
E·XFL

Altera - EPM7512BQC208-10 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	2.375V ~ 2.625V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	176
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7512bqc208-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

and More Features	 System-level features MultiVolt[™] I/O interface enabling device core to run at 2.5 V, while I/O mine are compatible with 2.2 V, 2.5 V, and 1.8 V logic
	while I/O pins are compatible with 3.3-V, 2.5-V, and 1.8-V logic levels
	 Programmable power-saving mode for 50% or greater power
	reduction in each macrocell
	 Fast input setup times provided by a dedicated path from I/O
	pin to macrocell registers
	 Support for advanced I/O standards, including SSTL-2 and
	SSTL-3, and GTL+
	 Bus-hold option on I/O pins
	– PCI compatible
	 Bus-friendly architecture including programmable slew-rate control
	 Open-drain output option
	 Programmable security bit for protection of proprietary designs
	 Built-in boundary-scan test circuitry compliant with
	IEEE Std. 1149.1
	 Supports hot-socketing operation
	 Programmable ground pins
	 Advanced architecture features Brogrammable interconnect error (BLA) continuous routing
	 Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
	 Configurable expander product-term distribution, allowing up
	to 32 product terms per macrocell
	 Programmable macrocell registers with individual clear, preset,
	clock, and clock enable controls
	 Two global clock signals with optional inversion
	 Programmable power-up states for macrocell registers
	 6 to 10 pin- or logic-driven output enable signals
	Advanced package options
	 Pin counts ranging from 44 to 256 in a variety of thin quad flat
	pack (TQFP), plastic quad flat pack (PQFP), ball-grid array
	(BGA), space-saving FineLine BGA [™] , 0.8-mm Ultra
	FineLine BGA, and plastic J-lead chip carrier (PLCC) packages
	 Pin-compatibility with other MAX 7000B devices in the same
	package
	 Advanced software support
	 Software design support and automatic place-and-route
	provided by Altera's MAX+PLUS [®] II development system for
	Windows-based PCs and Sun SPARCstation, and HP 9000
	Series 700/800 workstations

MAX 7000B devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate up to 50% lower power while adding only a nominal timing delay. MAX 7000B devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000B devices can be set for 3.3 V, 2.5 V, or 1.8 V and all input pins are 3.3-V, 2.5-V, and 1.8-V tolerant, allowing MAX 7000B devices to be used in mixed-voltage systems.

MAX 7000B devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. Altera software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet* and the *Quartus Programmable Logic Development System & Software Data Sheet*.

Functional Description

The MAX 7000B architecture includes the following elements:

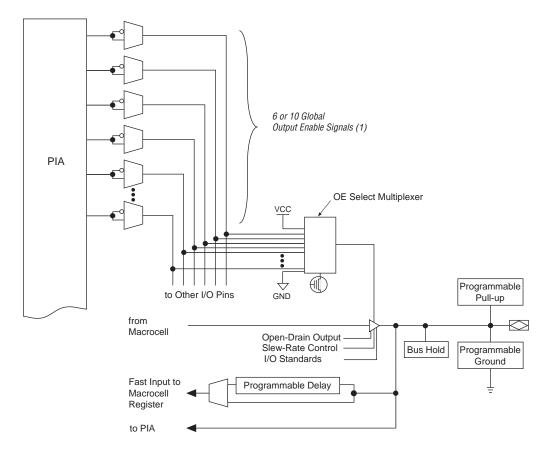
- LABs
- Macrocells
- Expander product terms (shareable and parallel)
- PIA
- I/O control blocks

The MAX 7000B architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000B devices.

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the MAX+PLUS II software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:


- Global clock signal. This mode achieves the fastest clock-to-output performance.
- Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 7000B devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000B device may be set to either a high or low state. This power-up state is specified at design entry.

All MAX 7000B I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast input setup time. The input path from the I/O pin to the register has a programmable delay element that can be selected to either guarantee zero hold time or to get the fastest possible set-up time (as fast as 1.0 ns).

Note:

(1) EPM7032B, EPM7064B, EPM7128B, and EPM7256B devices have six output enable signals. EPM7512B devices have ten output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to $V_{CC'}$, the output is enabled.

The MAX 7000B architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability (ISP)

MAX 7000B devices can be programmed in-system via an industrystandard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000B architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 2.5-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k³/₄.

MAX 7000B devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000B devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster communications cable, and the ByteBlasterMV parallel port download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000B devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a pre-defined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000B devices can be programmed with either an adaptive or constant (non-adaptive) algorithm.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD-71, can be used to program MAX 7000B devices with in-circuit testers, PCs, or embedded processors.

For more information on using the Jam language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor) and Application Note 122 (Using STAPL for ISP & ICR via an Embedded Processor).

The ISP circuitry in MAX 7000B devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

able 4. MAX 7000B t _{PULSE} & Cycle _{TCK} Values									
Device	Progra	mming	Stand-Alone Verification						
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}					
EMP7032B	2.12	70,000	0.002	18,000					
EMP7064B	2.12	120,000	0.002	35,000					
EMP7128B	2.12	222,000	0.002	69,000					
EMP7256B	2.12	466,000	0.002	151,000					
EMP7512B	2.12	914,000	0.002	300,000					

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 7000B In-System Programming Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EMP7032B	2.13	2.13	2.15	2.19	2.26	2.47	2.82	3.52	S		
EMP7064B	2.13	2.14	2.18	2.24	2.36	2.72	3.32	4.52	S		
EMP7128B	2.14	2.16	2.23	2.34	2.56	3.23	4.34	6.56	S		
EMP7256B	2.17	2.21	2.35	2.58	3.05	4.45	6.78	11.44	S		
EMP7512B	2.21	2.30	2.58	3.03	3.95	6.69	11.26	20.40	S		

Table 1. MAX 7000B Stand-Alone Verification Times for Different Test Clock Frequencies										
Device		f _{TCK}								
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EMP7032B	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S	
EMP7064B	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	s	
EMP7128B	0.01	0.02	0.04	0.07	0.14	0.35	0.69	1.38	s	
EMP7256B	0.02	0.03	0.08	0.15	0.30	0.76	1.51	3.02	S	
EMP7512B	0.03	0.06	0.15	0.30	0.60	1.50	3.00	6.00	S	

٦

Г

Programming with External Hardware	MAX 7000B devices can be programmed on Windows-based PCs with a Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device.				
	For more information, see the <i>Altera Programming Hardware Data Sheet</i> .				
	The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.				
	Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices. For more information, see <i>Programming Hardware Manufacturers</i> .				
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support	MAX 7000B devices include the JTAG boundary-scan test circuitry defined by IEEE Std. 1149.1. Table 6 describes the JTAG instructions supported by MAX 7000B devices. The pin-out tables starting on page 59 of this data sheet show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.				

Table 6. MAX 7000B JTAG Instructions						
JTAG Instruction	Description					
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.					
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.					
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary-scan test data to pass synchronously through a selected device to adjacent devices during normal operation.					
CLAMP	Allows the values in the boundary-scan register to determine pin states while placing the 1-bit bypass register between the TDI and TDO pins.					
IDCODE	Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO.					
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO.					
ISP Instructions	These instructions are used when programming MAX 7000B devices via the JTAG ports with the MasterBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File (.svf) via an embedded processor or test equipment.					

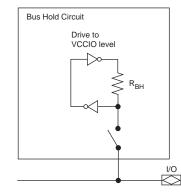
Programmable Pull-Up Resistor

Each MAX 7000B device I/O pin provides an optional programmable pull-up resistor during user mode. When this feature is enabled for an I/O pin, the pull-up resistor (typically 50 k³/₄) weakly holds the output to V_{CCIO} level.

Bus Hold

Each MAX 7000B device I/O pin provides an optional bus-hold feature. When this feature is enabled for an I/O pin, the bus-hold circuitry weakly holds the signal at its last driven state. By holding the last driven state of the pin until the next input signals is present, the bus-hold feature can eliminate the need to add external pull-up or pull-down resistors to hold a signal level when the bus is tri-stated. The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. This feature can be selected individually for each I/O pin. The bus-hold output will drive no higher than V_{CCIO} to prevent overdriving signals. The propagation delays through the input and output buffers in MAX 7000B devices are not affected by whether the bus-hold feature is enabled or disabled.

The bus-hold circuitry weakly pulls the signal level to the last driven state through a resistor with a nominal resistance (R_{BH}) of approximately 8.5 k³/₄. Table 12 gives specific sustaining current that will be driven through this resistor and overdrive current that will identify the next driven input level. This information is provided for each VCCIO voltage level.


Table 12. Bus Hold Parameters										
Parameter	Conditions			Units						
		1.8	8 V	2.5 V		3.3 V		2.5 V 3.3 V		
		Min	Max	Min	Max	Min	Max			
Low sustaining current	$V_{IN} > V_{IL} (max)$	30		50		70		μΑ		
High sustaining current	V _{IN} < V _{IH} (min)	-30		-50		-70		μA		
Low overdrive current	$0 V < V_{IN} < V_{CCIO}$		200		300		500	μΑ		
High overdrive current	$0 V < V_{IN} < V_{CCIO}$		-295		-435		-680	μA		

The bus-hold circuitry is active only during user operation. At power-up, the bus-hold circuit initializes its initial hold value as V_{CC} approaches the recommended operation conditions. When transitioning from ISP to User Mode with bus hold enabled, the bus-hold circuit captures the value present on the pin at the end of programming.

Two inverters implement the bus-hold circuitry in a loop that weakly drives back to the I/O pin in user mode.

Figure 10 shows a block diagram of the bus-hold circuit.

Figure 10. Bus-Hold Circuit

PCI Compatibility

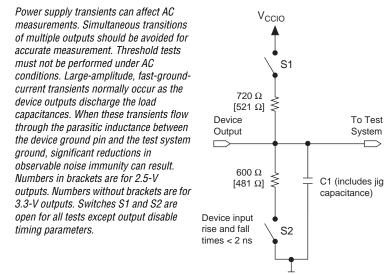

MAX 7000B devices are compatible with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision 2.2* except for the clamp diode. While having multiple clamp diodes on a signal trace may be redundant, designers can add an external clamp diode to meet the specification. Table 13 shows the MAX 7000B device speed grades that meet the PCI timing specifications.

Table 13. MAX 7000B Device Speed Grades that Meet PCI Timing Specifications						
Device	Specification					
	33-MHz PCI	66-MHz PCI				
EPM7032B	All speed grades	-3				
EPM7064B	All speed grades	-3				
EPM7128B	All speed grades	-4				
EPM7256B	All speed grades	-5 (1)				
EPM7512B	All speed grades	-5 (1)				

Note:

(1) The EPM7256B and EPM7512B devices in a -5 speed grade meet all PCI timing specifications for 66-MHz operation except the Input Setup Time to CLK—Bused Signal parameter. However, these devices are within 1 ns of that parameter. EPM7256B and EPM7512B devices meet all other 66-MHz PCI timing specifications.

Figure 11. MAX 7000B AC Test Conditions

Operating Conditions

Tables 14 through 17 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000B devices.

Table 1	Table 14. MAX 7000B Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage		-0.5	3.6	V					
V _{CCIO}	Supply voltage		-0.5	3.6	V					
VI	DC input voltage	(2)	-2.0	4.6	V					
I _{OUT}	DC output current, per pin		-33	50	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _A	Ambient temperature	Under bias	-65	135	°C					
TJ	Junction temperature	Under bias	-65	135	°C					

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage for 3.3-V TTL/CMOS		2.0	3.9	V
	High-level input voltage for 2.5-V TTL/CMOS		1.7	3.9	V
	High-level input voltage for 1.8-V TTL/CMOS		0.65 × V _{CCIO}	3.9	V
V _{IL}	Low-level input voltage for 3.3-V TTL/CMOS and PCI compliance		Image Image Image 2.0 3.9 1.7 3.9 $0.65 \times V_{CCIO}$ 3.9 -0.5 0.8 -0.5 0.7 -0.5 0.35 × V_{CCIO} -0.5 0.17 -0.5 0.21 -0.5 2.1 -0.5 2.0 -0.6 2.0 -0.7 2.0 -0.8 1.7 -0.9 2.0 -0.10 1.2 -0.2 0.4 -0.3.00 V (6) 0.2 -0.2 0.2 -0.3.00 V (6) 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.3.00 V (6) 0.2 -0.2	V	
	Low-level input voltage for 2.5-V TTL/CMOS		-0.5	0.7	V
	Low-level input voltage for 1.8-V TTL/CMOS		-0.5		
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (5)$	2.4		V
чон	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.00 V (5)			V
	Low-level input voltage for 1.8-V -0.5 TTL/CMOS $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (5)$ 2.4 3.3-V high-level TTL output voltage $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (5)$ 2.4 3.3-V high-level CMOS output voltage $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (5)$ V _{CCIO} - 0.2 2.5-V high-level output voltage $I_{OH} = -100 \text{ µA DC}, V_{CCIO} = 2.30 \text{ V} (5)$ 2.1 $I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$ 2.0 $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$ 1.7 1.8-V high-level output voltage $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 1.65 \text{ V} (5)$ 1.2		V		
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$	2.0		V
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V} (5)$	1.7		V
	1.8-V high-level output voltage	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		V	
$\begin{tabular}{ c c c c c } \hline TTL/CMOS & $TTL/CMOS & $I_{OH} = -8 mA DC, $V_{CCIO} = 3.00 V (5)$ \\ \hline $3.3-V high-level CMOS output & $I_{OH} = -0.1 mA DC, $V_{CCIO} = 3.00 V (5)$ \\ \hline $1_{OH} = -100 \ \mu A DC, $V_{CCIO} = 2.30 V (5)$ \\ \hline $I_{OH} = -1 mA DC, $V_{CCIO} = 2.30 V (5)$ \\ \hline $I_{OH} = -2 mA DC, $V_{CCIO} = 2.30 V (5)$ \\ \hline $I_{OH} = -2 mA DC, $V_{CCIO} = 1.65 V (5)$ \\ \hline $I_{OH} = -2 mA DC, $V_{CCIO} = 1.65 V (5)$ \\ \hline V_{OL} & $3.3-V low-level TTL output voltage & $I_{OL} = 8 mA DC, $V_{CCIO} = 3.00 V (6)$ \\ \hline $3.3-V low-level CMOS output $voltage & $I_{OL} = 0.1 mA DC, $V_{CCIO} = 3.00 V (6)$ \\ \hline $1.5-V low-level output voltage & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $I_{OL} = 100 \ \mu A DC, $V_{CCIO} = 2.30 V (6)$ \\ \hline V_{OL} & $		0.4	V		
	-	I_{OL} = 0.1 mA DC, V_{CCIO} = 3.00 V (6)		0.2	V
	2.5-V low-level output voltage	I_{OL} = 100 μ A DC, V_{CCIO} = 2.30 V (6)		0.2	V
		I_{OL} = 1 mA DC, V_{CCIO} = 2.30 V (6)		0.4	V
		I_{OL} = 2 mA DC, V_{CCIO} = 2.30 V (6)		0.7	V
	1.8-V low-level output voltage	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V		
1	Input leakage current	$V_{I} = -0.5$ to 3.9 V (7)	-10	10	μA
loz	Tri-state output off-state current	$V_{I} = -0.5$ to 3.9 V (7)	-10	10	μA
R _{ISP}	Value of I/O pin pull-up resistor during in-system programming or during power up	V _{CCIO} = 1.7 to 3.6 V (8)	20	74	k¾

Figure 12 shows the typical output drive characteristics of MAX 7000B devices.

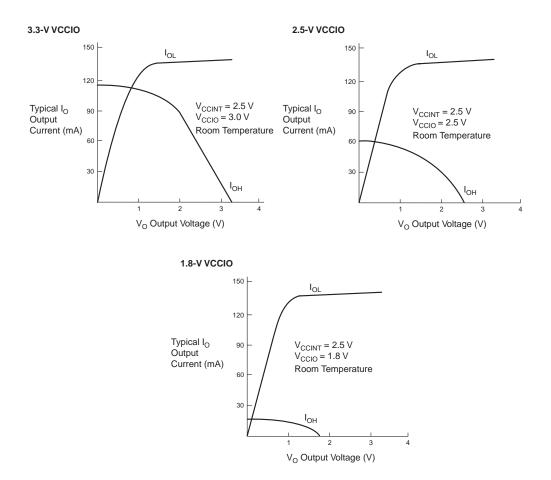
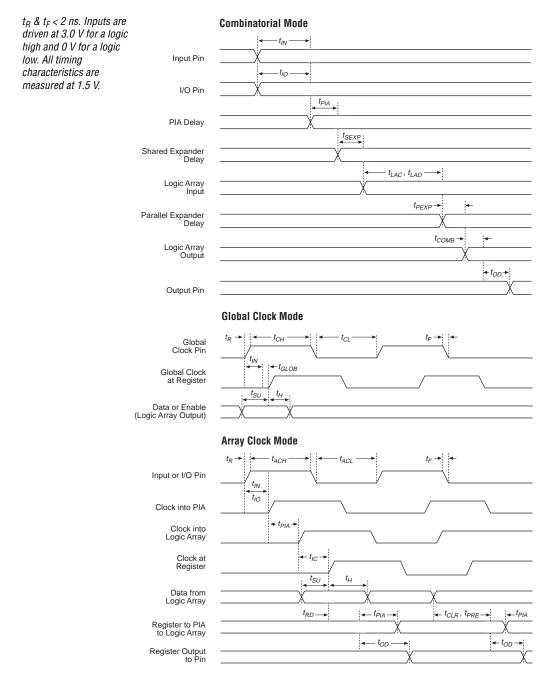



Figure 12. Output Drive Characteristics of MAX 7000B Devices

Figure 14. MAX 7000B Switching Waveforms

Table 20. EPM7032B Selectable I/O Standard Timing Adder Delays Notes (1)								
I/O Standard	Parameter	Speed Grade Un						Unit
		-3.5 -5.0		-7.5				
		Min	Max	Min	Max	Min	Max	
PCI	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

(2) These values are specified for a PIA fan-out of all LABs.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions	Speed Grade						
			-3		-5		-7		1
			Min	Max	Min	Max	Min	Max	-
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		3.5		5.0		7.5	ns
t _{SU}	Global clock setup time	(2)	2.1		3.0		4.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.0		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.0		2.5		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	2.4	1.0	3.4	1.0	5.0	ns
t _{CH}	Global clock high time		1.5		2.0		3.0		ns
t _{CL}	Global clock low time		1.5		2.0		3.0		ns
t _{ASU}	Array clock setup time	(2)	0.9		1.3		1.9		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	3.6	1.0	5.1	1.0	7.6	ns
t _{ACH}	Array clock high time		1.5		2.0		3.0		ns
t _{ACL}	Array clock low time		1.5		2.0		3.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		1.5		2.0		3.0		ns
t _{CNT}	Minimum global clock period	(2)		3.3		4.7		7.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	303.0		212.8		142.9		MHz
t _{acnt}	Minimum array clock period	(2)		3.3		4.7		7.0	ns
f _{acnt}	Maximum internal array clock frequency	(2), (3)	303.0		212.8		142.9		MHz

I/O Standard	Parameter	Speed Grade						Unit
		-4		-7		-10		
		Min	Max	Min	Max	Min	Max	
3.3 V TTL/CMOS	Input to PIA		0.0		0.0		0.0	ns
	Input to global clock and clear		0.0		0.0		0.0	ns
	Input to fast input register		0.0		0.0		0.0	ns
	All outputs		0.0		0.0		0.0	ns
2.5 V TTL/CMOS	Input to PIA		0.3		0.6		0.8	ns
	Input to global clock and clear		0.3		0.6		0.8	ns
	Input to fast input register		0.2		0.4		0.5	ns
	All outputs		0.2		0.4		0.5	ns
1.8 V TTL/CMOS	Input to PIA		0.5		0.9		1.3	ns
	Input to global clock and clear		0.5		0.9		1.3	ns
	Input to fast input register		0.4		0.8		1.0	ns
	All outputs		1.2		2.3		3.0	ns
SSTL-2 Class I	Input to PIA		1.4		2.6		3.5	ns
	Input to global clock and clear		1.2		2.3		3.0	ns
	Input to fast input register		1.0		1.9		2.5	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-2 Class II	Input to PIA		1.4		2.6		3.5	ns
	Input to global clock and clear		1.2		2.3		3.0	ns
	Input to fast input register		1.0		1.9		2.5	ns
	All outputs		-0.1		-0.2		-0.3	ns
SSTL-3 Class I	Input to PIA		1.3		2.4		3.3	ns
	Input to global clock and clear		1.0		1.9		2.5	ns
	Input to fast input register		0.9		1.7		2.3	ns
	All outputs		0.0		0.0		0.0	ns
SSTL-3 Class II	Input to PIA		1.3		2.4		3.3	ns
	Input to global clock and clear		1.0		1.9		2.5	ns
	Input to fast input register		0.9	1	1.7		2.3	ns
	All outputs		0.0	1	0.0		0.0	ns
GTL+	Input to PIA		1.7		3.2		4.3	ns
	Input to global clock and clear		1.7		3.2		4.3	ns
	Input to fast input register		1.6		3.0		4.0	ns
	All outputs		0.0		0.0		0.0	ns

Table 26. EPM7128B Selectable I/O Standard Timing Adder Delays (Part 2 of 2) Note (1)										
I/O Standard	Parameter	Speed Grade					Unit			
		-4 -7 -10		0						
		Min	Max	Min	Max	Min	Max			
PCI	Input to PIA		0.0		0.0		0.0	ns		
	Input to global clock and clear		0.0		0.0		0.0	ns		
	Input to fast input register		0.0		0.0		0.0	ns		
	All outputs		0.0		0.0		0.0	ns		

Notes to tables:

(1) These values are specified under the Recommended Operating Conditions in Table 15 on page 29. See Figure 14 for more information on switching waveforms.

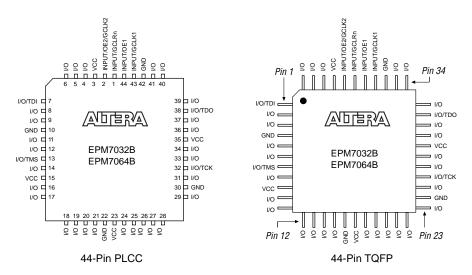
(2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.

(3) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(4) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{CPPW} , t_{EN} , and t_{SEXP} parameters for macrocells running in low-power mode.

Symbol	Parameter	Conditions	Speed Grade						
			-5		-7		-10		1
			Min	Max	Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.4		0.6		0.8	ns
t _{IO}	I/O input pad and buffer delay			0.4		0.6		0.8	ns
t _{FIN}	Fast input delay			1.5		2.5		3.1	ns
t _{FIND}	Programmable delay adder for fast input			1.5		1.5		1.5	ns
t _{SEXP}	Shared expander delay			1.5		2.3		3.0	ns
t _{PEXP}	Parallel expander delay			0.4		0.6		0.8	ns
t _{LAD}	Logic array delay			1.7		2.5		3.3	ns
t _{LAC}	Logic control array delay			1.5		2.2		2.9	ns
t _{IOE}	Internal output enable delay			0.1		0.2		0.3	ns
t _{OD1}	Output buffer and pad delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.9		1.4		1.9	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.9		6.4		6.9	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		2.2		3.3		4.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		7.2		8.3		9.5	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		2.2		3.3		4.5	ns
t _{SU}	Register setup time		1.2		1.8		2.5		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		0.8		1.1		1.1		ns
t _{FH}	Register hold time of fast input		1.2		1.4		1.4		ns
t _{RD}	Register delay		1	0.7		1.0		1.3	ns
t _{COMB}	Combinatorial delay		1	0.3		0.4		0.5	ns
t _{IC}	Array clock delay		1	1.5		2.3		3.0	ns
t _{EN}	Register enable time		1	1.5		2.2		2.9	ns
t _{GLOB}	Global control delay		1	1.3		2.1		2.7	ns
t _{PRE}	Register preset time			1.0		1.6		2.1	ns
t _{CLR}	Register clear time		1	1.0		1.6		2.1	ns
t _{PIA}	PIA delay	(2)	1	1.7		2.6		3.3	ns
t _{LPA}	Low-power adder	(4)		2.0		3.0		4.0	ns

Symbol	Parameter	Conditions	Speed Grade						
			-5		-7		-10		1
			Min	Max	Min	Max	Min	Max	1
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		5.5		7.5		10.0	ns
t _{su}	Global clock setup time	(2)	3.6		4.9		6.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Global clock hold time of fast input		1.0		1.0		1.0		ns
t _{FZHSU}	Global clock setup time of fast input with zero hold time		2.5		3.0		3.0		ns
t _{FZHH}	Global clock hold time of fast input with zero hold time		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.4		1.9		2.5		ns
t _{AH}	Array clock hold time	(2)	0.5		0.6		0.8		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.9	1.0	8.0	1.0	10.7	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset		3.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.1		8.4		11.1	ns
f _{CNT}	Maximum internal global clock frequency	(2), (3)	163.9		119.0		90.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.1		8.4		11.1	ns
facnt	Maximum internal array clock frequency	(2), (3)	163.9		119.0		90.1		MHz


Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 20 through 29 show the package pin-out diagrams for MAX 7000B devices.

Package outlines not drawn to scale.

