

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LCD, Motor control PWM, POR, PWM, WDT
Number of I/O	88
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912xhy256f0clm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 16-bit free-running counter with 8-bit precision prescaler
- 1 x 16-bit pulse accumulator

1.3.10 Liquid crystal display driver (LCD)

- Configurable for up to 40 frontplanes and 4 backplanes or general-purpose input or output
- 5 modes of operation allow for different display sizes to meet application requirements
- Unused frontplane and backplane pins can be used as general-purpose I/O

1.3.11 Motor Controller (MC)

- PWM motor controller (MC) with up to 16 high current drivers
- Each PWM channel switchable between two drivers in an H-bridge configuration
- Left, right and center aligned outputs
- Support for sine and cosine drive
- Dithering
- Output slew rate control

1.3.12 Pulse Width Modulation Module (PWM)

- 8channel x 8-bit or 4channel x 16-bit pulse width modulator
 - Programmable period and duty cycle per channel
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies

1.3.13 Inter-IC bus Module (IIC)

- 1 Inter-IC (IIC) bus module which has following feature
 - Multi-master operation
 - Soft programming for one of 256 different serial clock frequencies
 - General Call(Broadcast) mode support
 - 10-bit address support

1.3.14 Controller Area Network Module (MSCAN)

- 1 Mbit per second, CAN 2.0 A, B software compatible
 - Standard and extended data frames
 - 0–8 bytes data length
 - Programmable bit rate up to 1 Mbps
- Five receive buffers with FIFO storage scheme
- Three transmit buffers with internal prioritization
- Flexible identifier acceptance filter programmable as:

Freescale
Semicon
ductor

MC9S12XHY
-Family
Reference
Manual,
Rev.
1.01

										-				
Pack Pi	age n	Function					Internal Pull Resistor							
LQ FP 100	LQ FP 64	Pin	2nd Func.	3rd Func	4th Func	5th Func	6th Func	7th Func	8th Func	Supply	CTRL	Reset State	Description	
95	85	PB1	FP37							VDDX	PUCR	Down	Port BI/O, LCD Frontplane driver	
96	-	PB2	FP38							VDDX	PUCR	Down	Port B I/O, LCD Frontplane driver	
97	-	PB3	FP39							VDDX	PUCR	Down	Port B I/O, LCD Frontplane driver	
98	86	VSS2												
99	87	VDD												
100	88	PB4	BP0							VDDX	PUCR	Down	Port B I/O, LCD Backplane driver	
101	89	PB5	BP1							VDDX	PUCR	Down	Port B I/O, LCD Backplane driver	
102	90	PB6	BP2							VDDX	PUCR	Down	Port B I/O, LCD Backplane driver	
103	91	PB7	BP3							VDDX	PUCR	Down	Port B I/O, LCD Backplane driver	
104	92	VLCD								VDDX			Voltage reference pin for the LCD driver.	
105	93	BKGD	MODC							VDDX	Always on	Up	Background debug, Mode selection pin	
106	94	VSSA	VRL											
107	95	VDDA	VRH											
108	96	PAD00	AN00	KWA D0						VDDA	PERAD	Dis- abled	Port AD I/O, analog input of ATD, key wakeup	

 Table 1-7. Pin-Out Summary⁽¹⁾

9.3.2.5 Autonomous Periodical Interrupt Rate High and Low Register (VREGAPIRH / VREGAPIRL)

The VREGAPIRH and VREGAPIRL register allows the configuration of the VREG_3V3 autonomous periodical interrupt rate.

Figure 9-5. Autonomous Periodical Interrupt Rate High Register (VREGAPIRH)

Figure 9-6. Autonomous Periodical Interrupt Rate Low Register (VREGAPIRL)

Table 9-9.	VREGAPIRH	VREGAPIRL	Field	Descriptions
------------	------------------	-----------	-------	--------------

Field	Description
15-0 APIR[15:0]	Autonomous Periodical Interrupt Rate Bits — These bits define the timeout period of the API. See Table 9-10 for details of the effect of the autonomous periodical interrupt rate bits. Writable only if APIFE = 0 of VREGAPICL register.

Analog-to-Digital Converter (ADC12B12CV1) Block Description

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0024	ATDDR10	R W		See Section 10.3.2.12.1, "Left Justified Result Data (DJM=0)" and Section 10.3.2.12.2, "Right Justified Result Data (DJM=1)"						
0x0026	ATDDR11	R W		See Section 10.3.2.12.1, "Left Justified Result Data (DJM=0)" and Section 10.3.2.12.2, "Right Justified Result Data (DJM=1)"						
0x0028 -	Unimple-	R	0	0	0	0	0	0	0	0
0x002F	mented	W								
		[= Unimpler	mented or R	eserved				

= Unimplemented or Reserved

Figure 10-2. ADC12B12C Register Summary (Sheet 3 of 3)

Syntax	Description
SYNC_SEG	System expects transitions to occur on the CAN bus during this period.
Transmit Point	A node in transmit mode transfers a new value to the CAN bus at this point.
Sample Point	A node in receive mode samples the CAN bus at this point. If the three samples per bit option is selected, then this point marks the position of the third sample.

Table 11-36.	Time Segmer	t Syntax
--------------	--------------------	----------

The synchronization jump width (see the Bosch CAN 2.0A/B specification for details) can be programmed in a range of 1 to 4 time quanta by setting the SJW parameter.

The SYNC_SEG, TSEG1, TSEG2, and SJW parameters are set by programming the MSCAN bus timing registers (CANBTR0, CANBTR1) (see Section 11.3.2.3, "MSCAN Bus Timing Register 0 (CANBTR0)" and Section 11.3.2.4, "MSCAN Bus Timing Register 1 (CANBTR1)").

Table 11-37 gives an overview of the Bosch CAN 2.0A/B specification compliant segment settings and the related parameter values.

NOTE

It is the user's responsibility to ensure the bit time settings are in compliance with the CAN standard.

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronization Jump Width	SJW
5 10	4 9	2	1	12	0 1
4 11	3 10	3	2	1 3	02
5 12	4 11	4	3	14	03
6 13	5 12	5	4	14	03
7 14	6 13	6	5	14	03
8 15	7 14	7	6	14	03
9 16	8 15	8	7	14	03

Table 11-37. Bosch CAN 2.0A/B Compliant Bit Time Segment Settings

11.4.4 Modes of Operation

11.4.4.1 Normal System Operating Modes

The MSCAN module behaves as described within this specification in all normal system operating modes. Write restrictions exist for some registers.

11.5 Initialization/Application Information

11.5.1 MSCAN initialization

The procedure to initially start up the MSCAN module out of reset is as follows:

- 1. Assert CANE
- 2. Write to the configuration registers in initialization mode
- 3. Clear INITRQ to leave initialization mode

If the configuration of registers which are only writable in initialization mode shall be changed:

- 1. Bring the module into sleep mode by setting SLPRQ and awaiting SLPAK to assert after the CAN bus becomes idle.
- 2. Enter initialization mode: assert INITRQ and await INITAK
- 3. Write to the configuration registers in initialization mode
- 4. Clear INITRQ to leave initialization mode and continue

11.5.2 Bus-Off Recovery

The bus-off recovery is user configurable. The bus-off state can either be left automatically or on user request.

For reasons of backwards compatibility, the MSCAN defaults to automatic recovery after reset. In this case, the MSCAN will become error active again after counting 128 occurrences of 11 consecutive recessive bits on the CAN bus (see the Bosch CAN 2.0 A/B specification for details).

If the MSCAN is configured for user request (BORM set in MSCAN Control Register 1 (CANCTL1)), the recovery from bus-off starts after both independent events have become true:

- 128 occurrences of 11 consecutive recessive bits on the CAN bus have been monitored
- BOHOLD in MSCAN Miscellaneous Register (CANMISC) has been cleared by the user

These two events may occur in any order.

Inter-Integrated Circuit (IICV3) Block Description

IBC[7:0] (hex)	SCL Divider (clocks)	SDA Hold (clocks)	SCL Hold (start)	SCL Hold (stop)
B2	3584	516	1784	1796
B3	4096	516	2040	2052
B4	4608	772	2296	2308
B5	5120	772	2552	2564
B6	6144	1028	3064	3076
B7	7680	1028	3832	3844
B8	5120	516	2552	2564
B9	6144	516	3064	3076
BA	7168	1028	3576	3588
BB	8192	1028	4088	4100
BC	9216	1540	4600	4612
BD	10240	1540	5112	5124
BE	12288	2052	6136	6148
BF	15360	2052	7672	7684

Table 12-7. IIC Divider and Hold Values (Sheet 6 of 6)

Note:Since the bus frequency is speeding up,the SCL Divider could be expanded by it.Therefore,in the table,when IBC[7:0] is from \$00 to \$0F,the SCL Divider is revised by the format value1/value2.Value1 is the divider under the low frequency.Value2 is the divider under the high frequency.How to select the divider depends on the bus frequency.When IBC[7:0] is from \$10 to \$BF,the divider is not changed.

12.3.1.3 IIC Control Register (IBCR)

Figure 12-6. IIC Bus Control Register (IBCR)

Read and write anytime

Chapter 13 Pulse-Width Modulator (S12PWM8B8CV1)

13.1 Introduction

The PWM definition is based on the HC12 PWM definitions. It contains the basic features from the HC11 with some of the enhancements incorporated on the HC12: center aligned output mode and four available clock sources. The PWM module has eight channels with independent control of left and center aligned outputs on each channel.

Each of the eight channels has a programmable period and duty cycle as well as a dedicated counter. A flexible clock select scheme allows a total of four different clock sources to be used with the counters. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The PWM outputs can be programmed as left aligned outputs or center aligned outputs.

13.1.1 Features

The PWM block includes these distinctive features:

- Eight independent PWM channels with programmable period and duty cycle
- Dedicated counter for each PWM channel
- Programmable PWM enable/disable for each channel
- Software selection of PWM duty pulse polarity for each channel
- Period and duty cycle are double buffered. Change takes effect when the end of the effective period is reached (PWM counter reaches zero) or when the channel is disabled.
- Programmable center or left aligned outputs on individual channels
- Eight 8-bit channel or four 16-bit channel PWM resolution
- Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
- Programmable clock select logic
- Emergency shutdown

13.1.2 Modes of Operation

There is a software programmable option for low power consumption in wait mode that disables the input clock to the prescaler.

In freeze mode there is a software programmable option to disable the input clock to the prescaler. This is useful for emulation.

MC9S12XHY-Family Reference Manual, Rev. 1.01

Field	Description
3 OR	 Overrun Flag — OR is set when software fails to read the SCI data register before the receive shift register receives the next frame. The OR bit is set immediately after the stop bit has been completely received for the second frame. The data in the shift register is lost, but the data already in the SCI data registers is not affected. Clear OR by reading SCI status register 1 (SCISR1) with OR set and then reading SCI data register low (SCIDRL). 0 No overrun 1 Overrun
	Note: OR flag may read back as set when RDRF flag is clear. This may happen if the following sequence of events occurs:
	 After the first frame is received, read status register SCISR1 (returns RDRF set and OR flag clear); Receive second frame without reading the first frame in the data register (the second frame is not received and OR flag is set); Read data register SCIDRL (returns first frame and clears RDRF flag in the status register); Read status register SCISR1 (returns RDRF clear and OR set). Event 3 may be at exactly the same time as event 2 or any time after. When this happens, a dummy SCIDRL read following event 4 will be required to clear the OR flag if further frames are to be received.
2 NF	 Noise Flag — NF is set when the SCI detects noise on the receiver input. NF bit is set during the same cycle as the RDRF flag but does not get set in the case of an overrun. Clear NF by reading SCI status register 1(SCISR1), and then reading SCI data register low (SCIDRL). 0 No noise 1 Noise
1 FE	 Framing Error Flag — FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle as the RDRF flag but does not get set in the case of an overrun. FE inhibits further data reception until it is cleared. Clear FE by reading SCI status register 1 (SCISR1) with FE set and then reading the SCI data register low (SCIDRL). 0 No framing error 1 Framing error
0 PF	 Parity Error Flag — PF is set when the parity enable bit (PE) is set and the parity of the received data does not match the parity type bit (PT). PF bit is set during the same cycle as the RDRF flag but does not get set in the case of an overrun. Clear PF by reading SCI status register 1 (SCISR1), and then reading SCI data register low (SCIDRL). 0 No parity error 1 Parity error

Table 14-11. SCISR1 Field Descriptions (continued)

14.3.2.9 SCI Data Registers (SCIDRH, SCIDRL)

Module Base + 0x0006

Figure 14-12. SCI Data Registers (SCIDRH)

Module Base + 0x0007

	7	6	5	4	3	2	1	0
R	R7	R6	R5	R4	R3	R2	R1	R0
W	T7	T6	T5	T4	Т3	T2	T1	T0
Reset	0	0	0	0	0	0	0	0

Figure 14-13. SCI Data Registers (SCIDRL)

Read: Anytime; reading accesses SCI receive data register

Write: Anytime; writing accesses SCI transmit data register; writing to R8 has no effect

Table 14-13. SCIDRH and SCIDRL Field Descriptions

Field	Description
SCIDRH 7 R8	Received Bit 8 — R8 is the ninth data bit received when the SCI is configured for 9-bit data format (M = 1).
SCIDRH 6 T8	Transmit Bit 8 — T8 is the ninth data bit transmitted when the SCI is configured for 9-bit data format (M = 1).
SCIDRL 7:0 R[7:0] T[7:0]	 R7:R0 — Received bits seven through zero for 9-bit or 8-bit data formats T7:T0 — Transmit bits seven through zero for 9-bit or 8-bit formats

NOTE

If the value of T8 is the same as in the previous transmission, T8 does not have to be rewritten. The same value is transmitted until T8 is rewritten

In 8-bit data format, only SCI data register low (SCIDRL) needs to be accessed.

When transmitting in 9-bit data format and using 8-bit write instructions, write first to SCI data register high (SCIDRH), then SCIDRL.

14.4.6.5.2 Fast Data Tolerance

Figure 14-29 shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10 instead of RT16 but is still sampled at RT8, RT9, and RT10.

For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles + 10 RTr cycles = 154 RTr cycles to finish data sampling of the stop bit.

With the misaligned character shown in Figure 14-29, the receiver counts 154 RTr cycles at the point when the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is:

 $((160 - 154) / 160) \ge 100 = 3.75\%$

For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 10 RTr cycles = 170 RTr cycles to finish data sampling of the stop bit.

With the misaligned character shown in Figure 14-29, the receiver counts 170 RTr cycles at the point when the count of the transmitting device is 11 bit times x 16 RTt cycles = 176 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is:

 $((176 - 170) / 176) \ge 100 = 3.40\%$

14.4.6.6 Receiver Wakeup

To enable the SCI to ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCI control register 2 (SCICR2) puts the receiver into standby state during which receiver interrupts are disabled. The SCI will still load the receive data into the SCIDRH/L registers, but it will not set the RDRF flag.

The transmitting device can address messages to selected receivers by including addressing information in the initial frame or frames of each message.

The WAKE bit in SCI control register 1 (SCICR1) determines how the SCI is brought out of the standby state to process an incoming message. The WAKE bit enables either idle line wakeup or address mark wakeup.

14.5.3.1.6 RXEDGIF Description

The RXEDGIF interrupt is set when an active edge (falling if RXPOL = 0, rising if RXPOL = 1) on the RXD pin is detected. Clear RXEDGIF by writing a "1" to the SCIASR1 SCI alternative status register 1.

14.5.3.1.7 BERRIF Description

The BERRIF interrupt is set when a mismatch between the transmitted and the received data in a single wire application like LIN was detected. Clear BERRIF by writing a "1" to the SCIASR1 SCI alternative status register 1. This flag is also cleared if the bit error detect feature is disabled.

14.5.3.1.8 BKDIF Description

The BKDIF interrupt is set when a break signal was received. Clear BKDIF by writing a "1" to the SCIASR1 SCI alternative status register 1. This flag is also cleared if break detect feature is disabled.

14.5.4 Recovery from Wait Mode

The SCI interrupt request can be used to bring the CPU out of wait mode.

14.5.5 Recovery from Stop Mode

An active edge on the receive input can be used to bring the CPU out of stop mode.

Chapter 15 Serial Peripheral Interface (S12SPIV5)

15.1 Introduction

The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral devices. Software can poll the SPI status flags or the SPI operation can be interrupt driven.

SPI	Serial Peripheral Interface
SS	Slave Select
SCK	Serial Clock
MOSI	Master Output, Slave Input
MISO	Master Input, Slave Output
MOMI	Master Output, Master Input
SISO	Slave Input, Slave Output

15.1.1 Glossary of Terms

15.1.2 Features

The SPI includes these distinctive features:

- Master mode and slave mode
- Selectable 8 or 16-bit transfer width
- Bidirectional mode
- Slave select output
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- Control of SPI operation during wait mode

15.1.3 Modes of Operation

The SPI functions in three modes: run, wait, and stop.

- Run mode This is the basic mode of operation.
- Wait mode

¹ Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 18.5.

18.3.1.3 Flash CCOB Index Register (FCCOBIX)

The FCCOBIX register is used to index the FCCOB register for Flash memory operations.

7 6 5 4 3 2 0 1 0 0 0 0 R 0 CCOBIX[2:0] W 0 0 0 0 0 0 0 0 Reset = Unimplemented or Reserved

Figure 18-6. FCCOB Index Register (FCCOBIX)

CCOBIX bits are readable and writable while remaining bits read 0 and are not writable.

Table 18-9	. FCCOBIX	Field	Descrip	otions
------------	-----------	-------	---------	--------

Field	Description
2–0 CCOBIX[1:0]	Common Command Register Index — The CCOBIX bits are used to select which word of the FCCOB register array is being read or written to. See Section 18.3.1.11, "Flash Common Command Object Register (FCCOB)," for more details.

18.3.1.4 Flash ECCR Index Register (FECCRIX)

The FECCRIX register is used to index the FECCR register for ECC fault reporting.

Offset Module Base + 0x0003

Offset Module Base + 0x0002

Figure 18-7. FECCR Index Register (FECCRIX)

ECCRIX bits are readable and writable while remaining bits read 0 and are not writable.

Table 18-10. FECCRIX Field Descriptions

Field	Description
2-0	ECC Error Register Index— The ECCRIX bits are used to select which word of the FECCR register array is
ECCRIX[2:0]	being read. See Section 18.3.1.14, "Flash ECC Error Results Register (FECCR)," for more details.

MC9S12XHY-Family Reference Manual, Rev. 1.01

128 KByte Flash Module (S12XFTMR128K1V1)

Table 19-58	. Program D-Flas	h Command	d FCCOB Requireme	ents
-------------	------------------	-----------	-------------------	------

CCOBIX[2:0]	FCCOB Parameters
101	Word 3 program value, if desired

Upon clearing CCIF to launch the Program D-Flash command, the user-supplied words will be transferred to the Memory Controller and be programmed if the area is unprotected. The CCOBIX index value at Program D-Flash command launch determines how many words will be programmed in the D-Flash block. The CCIF flag is set when the operation has completed.

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] < 010 at command launch
		Set if CCOBIX[2:0] > 101 at command launch
	ACCEPR	Set if command not available in current mode (see Table 19-25)
	ACCERK	Set if an invalid global address [22:0] is supplied
FSTAT		Set if a misaligned word address is supplied (global address [0] != 0)
-		Set if the requested group of words breaches the end of the D-Flash block
	FPVIOL	Set if the selected area of the D-Flash memory is protected
	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation

Table 19-59. Program D-Flash Command Error Handling

19.3.2.16 Erase D-Flash Sector Command

The Erase D-Flash Sector operation will erase all addresses in a sector of the D-Flash block.

 Table 19-60. Erase D-Flash Sector Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters					
000	0x12	Global address [22:16] to identify D-Flash block				
001	Global address [15:0] anywh See Section 19.1.2.	ere within the sector to be erased. 2 for D-Flash sector size.				

Upon clearing CCIF to launch the Erase D-Flash Sector command, the Memory Controller will erase the selected Flash sector and verify that it is erased. The CCIF flag will set after the Erase D-Flash Sector operation has completed.

20.4.2 PWM Duty Cycle

The PWM duty cycle for the motor controller channel x can be determined by dividing the decimal representation of bits D[10:0] in MCDCx by the decimal representation of the bits P[10:0] in MCPER and multiplying the result by 100% as shown in the equation below:

Effective PWM Channel X % Duty Cycle =
$$\frac{DUTY}{MCPER} \cdot 100\%$$

NOTE

x = PWM Channel Number = 0, 1, 2, 3 ... 8. This equation is only valid if DUTY $\leq=$ MCPER and MCPER is not equal to 0.

Whenever $D[10:0] \ge P[10:0]$, a constant low level (RECIRC = 0) or high level (RECIRC = 1) will be output.

20.4.3 Motor Controller Counter Clock Source

Figure 20-22 shows how the PWM motor controller timer counter clock source is selected.

Figure 20-22. Motor Controller Counter Clock Selection

The peripheral bus clock is the source for the motor controller counter prescaler. The motor controller counter clock rate, f_{TC} , is set by selecting the appropriate prescaler value. The prescaler is selected with the MCPRE[1:0] bits in motor controller control register 0 (MCCTL0). The motor controller channel frequency of operation can be calculated using the following formula if DITH = 0:

Motor Channel Frequency (Hz) =
$$\frac{f_{TC}}{MCPER \cdot M}$$

MC9S12XHY-Family Reference Manual, Rev. 1.01

21.1.3 Block Diagram

Figure 21-1. SSD Block Diagram

Electrical Characteristics

Condit	Conditions are shown in Table A-4 unless otherwise noted									
Num	С	Rating	Symbol	Min	Тур	Max	Unit			
	Pseudo stop current (API, RTI, COP, and LCD disabled) PLL off, LCP mode									
10a	С	-40°C	I _{DDPS}	—	170	—	μA			
	C	25°C		—	200	—				
	C	Basuda stan surrent (ABL BTL COB and J	CD dischla		400					
4.01-	D	rseudo stop current (API, RTI, COP, and 1		a) PLL off, i	-SP mode	50				
100	P	–40°C 25°C	IDDPS		32	50 62	μΑ			
	P	150°C		_	287	480				
		Pseudo stop current (API, RTI, and COP enabl	ed , LCD dis	abled) PLL	off, LCP mo	ode				
11a	С	-40°C		, 	180	_	μA			
	С	25°C	DDF 3	_	220	_	1			
	С	150°C		—	500	—				
		Pseudo stop current (API, RTI, and COP enable	ed , LCD dis	abled) PLL	off, FSP mo	ode				
11b	С	-40°C	I _{DDPS}	—	460	—	μA			
	C	25°C		—	530	—				
	С	150°C		_	910	_				
		Pseudo stop current (API, RTI, and COP enab	led, LCD ena	abled) PLL (off, LCP mo	de				
12a	С	-40°C	I _{DDPS}	—	210	—	μA			
	C	25°C 150°C			530	_				
	0	Pseudo ston current (API_RTL and COP enab	led I CD en:	abled) PLL (off ESP mo	de				
12h	P					110	μA			
120	P	25°C	UDDPS	_	83	115	μΛ			
	Р	150°C		_	349	550				
		Stop Curre	ent							
13	Р	-40°C	I _{DDS}	_	16	30	μA			
	Ρ	25°C		—	19	32				
	Р	150°C		-	205	360				
		Stop Current (AF	Pl active)	1	1	1				
14	T	-40°C	I _{DDS}	—	17	—	μA			
	I T	25°C		_	22	_				
	I	Ston Current (AT	D active)		200					
15	т	-40°C			230		μΔ			
10	T	25°C	'DDS		256		μΑ			
	T	150°C		_	520	_				
			1	1	1	1				

Table A-11. Pseudo Stop and Full Stop Current

0x0010–0x0017 Module Mapping Control (S12XMMC) Map 2 of 2

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0012	Reserved	R	0	0	0	0	0	0	0	0
	Reserved	W								
0x0013		R	MGRAMO	0		PGMIFRO	0	0	0	0
	MINICOTET	W	Ν			N				
0x0014	Reserved	R	0	0	0	0	0	0	0	0
		W								
0x0015	PPAGE	R	PIX7	PIX6	PIX5	PIX4	PIX3	PIX2	PIX1	PIX0
0,0010	11/102	W						1 0.02		1 0 10
0x0016	RPAGE	R	RP7	RP6	RP5	RP4	RP3	RP2	RP1	RP0
0,0010		W						=		
0x0017	EPAGE	R	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0
0.0011		W	<i>.</i>	0			0	<u>_</u>		0

0x0018–0x0019 Reserved Register Space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0v0018	Reserved	R	0	0	0	0	0	0	0	0
0,0010		W								
0x0010	Reserved	R	0	0	0	0	0	0	0	0
070013		W								

0x001A-0x001B Device ID register

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0x001A	PARTIDH	R	PARTIDH										
		W											
0x001B	PARTIDL	R				PAR	TIDL						
		W											

0x001C-0x001F Port Integration Module (PIM) Map 3 of 4

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x001C	ECLKCTL	R W	NECLK	0	DIV16	EDIV4	EDIV3	EDIV2	EDIV1	EDIV0
0v001D	Reserved	R	0	0	0	0	0	0	0	0
0,0010		W								
		R		E IRQEN XIRQEN		0	0	0	0	0
UXUUTL	INCON	W								
	Received	R	0	0	0	0	0	0	0	0
0,0011	Reserved	W								

0x0220-0x0227 Stepper Stall Detector 0 (SSD0) Map

Address	Name	l	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0225	MDC0CNTL	R W				MDCC	NT[7:0]			
0,00006	TOPAOOL	R				ITGAC	C[15:8]			
0X0220	IIGUACCH	W								
0v0227	ITG0ACCL	R	•			ITGAC	C[7:0]			
0x0221		W								

0x0228–0x022F Stepper Stall Detector 1 (SSD1) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0228	RTZ1CTL	R W	ITG	DCOIL	RCIR	POL	0	SMS	ST	EP
0x0229	MDC1CTL	R W	MCZIE	MODMC	RDMCL	PRE	0 FLMC	MCEN	0	AOVIE
0x022A	SSD1CTL	R W	RTZE	SDCPU	SSDWAI	FTST	0	0	ACI	KS
0x022B	SSD1FLG	R W	MCZIF	0	0	0	0	0	0	AOVIF
0x022C	MDC1CNTH	R W		-		MDCCN	NT[15:8]			
0x022D	MDC1CNTL	R W				MDCC	NT[7:0]			
0x022E	ITG1ACCH	R				ITGAC	C[15:8]			
UNULL		W								
0x022F	ITG1ACCL	ĸ				IIGAC	.C[7:0]			
		vv								

0x0230-0x0237 Stepper Stall Detector 2 (SSD2) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0x0230	RTZ2CTL	R W	ITG	DCOIL	RCIR	POL	0	SMS	ST	EP				
0x0231	MDC2CTL	rl R M		MODMC	RDMCI	PRF	0	MCEN	0	AOVIE				
							FLMC							
0,0000	SSD2CTL	R		SDCDU		гтот	0	0		Ke				
0x0232		SSD2CTL	<u>550201</u>	2 3302011	<u>s</u> 330201L	33D2CTL	W	RIZE	SDCPU	SSDWAI	FISI			
0×0233	SSD2FLG R W		SSD2EL C	SSD2ELG	R	MCZIE	0	0	0	0	0	0		
0X0233		W	INICZ1											
0x0234	MDC2CNTH	R												
		W				WDCCI	1[10.0]							

MC9S12XHY-Family Reference Manual, Rev. 1.01