | | 1.4 | ns | | t_{LPA} | Low-power adder | (4) | | 1.5 | | 2.1 | | 3.2 | ns | | Table 26. EPM7128 | 3 Selectable I/O Standard Timing | Adder L | Delays | (Part 2 | of 2) | Note (1) | | | | |-------------------|----------------------------------|-------------|--------|---------|-------|----------|-----|----|--| | I/O Standard | Parameter | Speed Grade | | | | | | | | | | | - | 4 | - | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | I/O Standard | Parameter | | | Speed | Grade | | | Unit | |-----------------|---------------------------------|-----|------|-------|-------|-----|------|------| | | | - | 5 | - | 7 | | 10 | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.4 | | 0.6 | | 0.8 | ns | | | Input to global clock and clear | | 0.3 | | 0.5 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to global clock and clear | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to fast input register | | 0.5 | | 0.8 | | 1.0 | ns | | | All outputs | | 1.3 | | 2.0 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | -0.1 | | -0.2 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to global clock and clear | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to fast input register | | 1.7 | | 2.6 | | 3.4 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Table 29. EPM7256B | Selectable I/O Standard Timing | Adder E | Delays | (Part 2 | of 2) | Note (1) |) | | | | |--------------------|---------------------------------|---------------|--------|---------|-------|----------|-----|----|--|--| | I/O Standard | Parameter | Speed Grade U | | | | | | | | | | | | - | 5 | - | 7 | -1 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |--------------------|-----------------------------------------------------------|----------------|-------|-----|-------|-------|------|------|------| | | | | - | 5 | | 7 | - | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 5.5 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 5.5 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.6 | | 4.9 | | 6.5 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Global clock hold time of fast input | | 1.0 | | 1.0 | | 1.0 | | ns | | ^t FZHSU | Global clock setup time of fast input with zero hold time | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FZHH} | Global clock hold time of fast input with zero hold time | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.7 | 1.0 | 5.0 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.4 | | 1.9 | | 2.5 | | ns | | t _{AH} | Array clock hold time | (2) | 0.5 | | 0.6 | | 0.8 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 5.9 | 1.0 | 8.0 | 1.0 | 10.7 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | | 3.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 6.1 | | 8.4 | | 11.1 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (3) | 163.9 | | 119.0 | | 90.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 6.1 | | 8.4 | | 11.1 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (3) | 163.9 | | 119.0 | | 90.1 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|------------------------------------------------------------------------------------|------------|-----|-----|-------|-------|-----|------|------| | | | | - | 5 | - | 7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.3 | | 0.3 | | 0.5 | ns | | t _{FIN} | Fast input delay | | | 2.2 | | 3.2 | | 4.0 | ns | | t _{FIND} | Programmable delay adder for fast input | | | 1.5 | | 1.5 | | 1.5 | ns | | t _{SEXP} | Shared expander delay | | | 1.5 | | 2.1 | | 2.7 | ns | | t _{PEXP} | Parallel expander delay | _ | | 0.4 | | 0.5 | | 0.7 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.3 | | 3.0 | ns | | t _{LAC} | Logic control array delay | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{IOE} | Internal output enable delay | | | 0.1 | | 0.2 | | 0.2 | ns | | t _{OD1} | Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t _{OD3} | Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t _{ZX3} | Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 7.8 | | 8.8 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.8 | | 3.8 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.5 | | 2.0 | | 2.6 | | ns | | t _H | Register hold time | | 0.4 | | 0.5 | | 0.7 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | ns | | t_{FH} | Register hold time of fast input | | 1.2 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.5 | | 0.7 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.2 | | 0.3 | | 0.4 | ns | | t _{IC} | Array clock delay | | | 1.8 | | 2.4 | | 3.1 | ns | | t_{EN} | Register enable time | | | 1.5 | | 2.0 | | 2.6 | ns | | t _{GLOB} | Global control delay | | | 2.0 | | 2.8 | | 3.6 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.9 | ns | | t_{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.9 | ns | | t _{PIA} | PIA delay | (2) | | 2.4 | | 3.4 | | 4.5 | ns | | t_{LPA} | Low-power adder | (4) | | 2.0 | | 2.7 | | 3.6 | ns | | I/O Standard | Parameter | | | Speed | Grade | | | Unit | |-----------------|---------------------------------|-----|------|-------|-------|-----|------|------| | | | - | 5 | - | 7 | -1 | 10 | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.4 | | 0.5 | | 0.7 | ns | | | Input to global clock and clear | | 0.3 | | 0.4 | | 0.5 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.3 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.3 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.7 | | 1.0 | | 1.3 | ns | | | Input to global clock and clear | | 0.6 | | 0.8 | | 1.0 | ns | | | Input to fast input register | | 0.5 | | 0.6 | | 0.8 | ns | | | All outputs | | 1.3 | | 1.8 | | 2.3 | ns | | SSTL-2 Class I | Input to PIA | | 1.5 | | 2.0 | | 2.7 | ns | | | Input to global clock and clear | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 1.1 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.5 | | 2.0 | | 2.7 | ns | | | Input to global clock and clear | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 1.1 | | 1.5 | | 2.0 | ns | | | All outputs | | -0.1 | | -0.1 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to global clock and clear | | 1.2 | | 1.6 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.4 | | 1.8 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.4 | | 1.9 | | 2.5 | ns | | | Input to global clock and clear | | 1.2 | | 1.6 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.4 | | 1.8 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.8 | | 2.5 | | 3.3 | ns | | | Input to global clock and clear | | 1.9 | | 2.6 | | 3.5 | ns | | | Input to fast input register | | 1.8 | | 2.5 | | 3.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | Figure 15. I_{CC} vs. Frequency for EPM7032B Devices Figure 19. I_{CC} vs. Frequency for EPM7512B Devices Figure 23. 100-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 24. 100-Pin FineLine BGA Package Pin-Out Diagram Figure 27. 208-Pin PQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 29. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the MAX 7000B Programmable Logic Device Family Data Sheet version 3.5 supersedes information published in previous versions. ## Version 3.5 The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.5: Updated Figure 28. ## Version 3.4 The following changes were made to the MAX 7000B Programmable Logic Device Family Data Sheet version 3.4: ■ Updated text in the "Power Sequencing & Hot-Socketing" section.