

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	141
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-UBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256buc169-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

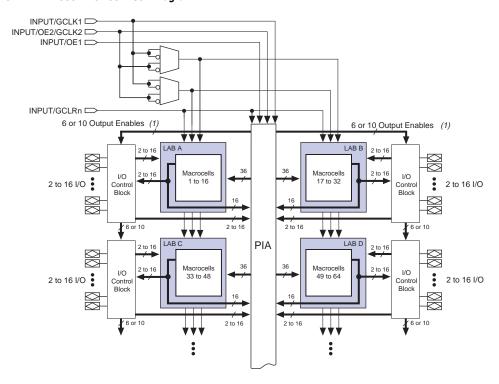


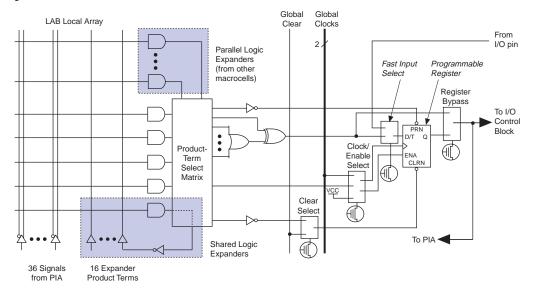
Figure 1. MAX 7000B Device Block Diagram

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enables. EPM7512B devices have ten output enables.

Logic Array Blocks

The MAX 7000B device architecture is based on the linking of high-performance LABs. LABs consist of 16 macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

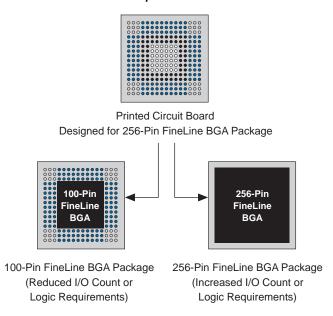
Macrocells

The MAX 7000B macrocell can be individually configured for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows the MAX 7000B macrocell.

Figure 2. MAX 7000B Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:


- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

SameFrame Pin-Outs

MAX 7000B devices support the SameFrame pin-out feature for FineLine BGA and 0.8-mm Ultra FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA and 0.8-mm Ultra FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. FineLine BGA packages are compatible with other FineLine BGA packages, and 0.8-mm Ultra FineLine BGA packages are compatible with other 0.8-mm Ultra FineLine BGA packages. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPM7064B device in a 100-pin FineLine BGA package to an EPM7512B device in a 256-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to layout a board to take advantage of this migration (see Figure 7).

Figure 7. SameFrame Pin-Out Example

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000B device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 7000B t _{PUL}	Table 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values										
Device	Progra	nmming	Stand-Alone Verification								
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}							
EMP7032B	2.12	70,000	0.002	18,000							
EMP7064B	2.12	120,000	0.002	35,000							
EMP7128B	2.12	222,000	0.002	69,000							
EMP7256B	2.12	466,000	0.002	151,000							
EMP7512B	2.12	914,000	0.002	300,000							

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S	
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S	
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S	
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S	
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S	

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S	
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S	
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	S	
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S	
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S	

MAX 7000B devices contain two I/O banks. Both banks support all standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Within a bank, any one of the terminated standards can be supported.

Figure 9 shows the arrangement of the MAX 7000B I/O banks.

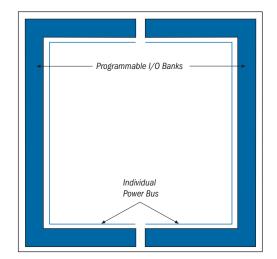


Figure 9. MAX 7000B I/O Banks for Various Advanced I/O Standards

Table 11 shows which macrocells have pins in each I/O bank.

Table 11. Macrocell Pins Co	ntained in Each I/O Bank	
Device	Bank 1	Bank 2
EPM7032B	1-16	17-32
EPM7064B	1-32	33-64
EPM7128B	1-64	65-128
EPM7256B	1-128, 177-181	129-176, 182-256
EPM7512B	1-265	266-512

Each MAX 7000B device has two VREF pins. Each can be set to a separate V_{REF} level. Any I/O pin that uses one of the voltage-referenced standards (GTL+, SSTL-2, or SSTL-3) may use either of the two VREF pins. If these pins are not required as VREF pins, they may be individually programmed to function as user I/O pins.

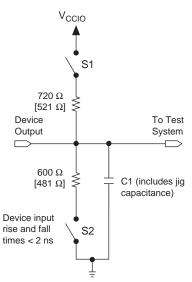
Power Sequencing & Hot-Socketing

Because MAX 7000B devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into MAX 7000B devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000B devices do not drive out during power-up. Once operating conditions are reached, MAX 7000B devices operate as specified by the user.

MAX 7000B device I/O pins will not source or sink more than 300 μ A of DC current during power-up. All pins can be driven up to 4.1 V during hot-socketing.

Design Security


All MAX 7000B devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 7000B devices are fully functionally tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 11. Test patterns can be used and then erased during early stages of the production flow.

Figure 11. MAX 7000B AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs. Switches S1 and S2 are open for all tests except output disable timing parameters.

Operating Conditions

Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices.

Table 1	Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage		-0.5	3.6	V						
V _{CCIO}	Supply voltage		-0.5	3.6	V						
VI	DC input voltage	(2)	-2.0	4.6	V						
I _{OUT}	DC output current, per pin		-33	50	mA						
T _{STG}	Storage temperature	No bias	-65	150	°C						
T _A	Ambient temperature	Under bias	-65	135	°C						
T_{J}	Junction temperature	Under bias	-65	135	° C						

Table 1	5. MAX 7000B Device Recomm	ended Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(10)	2.375	2.625	V
V _{CCIO}	Supply voltage for output drivers, 3.3-V operation		3.0	3.6	V
	Supply voltage for output drivers, 2.5-V operation		2.375	2.625	V
	Supply voltage for output drivers, 1.8-V operation		1.71	1.89	V
V _{CCISP}	Supply voltage during in-system programming		2.375	2.625	V
VI	Input voltage	(3)	-0.5	3.9	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	° C
		For industrial use (11)	-40	85	° C
TJ	Junction temperature	For commercial use	0	90	° C
		For industrial use (11)	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 19.	EPM7032B Internal Timing I	Parameters	Notes	(1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-3	.5	-5	i.0	-7	7. 5	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		0.7	ns
t_{IO}	I/O input pad and buffer delay			0.3		0.5		0.7	ns
t _{FIN}	Fast input delay			0.9		1.3		2.0	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		3.2	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.9	ns
t_{LAD}	Logic array delay			1.4		2.0		3.1	ns
t _{LAC}	Logic control array delay			1.2		1.7		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.2		1.8	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.2		6.8	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.6		2.2		3.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		6.6		7.2		8.4	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		1.6		2.2		3.4	ns
t_{SU}	Register setup time		0.7		1.1		1.6		ns
t_H	Register hold time		0.4		0.5		0.9		ns
t _{FSU}	Register setup time of fast input		0.8		0.8		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.2		1.4		ns
t_{RD}	Register delay			0.5		0.6		0.9	ns
t _{COMB}	Combinatorial delay			0.2		0.3		0.5	ns
t _{IC}	Array clock delay			1.2		1.8		2.8	ns
t _{EN}	Register enable time			1.2		1.7		2.6	ns
t _{GLOB}	Global control delay			0.7		1.1		1.6	ns
t _{PRE}	Register preset time			1.0		1.3		1.9	ns
t _{CLR}	Register clear time			1.0		1.3		1.9	ns
t _{PIA}	PIA delay	(2)		0.7		1.0		1.4	ns
t_{LPA}	Low-power adder	(4)		1.5		2.1		3.2	ns

Table 20. EPM7032B	Selectable I/O Standard Timing	Adder L	Delays	Notes	(1)			
I/O Standard	Parameter			Speed	Grade			Unit
		-3.5 -5.0 -7.5		.5				
		Min	Max	Min	Max	Min	Max	
PCI	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register 0.0 0.0 0.0		0.0	ns				
	All outputs		0.0		0.0		0.0	ns

Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of all LABs.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions			Speed	Grade			Unit
				-3		-5		-7	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns
t _{CH}	Global clock high time		1.5		2.0		3.0		ns
t _{CL}	Global clock low time		1.5		2.0		3.0		ns
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns
t _{CNT}	Minimum global clock period	(2)		3.3		4.7		7.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz
t _{ACNT}	Minimum array clock period	(2)		3.3		4.7		7.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	3	-	5	-	7	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.5		0.7	ns
t_{IO}	I/O input pad and buffer delay			0.3		0.5		0.7	ns
t _{FIN}	Fast input delay			0.9		1.3		2.0	ns
t _{FIND}	Programmable delay adder for fast input			1.0		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.1		3.2	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.9	ns
t_{LAD}	Logic array delay			1.4		2.0		3.1	ns
t_{LAC}	Logic control array delay			1.2		1.7		2.6	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.9		1.2		1.8	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.9		6.2		6.8	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.6		2.2		3.4	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		6.6		7.2		8.4	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		1.6		2.2		3.4	ns
t _{SU}	Register setup time		0.7		1.1		1.6		ns
t_H	Register hold time		0.4		0.5		0.9		ns
t _{FSU}	Register setup time of fast input		0.8		0.8		1.1		ns
t_{FH}	Register hold time of fast input		1.2		1.2		1.4		ns
t_{RD}	Register delay			0.5		0.6		0.9	ns
t_{COMB}	Combinatorial delay			0.2		0.3		0.5	ns
t _{IC}	Array clock delay		İ	1.2		1.8		2.8	ns
t_{EN}	Register enable time		İ	1.2		1.7		2.6	ns
t_{GLOB}	Global control delay		İ	0.7		1.1		1.6	ns
t_{PRE}	Register preset time			1.0		1.3		1.9	ns
t _{CLR}	Register clear time			1.0		1.3		1.9	ns
t_{PIA}	PIA delay	(2)		0.7		1.0		1.4	ns
t_{LPA}	Low-power adder	(4)		1.5		2.1		3.2	ns

I/O Standard	Parameter			Speed	Grade			Unit
		-	5	-	7		10	
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.4		0.6		0.8	ns
	Input to global clock and clear		0.3		0.5		0.6	ns
	Input to fast input register		0.2		0.3		0.4	ns
	All outputs		0.2		0.3		0.4	ns
1.8 V TTL/CMOS	Input to PIA		0.6		0.9		1.2	ns
	Input to global clock and clear		0.6		0.9		1.2	ns
	Input to fast input register		0.5		0.8		1.0	ns
	All outputs		1.3		2.0		2.6	ns
SSTL-2 Class I	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.5		2.3		3.0	ns
	Input to global clock and clear		1.3		2.0		2.6	ns
	Input to fast input register		1.1		1.7		2.2	ns
	All outputs		-0.1		-0.2		-0.2	ns
SSTL-3 Class I	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.4		2.1		2.8	ns
	Input to global clock and clear		1.1		1.7		2.2	ns
	Input to fast input register		1.0		1.5		2.0	ns
	All outputs		0.0		0.0		0.0	ns
GTL+	Input to PIA		1.8		2.7		3.6	ns
	Input to global clock and clear		1.8		2.7		3.6	ns
	Input to fast input register		1.7		2.6		3.4	ns
	All outputs		0.0		0.0		0.0	ns

Table 29. EPM7256B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)								
I/O Standard	Parameter	Speed Grade					Unit	
		-5		-7		-10		
		Min	Max	Min	Max	Min	Max	
PCI	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns

Notes to tables:

- (1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions	Speed Grade						Unit
			-	-5		-7		10	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	3.6		4.9		6.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
^t FZHSU	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		1.9		2.5		ns
t _{AH}	Array clock hold time	(2)	0.5		0.6		0.8		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.9	1.0	8.0	1.0	10.7	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		3.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.1		8.4		11.1	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	163.9		119.0		90.1		MHz
t _{ACNT}	Minimum array clock period	(2)		6.1		8.4		11.1	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (3)	163.9		119.0		90.1		MHz

The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation:

 $I_{CCINT} =$

$$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$

The parameters in this equation are:

MC_{TON} = Number of macrocells with the Turbo BitTM option turned on, as reported in the MAX+PLUS II Report File (.rpt)

 MC_{DEV} = Number of macrocells in the device

 MC_{USED} = Total number of macrocells in the design, as reported in

the Report File

 f_{MAX} = Highest clock frequency to the device

 tog_{LC} = Average percentage of logic cells toggling at each clock

(typically 12.5%)

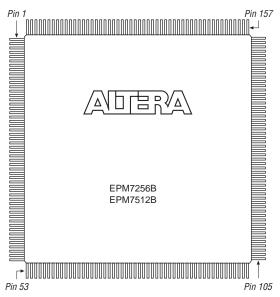
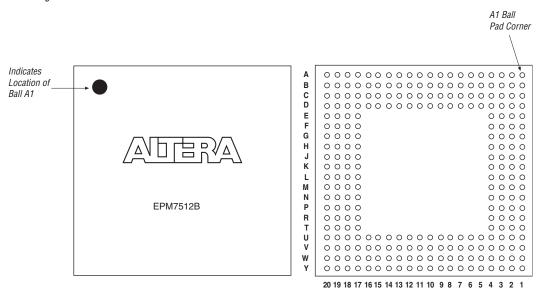

A, B, C = Constants, shown in Table 33

Table 33. MAX 7000B I _{CC} Equation Constants							
Device	A	В	C				
EPM7032B	0.91	0.54	0.010				
EPM7064B	0.91	0.54	0.012				
EPM7128B	0.91	0.54	0.016				
EPM7256B	0.91	0.54	0.017				
EPM7512B	0.91	0.54	0.019				

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.


Figure 27. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 28. 256-Pin BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Version 3.3

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.3:

- Updated Table 3.
- Added Tables 4 through 6.

Version 3.2

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.2:

 Updated Note (10) and added ambient temperature (T_A) information to Table 15.

Version 3.1

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.1:

- Updated V_{IH} and V_{IL} specifications in Table 16.
- Updated leakage current conditions in Table 16.

Version 3.0

The following changes were made to the *MAX 7000B Programmable Logic Device Family Data Sheet* version 3.0:

- Updated timing numbers in Table 1.
- Updated Table 16.
- Updated timing in Tables 18, 19, 21, 22, 24, 25, 27, 28, 30, and 31.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
lit_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

LS. EN ISO 9001

