

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f030k6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.15	Serial pe	eripheral interface (SPI) 22
	3.16	Serial w	ire debug port (SW-DP) 23
4	Pinou	ts and p	oin descriptions
5	Memo	ory map	ping
6	Electr	ical cha	aracteristics
	6.1	Parame	ter conditions
		6.1.1	Minimum and maximum values
		6.1.2	Typical values
		6.1.3	Typical curves
		6.1.4	Loading capacitor
		6.1.5	Pin input voltage
		6.1.6	Power supply scheme
		6.1.7	Current consumption measurement
	6.2	Absolute	e maximum ratings 42
	6.3	Operatir	ng conditions
		6.3.1	General operating conditions
		6.3.2	Operating conditions at power-up / power-down
		6.3.3	Embedded reset and power control block characteristics
		6.3.4	Embedded reference voltage
		6.3.5	Supply current characteristics
		6.3.6	Wakeup time from low-power mode
		6.3.7	External clock source characteristics
		6.3.8	Internal clock source characteristics
		6.3.9	PLL characteristics
		6.3.10	Memory characteristics
		6.3.11	EMC characteristics
		6.3.12	Electrical sensitivity characteristics
		6.3.13	I/O current injection characteristics
		6.3.14	I/O port characteristics
		6.3.15	NRST pin characteristics
		6.3.16	12-bit ADC characteristics
		6.3.17	Temperature sensor characteristics
		6.3.18	Timer characteristics
		6.3.19	Communication interfaces

7	Packa	age info	rmation	75
	7.1	LQFP64	package information	75
	7.2	LQFP48	package information	78
	7.3	LQFP32	package information	81
	7.4	TSSOP	20 package information	84
	7.5	Therma	characteristics	87
		7.5.1	Reference document	87
8	Order	ring info	rmation	88
9	Revis	ion hist	ory	89

2 Description

The STM32F030x4/x6/x8/xC microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I²Cs, up to two SPIs and up to six USARTs), one 12-bit ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.

The STM32F030x4/x6/x8/xC microcontrollers operate in the -40 to +85 °C temperature range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F030x4/x6/x8/xC microcontrollers include devices in four different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F030x4/x6/x8/xC peripherals proposed.

These features make the STM32F030x4/x6/x8/xC microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.

3.11 Timers and watchdogs

The STM32F030x4/x6/x8/xC devices include up to five general-purpose timers, two basic timers and one advanced control timer.

Table 5 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	3
	TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	-
General	TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	-
purpose	TIM15 ⁽¹⁾	16-bit	Up	Any integer between 1 and 65536	Yes	2	-
	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, ⁽¹⁾ TIM7 ⁽²⁾	16-bit	Up	Any integer between 1 and 65536	Yes	0	-

1. Available on STM32F030x8 and STM32F030xC devices only.

2. Available on STM32F030xC devices only

3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.11.2 General-purpose timers (TIM3, TIM14..17)

There are four or five synchronizable general-purpose timers embedded in the STM32F030x4/x6/x8/xC devices (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM3

STM32F030x4/x6/x8/xC devices feature one synchronizable 4-channel general-purpose timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM3 has an independent DMA request generation.

This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

The counter can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

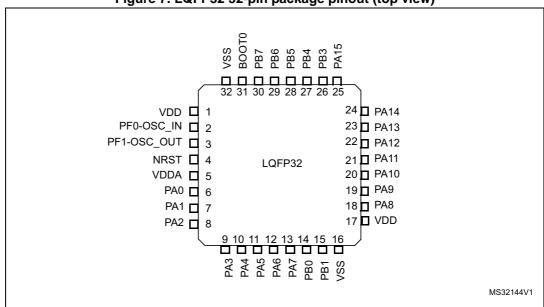
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

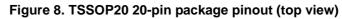
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

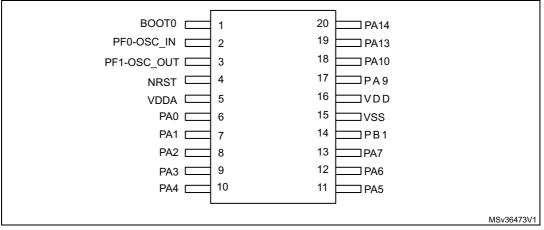
Their counters can be frozen in debug mode.

3.11.3 Basic timers TIM6 and TIM7


These timers can be used as a generic 16-bit time base.

3.11.4 Independent watchdog (IWDG)


The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It



DocID024849 Rev 3

Figure 7. LQFP32 32-pin package pinout (top view)

F	Pin nu	nber				đ	_	Pin functions	
LQFP64	LQFP48	LQFP32	TSSOP20	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
22	16	12	12	PA6	I/O	ТТа	-	SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT USART3_CTS ⁽⁵⁾	ADC_IN6
23	17	13	13	PA7	I/O	ТТа	-	SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT	ADC_IN7
24	-	-	-	PC4	I/O	TTa	-	EVENTOUT, USART3_TX ⁽⁵⁾	ADC_IN14
25	-	-	-	PC5	I/O	TTa	-	USART3_RX ⁽⁵⁾	ADC_IN15, WKPU5 ⁽⁵⁾
26	18	14	-	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, EVENTOUT, USART3_CK ⁽⁵⁾	ADC_IN8
27	19	15	14	PB1	I/O	ТТа	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N, USART3_RTS ⁽⁵⁾	ADC_IN9
28	20	-	-	PB2	I/O	FT	(6)	-	-
29	21	-	-	PB10	I/O	FT	-	SPI2_SCK ⁽⁵⁾ , I2C1_SCL ⁽²⁾ , I2C2_SCL ⁽³⁾⁽⁵⁾ , USART3_TX ⁽⁵⁾	-
30	22	-	-	PB11	I/O	FT	-	I2C1_SDA ⁽²⁾ , I2C2_SDA ⁽³⁾⁽⁵⁾ , EVENTOUT, USART3_RX ⁽⁵⁾	-
31	23	16	-	VSS	S	-	-	Grou	und
32	24	17	16	VDD	S	-	-	Digital power supply	
33	25	-	-	PB12	I/O	FT	-	SPI1_NSS ⁽²⁾ , SPI2_NSS ⁽³⁾⁽⁵⁾ , TIM1_BKIN, EVENTOUT, USART3_CK ⁽⁵⁾	-

Table 11. STM32F030x4/6/8/C pin definitions (continued)

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	
PB8	-	I2C1_SCL	TIM16_CH1	-	-	-	
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	-	SPI2_NSS ⁽¹⁾	
DD 40		I2C1_SCL ⁽²⁾			USART3_TX ⁽¹⁾	SPI2_SCK ⁽¹⁾	
PB10	-	I2C2_SCL ⁽¹⁾⁽³⁾	-	-	USART3_RX ⁽¹⁾	-	
PB11	EVENTOUT	I2C1_SDA ⁽²⁾		-			
		I2C2_SDA ⁽¹⁾⁽³⁾	-		USART3_RX ⁽¹⁾	-	
PB12 -	SPI1_NSS ⁽²⁾					TIM15 ⁽¹⁾	
	SPI2_NSS ⁽¹⁾⁽³⁾	EVENTOUT	TIM1_BKIN	-	USART3_RTS ⁽¹⁾	TIM15 ^(*)	
DD40	SPI1_SCK ⁽²⁾						
PB13	SPI2_SCK ⁽¹⁾⁽³⁾	-	TIM1_CH1N	-	USART3_CTS(⁽¹⁾	I2C2_SCL ⁽¹⁾	
	SPI1_MISO ⁽²⁾	PI1_MISO ⁽²⁾			(1)		
PB14	SPI2_MISO ⁽¹⁾⁽³⁾	TIM15_CH1 ⁽¹⁾⁽³⁾	TIM1_CH2N	-	USART3_RTS ⁽¹⁾	I2C2_SDA ⁽¹⁾	
	SPI1_MOSI ⁽²⁾	TIM15_CH2 ⁽¹⁾⁽³⁾					
PB15 -	SPI2_MOSI ⁽¹⁾⁽³⁾	TIM15_CH2 ⁽¹⁾⁽³⁾ TIM1_CH3		TIM15_CH1N ⁽¹⁾⁽³⁾	-	-	

1. This feature is available on STM32F030xC devices.

2. This feature is available on STM32F030x4 and STM32F030x6 devices.

3. This feature is available on STM32F030x8 devices.

N

5 Memory mapping

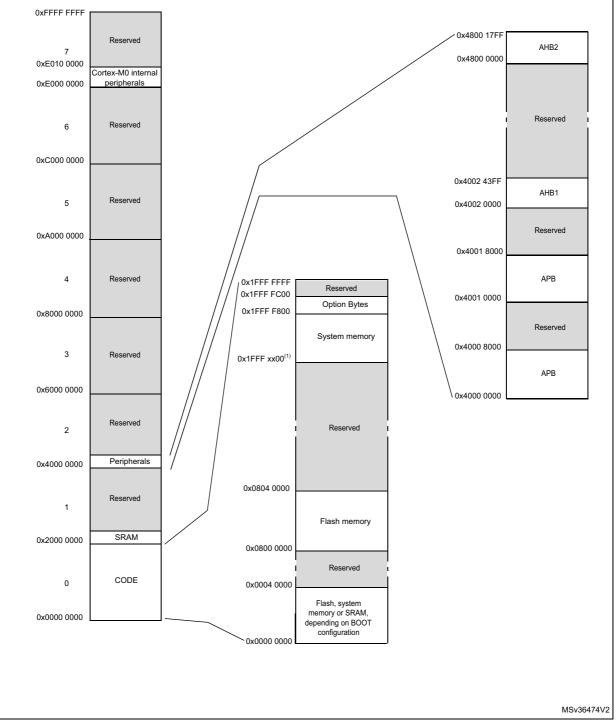


Figure 9. STM32F030x4/x6/x8/xC memory map

1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x6 and STM32F030x8 devices, and 0x1FFF D800 for STM32F030xC devices.

DocID024849 Rev 3

Bus	Boundary address	Size	Peripheral
-	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved
	0x4000 7400 - 0x4000 7FFF	3 KB	Reserved
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 5C00 - 0x4000 6FFF	5 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2 ⁽¹⁾
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	USART5 ⁽²⁾
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4 ⁽²⁾
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3 ⁽²⁾
	0x4000 4400 - 0x4000 47FF	1 KB	USART2 ⁽¹⁾
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2 ⁽¹⁾
APB	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7 ⁽²⁾
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6 ⁽¹⁾
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	ТІМЗ
	0x4000 0000 - 0x4000 03FF	1 KB	Reserved

Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses (continued)

1. This feature is available on STM32F030x8 and STM32F030xC devices only. For STM32F030x6 and STM32F060x4, the area is Reserved.

2. This feature is available on STM32F030xC devices only. This area is reserved for STM32F030x4/6/8 devices.

6.1.6 Power supply scheme

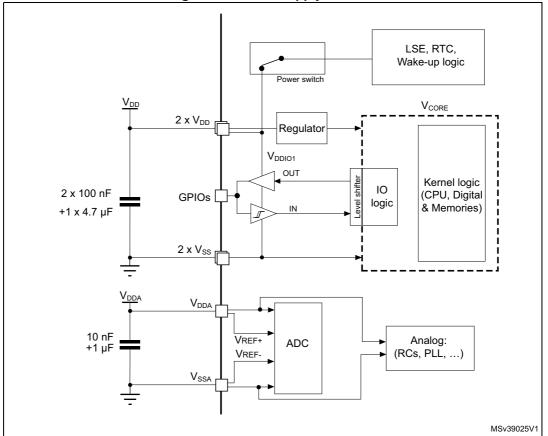
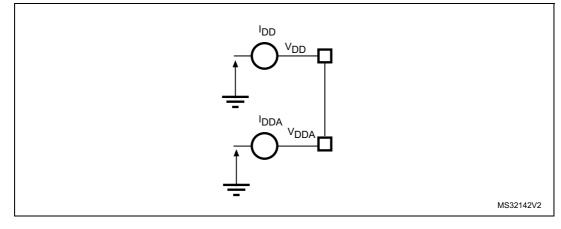



Figure 12. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 25* to *Table 27* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Table 25. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V⁽¹⁾

				All peripher	als enabled	
Symbol	Parameter	Conditions	f _{HCLK}		Max @ T _A ⁽²⁾	Unit
Sy				Тур	85 °C	
			48 MHz	22.0	22.8	
		HSI or HSE clock, PLL on	48 MHz	26.8	30.2	
	Supply current in Run mode, code		24 MHz	12.2	13.2	mA
I _{DD}	executing from Flash		24 MHz	14.1	16.2	ma
		HSI or HSE clock, PLL off	8 MHz	4.4	5.2	
			8 MHz	4.9	5.6	
		HSI or HSE clock, PLL on	48 MHz	22.2	23.2	mA
	Supply current in Run mode, code		48 MHz	26.1	29.3	
1			24 MHz	11.2	12.2	
I _{DD}	executing from RAM		24 MHz	13.3	15.7	
		HSI or HSE clock, PLL off	8 MHz	4.0	4.5	
			8 MHz	4.6	5.2	
			48 MHz	14	15.3	
	Supply current in	HSI or HSE clock, PLL on	48 MHz	17.0	19.0	
1	Sleep mode, code	TIGE OF THE CIUCK, FLE OF	24 MHz	7.3	7.8	mA
I _{DD}	executing from Flash or RAM		24 MHz	8.7	10.1	
		HSI or HSE clock, PLL off	8 MHz	2.6	2.9	
		TIGE OF THE CIUCK, FLE UI	8 MHz	3.0	3.5	

1. The gray shading is used to distinguish the values for STM32F030xC devices.

2. Data based on characterization results, not tested in production unless otherwise specified.

Symbol	Parameter	Cor	Typ @V _{DD} (V _{DD} = V _{DDA})	Max ⁽¹⁾	Unit	
				3.6 V	T _A = 85 °C	
I _{DD} Stop r	Supply current in	Regulator in run mode	, all oscillators OFF	19	48	
	Stop mode	Regulator in low-powe	5	32		
	Supply current in Standby mode	LSI ON and IWDG ON		2	-	
	Supply current in Stop mode		Regulator in run or low- power mode, all oscillators OFF	2.9	3.5	μA
	Supply current in Standby mode	V _{DDA} monitoring ON upply current in	LSI ON and IWDG ON	3.3	-	
				LSI OFF and IWDG OFF	2.8	3.5
I _{DDA}	Supply current in Stop mode		Regulator in run or low- power mode, all oscillators OFF	1.7	-	
	Supply current in		LSI ON and IWDG ON	2.3	-	
	Standby mode		LSI OFF and IWDG OFF	1.4	-	

Table 27. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit			
	Farameter		frequency band	8/48 MHz	Onit			
	Decklosed	$V_{DD} = 3.6 V$, $T_A = 25 °C$, LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	-3				
6			30 to 130 MHz	23	dBµV			
S _{EMI} Pea	Peak level		130 MHz to 1 GHz	17				
			EMI Level	4	-			

Table 42. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$, conforming to JESD22-A114	All	2	2000	V		
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$, conforming to ANSI/ESD STM5.3.1	All	C4 ⁽²⁾ C3 ⁽³⁾	500 ⁽²⁾ 250 ⁽³⁾	V		

Table 43. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

2. Applicable to STM32F030xC

3. Applicable to STM32F030x4, STM32F030x6, and STM32F030x8

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 44. Electrical sensitivities

Symbol Parameter		Conditions	Class	
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A	

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 45.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Deparintian		Functional susceptibility		
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on BOOT0 and PF1 pins	-0	NA		
	Injected current on PA9, PB3, PB13, PF11 pins with induced leakage current on adjacent pins less than 50 $\mu \rm A$	-5	NA		
I _{INJ}	Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA	-5	NA	mA	
·IINJ	Injected current on all other FT and FTf pins	-5	NA		
	Injected current on PB0 and PB1 pins	-5	NA		
	Injected current on PC0 pin	-0	+5		
	Injected current on all other TTa, TC and RST pins	-5	+5		

Table 45. I/O currer	nt injection	susceptibility
----------------------	--------------	----------------

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the conditions summarized in *Table 21: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
		FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	
V _{IL}	Low level input voltage	BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V
		All I/Os except BOOT0 pin	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
	High level input	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	
V _{IH}	voltage	BOOT0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-	
		TC and TTa I/O	-	- 200 ⁽¹⁾ -		
V _{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV
	, - · - · - · -	BOOT0	-	300 ⁽¹⁾	-	

Table 46. I/O static	characteristics
----------------------	-----------------

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 18: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 18: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 8 mA	-	0.4	v v
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} ≥2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	$V_{DDIOx} \ge 2.7 V$	V _{DDIOx} -1.3	-	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	ll _ 6 m 4	-	0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = 6 mA	V _{DDIOx} -0.4	-	V
V _{OLFm+} ⁽²⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	$ I_{IO} = 20 \text{ mA}$ $V_{DDIOx} \ge 2.7 \text{ V}$	-	0.4	V
		I _{IO} = 10 mA	-	0.4	V

Table 47. Output voltage characteristics⁽¹⁾

1. The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 18: Voltage characteristics*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO} .

2. Data based on characterization results. Not tested in production.

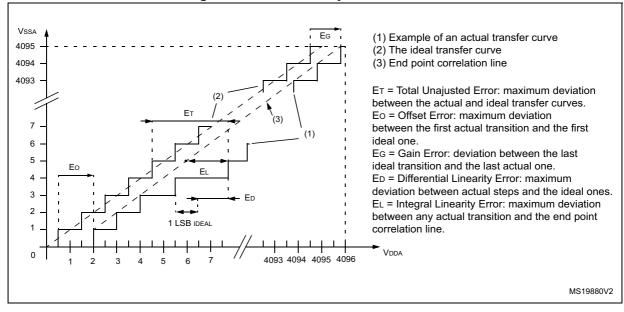
Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 20* and *Table 48*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DDIOx} ≥2.4 V	-	2	MHz
x0	t _{f(IO)out}	Output fall time		-	125	ns
	t _{r(IO)out}	Output rise time]		125	115
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz
01	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.4 \text{ V}$	-	25	ns
	t _{r(IO)out}	Output rise time		-	25	
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	- 50	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30	MHz
			$C_L = 50 \text{ pF}, 2.4 \text{ V} \leq V_{DDIOx} < 2.7 \text{ V}$	-	20	
	t _{f(IO)out}	Output fall time Output rise time	$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns
11			$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	
			C_L = 50 pF, 2.4 V \leq V _{DDIOx} < 2.7 V	-	12	
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	
	t _{r(IO)out}		$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	
			$C_L = 50 \text{ pF}, 2.4 \text{ V} \leq V_{DDIOx} < 2.7 \text{ V}$	-	12	
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾			2	MHz
configuration	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.4 \text{ V}$	-	12	
(4)	t _{r(IO)out}	Output rise time	1		34	ns
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 48. I/O AC characteristics⁽¹⁾⁽²⁾


1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 20*.

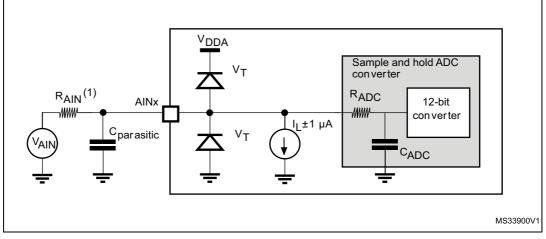
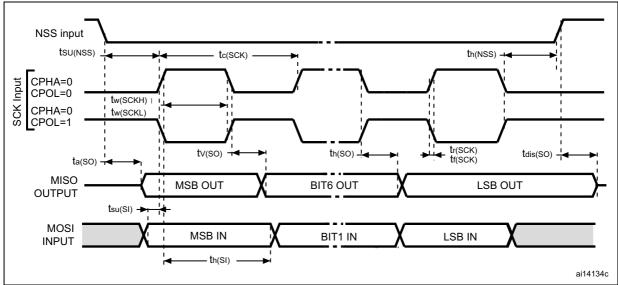
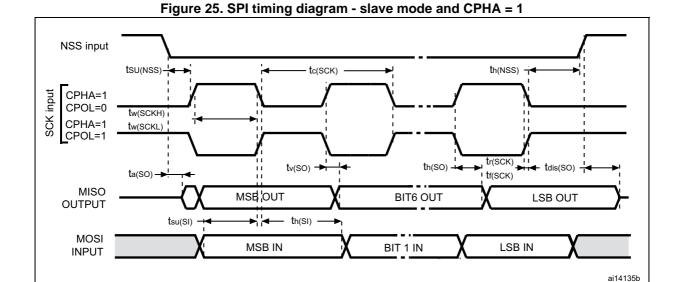

 When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360 for a detailed description of Fm+ I/O configuration.

Figure 22. ADC accuracy characteristics


1. Refer to Table 50: ADC characteristics for the values of R_{AIN} , R_{ADC} and C_{ADC} .

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.


General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

