Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 2.375V ~ 2.625V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LBGA | | Supplier Device Package | 100-FBGA (11x11) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256bfc100-7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems. MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000B architecture includes the following elements: - LABs - Macrocells - Expander product terms (shareable and parallel) - PIA - I/O control blocks The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. ## **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ### Programming a Single MAX 7000B Device The time required to program a single MAX 7000B device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: $t_{PROG} = \text{Programming time}$ $t_{PPULSE} = \text{Sum of the fixed times to erase, program, and}$ verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000B device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: $t_{VER}$ = Verify time $t_{VPULSE}$ = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The instruction register length of MAX 7000B devices is ten bits. The MAX 7000B USERCODE register length is 32 bits. Tables 7 and 8 show the boundary-scan register length and device IDCODE information for MAX 7000B devices. | Table 7. MAX 7000B Boundary-Scan Register Length | | | | | | | | |--------------------------------------------------|-----|--|--|--|--|--|--| | Device Boundary-Scan Register Length | | | | | | | | | EPM7032B | 96 | | | | | | | | EPM7064B | 192 | | | | | | | | EPM7128B | 288 | | | | | | | | EPM7256B | 480 | | | | | | | | EPM7512B | 624 | | | | | | | | Table 8. 32-Bit MAX 7000B Device IDCODENote (1) | | | | | | | | | |-------------------------------------------------|---------------------|-----------------------|--------------------------------------|------------------|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | Version<br>(4 Bits) | Part Number (16 Bits) | Manufacturer's<br>Identity (11 Bits) | 1 (1 Bit)<br>(2) | | | | | | EPM7032B | 0010 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | EPM7064B | 0010 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | EPM7128B | 0010 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | EPM7256B | 0010 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | EPM7512B | 0010 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG boundary-scan testing. Figure 8 shows the timing information for the JTAG signals. Figure 8. MAX 7000B JTAG Waveforms Table 9 shows the JTAG timing parameters and values for MAX 7000B devices. | <b>Table 9.</b> Note (1) | JTAG Timing Parameters & Values for MAX 70 | 100B Dev | ices | | |--------------------------|------------------------------------------------|----------|------|------| | Symbol | Parameter | Min | Max | Unit | | t <sub>JCP</sub> | TCK clock period | 100 | | ns | | t <sub>JCH</sub> | TCK clock high time | 50 | | ns | | t <sub>JCL</sub> | TCK clock low time | 50 | | ns | | t <sub>JPSU</sub> | JTAG port setup time | 20 | | ns | | t <sub>JPH</sub> | JTAG port hold time | 45 | | ns | | t <sub>JPCO</sub> | JTAG port clock to output | | 25 | ns | | t <sub>JPZX</sub> | JTAG port high impedance to valid output | | 25 | ns | | t <sub>JPXZ</sub> | JTAG port valid output to high impedance | | 25 | ns | | t <sub>JSSU</sub> | Capture register setup time | 20 | | ns | | t <sub>JSH</sub> | Capture register hold time | 45 | | ns | | t <sub>JSCO</sub> | Update register clock to output | | 25 | ns | | t <sub>JSZX</sub> | Update register high impedance to valid output | | 25 | ns | | t <sub>JSXZ</sub> | Update register valid output to high impedance | | 25 | ns | #### Note: (1) Timing parameters in this table apply to all $V_{\mbox{\scriptsize CCIO}}$ levels. ## Programmable Speed/Power Control MAX 7000B devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000B device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder ( $t_{LPA}$ ) for the $t_{LAD}$ , $t_{LAC}$ , $t_{IC}$ , $t_{ACL}$ , $t_{CPPW}$ , $t_{EN}$ , and $t_{SEXP}$ parameters. # Output Configuration MAX 7000B device outputs can be programmed to meet a variety of system-level requirements. #### MultiVolt I/O Interface The MAX 7000B device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000B devices to connect to systems with differing supply voltages. MAX 7000B devices in all packages can be set for 3.3-V, 2.5-V, or 1.8-V pin operation. These devices have one set of $\rm V_{CC}$ pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3-V, 2.5-V, or 1.8-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels of 2.5 V or 1.8 V incur a nominal timing delay adder. Table 10 describes the MAX 7000B MultiVolt I/O support. | Table 10. MAX 7000B MultiVolt I/O Support | | | | | | | | | | |-------------------------------------------|--------------------------|----------|----------|-----|----------|-------------------|----------|----------|--| | V <sub>CCIO</sub> (V) | CIO (V) Input Signal (V) | | | | | Output Signal (V) | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | | 1.8 | <b>✓</b> | <b>✓</b> | <b>✓</b> | | <b>✓</b> | | | | | | 2.5 | <b>✓</b> | <b>✓</b> | <b>✓</b> | | | <b>✓</b> | | | | | 3.3 | <b>✓</b> | <b>✓</b> | <b>✓</b> | | | | <b>✓</b> | <b>✓</b> | | ## **Open-Drain Output Option** MAX 7000B devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. ## **Programmable Ground Pins** Each unused I/O pin on MAX 7000B devices may be used as an additional ground pin. This programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic. #### Slew-Rate Control The output buffer for each MAX 7000B I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal. ## Advanced I/O Standard Support The MAX 7000B I/O pins support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, GTL+, SSTL-3 Class I and II, and SSTL-2 Class I and II. MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported. Figure 9 shows the arrangement of the MAX 7000B I/O banks. Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards Table 11 shows which macrocells have pins in each I/O bank. | Table 11. Macrocell Pins Contained in Each I/O Bank | | | | | | | |-----------------------------------------------------|----------------|------------------|--|--|--|--| | Device Bank 1 Bank 2 | | | | | | | | EPM7032B | 1-16 | 17-32 | | | | | | EPM7064B | 1-32 | 33-64 | | | | | | EPM7128B | 1-64 | 65-128 | | | | | | EPM7256B | 1-128, 177-181 | 129-176, 182-256 | | | | | | EPM7512B | 1-265 | 266-512 | | | | | Each MAX 7000B device has two VREF pins. Each can be set to a separate $V_{REF}$ level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins. ## **Programmable Pull-Up Resistor** Each MAX 7000B device I/O pin provides an optional programmable pull-up resistor during user mode. When this feature is enabled for an I/O pin, the pull-up resistor (typically 50 k¾) weakly holds the output to $V_{\rm CCIO}$ level. ## **Bus Hold** Each MAX 7000B device I/O pin provides an optional bus-hold feature. When this feature is enabled for an I/O pin, the bus-hold circuitry weakly holds the signal at its last driven state. By holding the last driven state of the pin until the next input signals is present, the bus-hold feature can eliminate the need to add external pull-up or pull-down resistors to hold a signal level when the bus is tri-stated. The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. This feature can be selected individually for each I/O pin. The bus-hold output will drive no higher than $V_{\rm CCIO}$ to prevent overdriving signals. The propagation delays through the input and output buffers in MAX 7000B devices are not affected by whether the bus-hold feature is enabled or disabled. The bus-hold circuitry weakly pulls the signal level to the last driven state through a resistor with a nominal resistance ( $R_{BH}$ ) of approximately 8.5 k¾. Table 12 gives specific sustaining current that will be driven through this resistor and overdrive current that will identify the next driven input level. This information is provided for each VCCIO voltage level. | Table 12. Bus Hold Parameters | | | | | | | | | |-------------------------------|---------------------------------------------------------------|-------------|------|-------|-------|-----|------|----| | Parameter | Conditions | | | | Units | | | | | | | 1.8 V 2.5 V | | 3.3 V | | | | | | | | Min | Max | Min | Max | Min | Max | | | Low sustaining current | $V_{IN} > V_{IL} (max)$ | 30 | | 50 | | 70 | | μΑ | | High sustaining current | V <sub>IN</sub> < V <sub>IH</sub> (min) | -30 | | -50 | | -70 | | μΑ | | Low overdrive current | 0 V < V <sub>IN</sub> < V <sub>CCIO</sub> | | 200 | | 300 | | 500 | μΑ | | High overdrive current | $0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$ | | -295 | | -435 | | -680 | μΑ | The bus-hold circuitry is active only during user operation. At power-up, the bus-hold circuit initializes its initial hold value as $V_{CC}$ approaches the recommended operation conditions. When transitioning from ISP to User Mode with bus hold enabled, the bus-hold circuit captures the value present on the pin at the end of programming. Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode. Figure 10 shows a block diagram of the bus-hold circuit. Figure 10. Bus-Hold Circuit ## PCI Compatibility MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications. | Table 13. MAX 7000B Device Speed Grades that Meet PCI Timing<br>Specifications | | | | | | | | |--------------------------------------------------------------------------------|------------------|------------|--|--|--|--|--| | Device Specification | | | | | | | | | | 33-MHz PCI | 66-MHz PCI | | | | | | | EPM7032B | All speed grades | -3 | | | | | | | EPM7064B | All speed grades | -3 | | | | | | | EPM7128B | All speed grades | -4 | | | | | | | EPM7256B | All speed grades | -5 (1) | | | | | | | EPM7512B | All speed grades | -5 (1) | | | | | | #### Note: (1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications. ### Figure 11. MAX 7000B AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. Switches S1 and S2 are open for all tests except output disable timing parameters. ## Operating Conditions Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices. | Table 1 | Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1) | | | | | | | | | |--------------------|--------------------------------------------------------------|------------|------|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V <sub>CCINT</sub> | Supply voltage | | -0.5 | 3.6 | V | | | | | | V <sub>CCIO</sub> | Supply voltage | | -0.5 | 3.6 | V | | | | | | VI | DC input voltage | (2) | -2.0 | 4.6 | V | | | | | | I <sub>OUT</sub> | DC output current, per pin | | -33 | 50 | mA | | | | | | T <sub>STG</sub> | Storage temperature | No bias | -65 | 150 | °C | | | | | | T <sub>A</sub> | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | $T_{J}$ | Junction temperature | Under bias | -65 | 135 | ° C | | | | | | Table 1 | Table 15. MAX 7000B Device Recommended Operating Conditions | | | | | | | | | |--------------------|-------------------------------------------------------------|-------------------------|-------|-------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V <sub>CCINT</sub> | Supply voltage for internal logic and input buffers | (10) | 2.375 | 2.625 | V | | | | | | V <sub>CCIO</sub> | Supply voltage for output drivers, 3.3-V operation | | 3.0 | 3.6 | V | | | | | | | Supply voltage for output drivers, 2.5-V operation | | 2.375 | 2.625 | V | | | | | | | Supply voltage for output drivers, 1.8-V operation | | 1.71 | 1.89 | V | | | | | | V <sub>CCISP</sub> | Supply voltage during in-system programming | | 2.375 | 2.625 | V | | | | | | VI | Input voltage | (3) | -0.5 | 3.9 | V | | | | | | Vo | Output voltage | | 0 | V <sub>CCIO</sub> | V | | | | | | T <sub>A</sub> | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | | For industrial use (11) | -40 | 85 | ° C | | | | | | TJ | Junction temperature | For commercial use | 0 | 90 | ° C | | | | | | | | For industrial use (11) | -40 | 105 | ° C | | | | | | t <sub>R</sub> | Input rise time | | | 40 | ns | | | | | | t <sub>F</sub> | Input fall time | | | 40 | ns | | | | | Figure 12 shows the typical output drive characteristics of MAX 7000B devices. Figure 12. Output Drive Characteristics of MAX 7000B Devices | I/O Standard | Parameter | Speed Grade | | | | | | Unit | |-----------------|---------------------------------|-------------|------|-----|------|-----|------------|------| | | | -3 | 3.5 | -5 | i.0 | -7 | <b>'.5</b> | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to (PIA) | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to global clock and clear | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.5 | | 0.8 | | 1.1 | ns | | | Input to global clock and clear | | 0.5 | | 0.8 | | 1.1 | ns | | | Input to fast input register | | 0.4 | | 0.5 | | 0.8 | ns | | | All outputs | | 1.2 | | 1.8 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | -0.1 | | -0.1 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.2 | | 1.8 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to global clock and clear | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to fast input register | | 1.5 | | 2.1 | | 3.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | I/O Standard | Parameter | Speed Grade | | | | | Unit | | |-----------------|---------------------------------|-------------|------|-----|------|-----|------|----| | | | - | 3 | - | ·5 | -7 | | - | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to global clock and clear | | 0.3 | | 0.4 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.5 | | 0.7 | | 1.1 | ns | | | Input to global clock and clear | | 0.5 | | 0.7 | | 1.1 | ns | | | Input to fast input register | | 0.4 | | 0.6 | | 0.9 | ns | | | All outputs | | 1.2 | | 1.7 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.7 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.3 | | 1.9 | | 2.8 | ns | | | Input to global clock and clear | | 1.2 | | 1.7 | | 2.6 | ns | | | Input to fast input register | | 0.9 | | 1.3 | | 1.9 | ns | | | All outputs | | -0.1 | | -0.1 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.2 | | 1.7 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.2 | | 1.7 | | 2.6 | ns | | | Input to global clock and clear | | 0.9 | | 1.3 | | 1.9 | ns | | | Input to fast input register | | 0.8 | | 1.1 | | 1.7 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to global clock and clear | | 1.6 | | 2.3 | | 3.4 | ns | | | Input to fast input register | | 1.5 | | 2.1 | | 3.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Table 23. EPM7064B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------|-------------|-----|-------|-----|-----|-----|------|--| | I/O Standard | Parameter | Speed Grade | | | | | | Unit | | | | | -3 | | -3 -5 | | -7 | | | | | | | Min | Max | Min | Max | Min | Max | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of all LABs. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The $t_{LPA}$ parameter must be added to the $t_{LAD}$ , $t_{LAC}$ , $t_{IC}$ , $t_{ACL}$ , $t_{CPPW}$ , $t_{EN}$ , and $t_{SEXP}$ parameters for macrocells running in low-power mode. | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 1 of 2) Note (1) | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------|-------------|------|-----|------|-----|------|----| | I/O Standard | Parameter | Speed Grade | | | | | | | | | | -4 | | -7 | | -10 | | | | | | Min | Max | Min | Max | Min | Max | | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.3 | | 0.6 | | 0.8 | ns | | | Input to global clock and clear | | 0.3 | | 0.6 | | 0.8 | ns | | | Input to fast input register | | 0.2 | | 0.4 | | 0.5 | ns | | | All outputs | | 0.2 | | 0.4 | | 0.5 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.5 | | 0.9 | | 1.3 | ns | | | Input to global clock and clear | | 0.5 | | 0.9 | | 1.3 | ns | | | Input to fast input register | | 0.4 | | 0.8 | | 1.0 | ns | | | All outputs | | 1.2 | | 2.3 | | 3.0 | ns | | SSTL-2 Class I | Input to PIA | | 1.4 | | 2.6 | | 3.5 | ns | | | Input to global clock and clear | | 1.2 | | 2.3 | | 3.0 | ns | | | Input to fast input register | | 1.0 | | 1.9 | | 2.5 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.4 | | 2.6 | | 3.5 | ns | | | Input to global clock and clear | | 1.2 | | 2.3 | | 3.0 | ns | | | Input to fast input register | | 1.0 | | 1.9 | | 2.5 | ns | | | All outputs | | -0.1 | | -0.2 | | -0.3 | ns | | SSTL-3 Class I | Input to PIA | | 1.3 | | 2.4 | | 3.3 | ns | | | Input to global clock and clear | | 1.0 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 0.9 | | 1.7 | | 2.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.3 | | 2.4 | | 3.3 | ns | | | Input to global clock and clear | | 1.0 | | 1.9 | | 2.5 | ns | | | Input to fast input register | | 0.9 | | 1.7 | | 2.3 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.7 | | 3.2 | | 4.3 | ns | | | Input to global clock and clear | | 1.7 | | 3.2 | | 4.3 | ns | | | Input to fast input register | | 1.6 | | 3.0 | | 4.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1) | | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------|-------------|-----|-------|-----|-----|-----|------|--| | I/O Standard | Parameter | Speed Grade | | | | | | Unit | | | | | -4 | | -4 -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | PCI | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | #### Notes to tables: - (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms. - (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value. - (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. - (4) The $t_{LPA}$ parameter must be added to the $t_{LAD}$ , $t_{LAC}$ , $t_{IC}$ , $t_{ACL}$ , $t_{CPPW}$ , $t_{EN}$ , and $t_{SEXP}$ parameters for macrocells running in low-power mode. | I/O Standard | Parameter | Speed Grade | | | | | | Unit | |-----------------|---------------------------------|-------------|------|-----|------|-----|------|------| | | | -5 | | -7 | | -10 | | = | | | | Min | Max | Min | Max | Min | Max | 1 | | 3.3 V TTL/CMOS | Input to PIA | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to global clock and clear | | 0.0 | | 0.0 | | 0.0 | ns | | | Input to fast input register | | 0.0 | | 0.0 | | 0.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | 2.5 V TTL/CMOS | Input to PIA | | 0.4 | | 0.6 | | 0.8 | ns | | | Input to global clock and clear | | 0.3 | | 0.5 | | 0.6 | ns | | | Input to fast input register | | 0.2 | | 0.3 | | 0.4 | ns | | | All outputs | | 0.2 | | 0.3 | | 0.4 | ns | | 1.8 V TTL/CMOS | Input to PIA | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to global clock and clear | | 0.6 | | 0.9 | | 1.2 | ns | | | Input to fast input register | | 0.5 | | 0.8 | | 1.0 | ns | | | All outputs | | 1.3 | | 2.0 | | 2.6 | ns | | SSTL-2 Class I | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-2 Class II | Input to PIA | | 1.5 | | 2.3 | | 3.0 | ns | | | Input to global clock and clear | | 1.3 | | 2.0 | | 2.6 | ns | | | Input to fast input register | | 1.1 | | 1.7 | | 2.2 | ns | | | All outputs | | -0.1 | | -0.2 | | -0.2 | ns | | SSTL-3 Class I | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | SSTL-3 Class II | Input to PIA | | 1.4 | | 2.1 | | 2.8 | ns | | | Input to global clock and clear | | 1.1 | | 1.7 | | 2.2 | ns | | | Input to fast input register | | 1.0 | | 1.5 | | 2.0 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | | GTL+ | Input to PIA | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to global clock and clear | | 1.8 | | 2.7 | | 3.6 | ns | | | Input to fast input register | | 1.7 | | 2.6 | | 3.4 | ns | | | All outputs | | 0.0 | | 0.0 | | 0.0 | ns | ### Figure 28. 256-Pin BGA Package Pin-Out Diagram Package outline not drawn to scale.