

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24223a-24pvxa

Contents

PSoC Functional Overview	3
PSoC Core	3
Digital System	3
Analog System	
Additional System Resources	
PSoC Device Characteristics	5
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	
Solutions Library	6
Technical Support	6
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select Components	7
Configure Components	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pinouts	
20-Pin Part Pinout	8
28-Pin Part Pinout	9
Registers	10
Register Conventions	10
Register Mapping Tables	10
Electrical Specifications	13
Absolute Maximum Ratings	14
Operating Temperature	14

DC Electrical Characteristics	15
AC Electrical Characteristics	27
Packaging Information	36
Packaging Dimensions	36
Thermal Impedances	37
Capacitance on Crystal Pins	37
Solder Reflow Specifications	37
Tape and Reel Information	38
Development Tool Selection	
Software	40
Development Kits	40
Evaluation Tools	40
Device Programmers	40
Accessories (Emulation and Programming)	41
Ordering Information	42
Ordering Code Definitions	42
Reference Information	43
Acronyms	43
Reference Documents	
Document Conventions	44
Glossary	
Document History Page	49
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	51
Products	51
PSoC® Solutions	51
Cypress Developer Community	51
Tooknical Support	E 1

PSoC Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip Controller devices. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based system components with one, low cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture makes it possible for the user to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

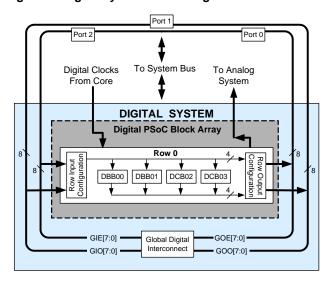
The PSoC architecture, as shown in the Logic Block Diagram on page 1, is comprised of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global buses allow all the device resources to be combined into a complete custom system. Each CY8C24x23A PSoC device includes four digital blocks and six analog blocks. Depending on the PSoC package, up to 24 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO.

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with multiple vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included sleep timer and watchdog timer (WDT).

Memory includes 4 KB of flash for program storage and 256 bytes of SRAM for data storage. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.


The PSoC device incorporates flexible internal clock generators, including a 24-MHz internal main oscillator (IMO) accurate to ±5% over temperature and voltage. A low-power 32-kHz internal low-speed oscillator (ILO) is provided for the sleep timer and WDT. If crystal accuracy is desired, the 32.768-kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24-MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital, and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt.

Digital System

The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user modules.

Figure 1. Digital System Block Diagram

Digital peripheral configurations include:

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 24-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- Full- or half-duplex 8-bit UART with selectable parity
- SPI master and slave
- I²C master, slave, or multimaster (implemented in a dedicated I²C block)
- Cyclical redundancy checker/generator (16-bit)
- Infrared Data Association (IrDA)
- PRS generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 5.

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\circledR}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits

- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - ☐ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are ADCs, DACs, amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional

Table 5. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	1
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	1
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49		1	89			C9	
PRT2GS	0A	RW		4A			8A			CA	1
PRT2DM2	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	1
	0F			4F		-	8F			CF	
	10					ASD20CR0	90	RW		D0	
				50							
	11 12			51		ASD20CR1 ASD20CR2	91 92	RW		D1 D2	
				52							
	13			53		ASD20CR3	93	RW		D3	<u> </u>
	14			54		ASC21CR0	94	RW		D4	<u> </u>
	15			55		ASC21CR1	95	RW	100.073	D5	
	16			56		ASC21CR2	96	RW	I2C_CFG	D6	RW
	17			57		ASC21CR3	97	RW	I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#	_	67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B		1	AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C		1	AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D		1	AD		ACC DR0	ED	RW
DCB03DR1	2E	RW		6E		1	AE		ACC_DR0 ACC_DR3	EE	RW
DCB03DR2	2F	#		6F		1	AF		ACC_DR3 ACC_DR2	EF	RW
PODUJONU	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW	7.00_DRZ	F0	1744
	31		ACB00CR3	70	RW	RDI0SYN	B0 B1	RW		F0 F1	-
			ACB00CR0 ACB00CR1								+
	32			72	RW	RDI0IS	B2	RW		F2	
	33		ACBOOCR2	73	RW	RDIOLTO	B3	RW		F3	_
	34		ACB01CR3	74	RW	RDIOLT1	B4	RW		F4	<u> </u>
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	ļ
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW	0011.5	F6	<u> </u>
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	ļ
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
									T		+
	3D			7D			BD			FD	
	3D 3E			7D 7E			BD BE		CPU_SCR1	FD FE	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

DC Electrical Characteristics

DC Chip-Level Specifications

Table 9 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 9. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V_{DD}	Supply voltage	3.0	ı	5.25	V	See DC POR and LVD specifications, Table 19 on page 25.
I _{DD}	Supply current	_	5	8	mA	Conditions are $V_{DD}=5.0 \text{ V}$, CPU = 3 MHz, 48 MHz disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. IMO = 24 MHz.
I _{DD3}	Supply current	_	3.3	6.0	mA	Conditions are $V_{DD}=3.3~V$, CPU=3~MHz, $48~MHz$ disabled, VC1=1.5~MHz, $VC2=93.75~kHz$, VC3=93.75~kHz, Analog power = off. IMO=24~MHz.
I _{SB}	Sleep (mode) current with POR, LVD, sleep timer, and WDT. ^[7]	_	3	6.5	μА	$V_{DD} = 3.3 \text{ V}, -40 \text{ °C} \le T_A \le 55 \text{ °C},$ Analog power = off.
I _{SBH}	Sleep (mode) current with POR, LVD, sleep timer, and WDT at high temperature. ^[7]	-	4	25	μА	V_{DD} = 3.3 V, 55 °C < $T_A \le$ 85 °C, Analog power = off.
I _{SBXTL}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and external crystal. ^[7]	-	4	7.5	μА	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. $V_{DD} = 3.3 \text{ V}, -40 \text{ °C} \leq T_A \leq 55 \text{ °C},$ Analog power = off.
I _{SBXTLH}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature. ^[7]	-	5	26	μА	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C, Analog power = off.
V_{REF}	Reference voltage (bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V _{DD} .

Note

Document Number: 001-52469 Rev. *I

^{7.} Standby current includes all functions (POR, LVD, WDT, sleep timer) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

The operational amplifier is a component of both the analog CT PSoC blocks and the analog SC PSoC blocks. The guaranteed specifications are measured in the analog CT PSoC block.

Table 11. 5-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	20	_	pА	Gross tested to 1 μA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. T _A = 25 °C.
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high opamp bias)	0.0 0.5	-	V _{DD} V _{DD} – 0.5	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80	1 1 1	- - -	dB dB dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5	- - -	- - -	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	_ _ _	- - -	0.2 0.2 0.5	V V V	
Isoa	Supply current (including associated AGND buffer) Power = low, Opamp bias = high Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	64	80	-	dB	$V_{SS} \le V_{IN} \le (V_{DD} - 2.25 \text{ V}) \text{ or } (V_{DD} - 1.25 \text{ V}) \le V_{IN} \le V_{DD}.$

DC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 14. 5-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	_	+6	_	μV/°C	
V_{CMOB}	Common mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1	-	Ω	
V _{OHIGHOB}	High output voltage swing (Load = 32Ω to $V_{DD}/2$) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1	_ _	- -	V V	
V _{OLOWOB}	Low output voltage swing (Load = 32Ω to $V_{DD}/2$) Power = low Power = high	_ _	_ _	0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high	- -	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	$V_{OUT} > (V_{DD} - 1.25).$
C _L	Load Capacitance	-	1	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.

Table 15. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	_	+6	_	μV/°C	
V_{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		Ω	
V _{OHIGHOB}	High output voltage swing (Load = 1 k Ω to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0	_	_ _	V V	
V _{OLOWOB}	Low output voltage swing (Load = 1 k Ω to V _{DD} /2) Power = low Power = high		_ _	0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	
I _{SOB}	Supply current including bias cell (no load) Power = low Power = high		0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	$V_{OUT} > (V_{DD} - 1.25).$
C _L	Load Capacitance	_	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.

Table 16. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Sympol Reference Description		Description	Min	Тур	Max	Units
0b010	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.121	V _{DD} - 0.003	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2	$V_{DD}/2 + 0.034$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.019	V
	RefPower = high	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.083	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.033$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.004$	V _{SS} + 0.016	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	V _{DD} - 0.075	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.032$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	V _{SS} + 0.015	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	V _{DD} - 0.074	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.032$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.014	V
0b011	RefPower = high	V_{REFHI}	Ref High	3 x Bandgap	3.753	3.874	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 x Bandgap	2.511	2.590	2.657	V
		V _{REFLO}	Ref Low	Bandgap	1.243	1.297	1.333	V
	RefPower = high	V_{REFHI}	Ref High	3 x Bandgap	3.767	3.881	3.974	V
	Opamp bias = low	V _{AGND}	AGND	2 x Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	Bandgap	1.241	1.295	1.330	V
	RefPower = medium	V_{REFHI}	Ref High	3 x Bandgap	2.771	3.885	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 x Bandgap	2.521	2.593	2.649	V
		V _{REFLO}	Ref Low	Bandgap	1.240	1.295	1.331	V
	RefPower = medium Opamp bias = low	V_{REFHI}	Ref High	3 x Bandgap	3.771	3.887	3.977	V
		V _{AGND}	AGND	2 x Bandgap	2.522	2.594	2.648	V
		V _{REFLO}	Ref Low	Bandgap	1.239	1.295	1.332	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 x Bandgap + P2[6] (P2[6] = 1.3 V)	2.481 + P2[6]	2.569 + P2[6]	2.639 + P2[6]	V
		V _{AGND}	AGND	2 x Bandgap	2.511	2.590	2.658	V
		V_{REFLO}	Ref Low	2 x Bandgap – P2[6] (P2[6] = 1.3 V)	2.515 – P2[6]	2.602 - P2[6]	2.654 - P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 x Bandgap + P2[6] (P2[6] = 1.3 V)	2.498 + P2[6]	2.579 + P2[6]	2.642 + P2[6]	V
		V _{AGND}	AGND	2 x Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	2 x Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.598 - P2[6]	2.650 - P2[6]	V
	RefPower = medium Opamp bias = high	V_{REFHI}	Ref High	2 x Bandgap + P2[6] (P2[6] = 1.3 V)	2.504 + P2[6]	2.583 + P2[6]	2.646 + P2[6]	V
		V _{AGND}	AGND	2 x Bandgap	2.521	2.592	2.650	V
		V _{REFLO}	Ref Low	2 x Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.596 - P2[6]	2.649 - P2[6]	V
	RefPower = medium Opamp bias = low	V_{REFHI}	Ref High	2 x Bandgap + P2[6] (P2[6] = 1.3 V)	2.505 + P2[6]	2.586 + P2[6]	2.648 + P2[6]	V
		V_{AGND}	AGND	2 x Bandgap	2.521	2.594	2.648	V
		V _{REFLO}	Ref Low	2 x Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.595 - P2[6]	2.648 - P2[6]	V

Table 16. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.228	P2[4] + 1.284	P2[4] + 1.332	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] - Bandgap ($P2[4] = V_{DD}/2$)	P2[4] - 1.358	P2[4] – 1.293	P2[4] - 1.226	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap ($P2[4] = V_{DD}/2$)	P2[4] + 1.236	P2[4] + 1.289	P2[4] + 1.332	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] - Bandgap (P2[4] = $V_{DD}/2$)	P2[4] - 1.357	P2[4] – 1.297	P2[4] - 1.229	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap ($P2[4] = V_{DD}/2$)	P2[4] + 1.237	P2[4] + 1.291	P2[4] + 1.337	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V_{REFLO}	Ref Low	P2[4] - Bandgap ($P2[4] = V_{DD}/2$)	P2[4] - 1.356	P2[4] - 1.299	P2[4] - 1.232	V
	RefPower = medium Opamp bias = low	V_{REFHI}	Ref High	P2[4] + Bandgap ($P2[4] = V_{DD}/2$)	P2[4] + 1.237	P2[4] + 1.292	P2[4] + 1.337	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V_{REFLO}	Ref Low	P2[4] - Bandgap ($P2[4] = V_{DD}/2$)	P2[4] - 1.357	P2[4] - 1.300	P2[4] - 1.233	V
0b110	RefPower = high	V_{REFHI}	Ref High	2 x Bandgap	2.512	2.594	2.654	V
	Opamp bias = high	V_{AGND}	AGND	Bandgap	1.250	1.303	1.346	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.011	V _{SS} + 0.027	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 x Bandgap	2.515	2.592	2.654	V
		V_{AGND}	AGND	Bandgap	1.253	1.301	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.02	V
	RefPower = medium	V _{REFHI}	Ref High	2 x Bandgap	2.518	2.593	2.651	V
	Opamp bias = high	V_{AGND}	AGND	Bandgap	1.254	1.301	1.338	V
		V _{REFLO}	Ref Low	V_{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.017	V
	RefPower = medium	V _{REFHI}	Ref High	2 x Bandgap	2.517	2.594	2.650	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.255	1.300	1.337	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.015	V
0b111	RefPower = high	V _{REFHI}	Ref High	3.2 x Bandgap	4.011	4.143	4.203	V
	Opamp bias = high	V_{AGND}	AGND	1.6 x Bandgap	2.020	2.075	2.118	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.011	V _{SS} + 0.026	V
	RefPower = high	V _{REFHI}	Ref High	3.2 x Bandgap	4.022	4.138	4.203	V
	Opamp bias = low	V_{AGND}	AGND	1.6 x Bandgap	2.023	2.075	2.114	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.017	V
	RefPower = medium	V _{REFHI}	Ref High	3.2 x Bandgap	4.026	4.141	4.207	V
	Opamp bias = high	V_{AGND}	AGND	1.6 x Bandgap	2.024	2.075	2.114	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.015	V
	RefPower = medium	V _{REFHI}	Ref High	3.2 x Bandgap	4.030	4.143	4.206	V
	Opamp bias = low	V_{AGND}	AGND	1.6 x Bandgap	2.024	2.076	2.112	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.013$	V

Table 17. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Sympol Reference Description		Description	Min	Тур	Max	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.170	V _{DD} /2 + 1.288	V _{DD} /2 + 1.376	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.098	$V_{DD}/2 + 0.003$	$V_{DD}/2 + 0.097$	V
		V_{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.386	V _{DD} /2 – 1.287	V _{DD} /2 – 1.169	V
	RefPower = high	V_{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.210	V _{DD} /2 + 1.290	V _{DD} /2 + 1.355	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.055	$V_{DD}/2 + 0.001$	$V_{DD}/2 + 0.054$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.359	V _{DD} /2 – 1.292	V _{DD} /2 – 1.214	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.198	V _{DD} /2 + 1.292	V _{DD} /2 + 1.368	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.041	V _{DD} /2	$V_{DD}/2 + 0.04$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.362	V _{DD} /2 – 1.295	V _{DD} /2 – 1.220	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.202	V _{DD} /2 + 1.292	V _{DD} /2 + 1.364	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.033$	V _{DD} /2	$V_{DD}/2 + 0.030$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.364	V _{DD} /2 – 1.297	V _{DD} /2 – 1.222	V
0b001	RefPower = high Opamp bias = high	V_{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.072	P2[4]+P2[6]- 0.017	P2[4]+P2[6]+ 0.041	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]-P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.029	P2[4]-P2[6]+ 0.010	P2[4]-P2[6]+ 0.048	V
	RefPower = high Opamp bias = low	V_{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.066	P2[4] + P2[6] – 0.010	P2[4]+P2[6]+ 0.043	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V_{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.024	P2[4]-P2[6]+ 0.004	P2[4]-P2[6]+ 0.034	V
	RefPower = medium Opamp bias = high	V_{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.073	P2[4]+P2[6]- 0.007	P2[4]+P2[6]+ 0.053	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]-P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.028	P2[4]-P2[6]+ 0.002	P2[4]-P2[6]+ 0.033	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] – 0.006	P2[4]+P2[6]+ 0.056	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]-P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.030	P2[4] – P2[6]	P2[4]-P2[6]+ 0.032	V
0b010	RefPower = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.102	$V_{DD} - 0.003$	V_{DD}	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.040$	$V_{DD}/2 + 0.001$	$V_{DD}/2 + 0.039$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.005$	$V_{SS} + 0.020$	V
	RefPower = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.082	$V_{DD} - 0.002$	V_{DD}	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.031$	V _{DD} /2	$V_{DD}/2 + 0.028$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.015$	V
	RefPower = medium	V_{REFHI}	Ref High	V_{DD}	$V_{DD} - 0.083$	$V_{DD} - 0.002$	V_{DD}	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.032$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.029$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.002$	V _{SS} + 0.014	V
	RefPower = medium Opamp bias = low	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.081	V _{DD} – 0.002	V_{DD}	V
	Opanip bias = 10W	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.033$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.029$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	$V_{SS} + 0.002$	$V_{SS} + 0.013$	V
0b011	All power settings Not allowed at 3.3 V	-	_	_	_	_	_	-

Document Number: 001-52469 Rev. *I

DC POR and LVD Specifications

Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable System-on-Chip Technical Reference Manual for more information on the VLT_CR register.

Table 19. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.36 2.82 4.55	2.40 2.95 4.70	V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[8] 2.99 ^[9] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V	

- 8. Always greater than 50 mV above V_{PPOR} (PORLEV=00) for falling supply. 9. Always greater than 50 mV above V_{PPOR} (PORLEV=01) for falling supply.

DC Programming Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 20. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5.0	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V_{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3.0	I	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	_	5	25	mA	
V_{ILP}	Input low voltage during programming or verify	_	-	0.8	V	
V_{IHP}	Input high voltage during programming or verify	2.1	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	1	0.2	mA	Driving internal pull down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	_	1.5	mA	Driving internal pull down resistor.
V _{OLV}	Output low voltage during programming or verify	_	_	0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	_	V_{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[10, 11]	1,000	_	_	_	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[11, 12]	64,000	_	-	_	Erase/write cycles
Flash _{DR}	Flash data retention	10	_	-	Years	

<sup>Notes
10. The erase/write cycle limit per block (Flash_{ENPB}) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
11. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.
12. The maximum total number of allowed erase/write cycles is the minimum Flash_{ENPB} value multiplied by the number of flash blocks in the device.</sup>

^{12.} The maximum total number of allowed erase/write cycles is the minimum Flash ENPB value multiplied by the number of flash blocks in the device.

AC Electrical Characteristics

AC Chip-Level Specifications

Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 21. AC Chip-Level Specifications

Mode	Symbol	Description	Min	Тур	Max	Units	Notes
FCPU1 CPU frequency (5 V V _{DD} nominal) 0.089 ^{1/31} − 25.2 ^{1/31} MHz Minimum CPU frequency is 0.022 MHz when SLIMO mode = 0.	F _{IMO24}	IMO frequency for 24 MHz	22.8 ^[13]	24	25.2 ^[13]	MHz	trim values. See Figure 6 on page 13. SLIMO
F _{CPU2}	F _{IMO6}	IMO frequency for 6 MHz		6	6.5 ^[13]	MHz	trim values. See Figure 6 on page 13. SLIMO
Paul	F _{CPU1}	CPU frequency (5 V V _{DD} nominal)	0.089 ^[13]	_	25.2 ^[13]	MHz	Minimum CPU frequency is 0.022 MHz when SLIMO mode = 0.
Page 32. Page 32	F _{CPU2}	nominal)	0.089 ^[13]	_	12.6 ^[13]	MHz	
Voruge Fazika	F _{BLK5}		0	_	50.4 ^[13,14]	MHz	page 32.
$F_{32KU} \hspace{0.5cm} \begin{array}{ c c c c c }\hline F_{32KU} \hspace{0.5cm} & ILO untrimmed frequency \hspace{0.5cm} 5 \hspace{0.5cm} - \hspace{0.5cm} 100 \hspace{0.5cm} & KHz \hspace{0.5cm} Altra a reset and before the M8C processor starts to execute, the ILO is not trimmed. $	F _{BLK33}		0	_	25.2 ^[13,14]	MHz	
F _{32K2}	F _{32K1}	ILO frequency	15	32	64	kHz	
Refer to Figure 9 on page 28.	F _{32KU}	ILO untrimmed frequency	5	_	100	kHz	
	F _{32K2}	External crystal oscillator	=		-	kHz	
tpLLSLEWSLOW PLL lock time for low gain setting 0.5 — 50 ms Refer to Figure 8 on page 28. tos External crystal oscillator startup to 1/% — 1700 2620 ms Refer to Figure 9 on page 28. tosAcc External crystal oscillator startup to 100 ppm — 2800 3800 ms The crystal oscillator frequency is within 100 ppm of its final value by the end of the tosAcc period. Correct operation assumes a properly loaded 1 µW maximum drive level 32.788 kHz crystal .3.0 V ≤ V _{DD} ≤ 5.25 V, –40 °C ≤ T _A ≤ 85 °C. txRsT External reset pulse width 10 — — µs DC24M 24 MHz duty cycle 40 50 60 % DCILO ILO duty cycle 20 50 80 % Step24M 24 MHz trim step size — 50 — kHz Fout48M 48 MHz output frequency of signal on row input or row output. — — 12.6[13] MHz Trimmed. Using factory trim values. FMAX Maximum frequency of signal on row input or row output. — — 250 V/ms V _{DD} slew rate during power up. <td>F_{PLL}</td> <td>PLL frequency</td> <td>=</td> <td></td> <td>-</td> <td>MHz</td> <td>Is a multiple (x732) of crystal frequency.</td>	F _{PLL}	PLL frequency	=		-	MHz	Is a multiple (x732) of crystal frequency.
tos External crystal oscillator startup to 1 1700 2620 ms Refer to Figure 9 on page 28. tosAcc External crystal oscillator startup to 100 ppm 2800 3800 ms The crystal oscillator frequency is within 100 ppm of its final value by the end of the tosAcc period. Correct operation assumes a properly loaded 1 μW maximum drive level 32.768 kHz crystal. 3.0 V ≤ V _{DD} ≤ 5.25 V, −40 °C ≤ T _A ≤ 85 °C. txRST External reset pulse width 10 − − μs DC24M 24 MHz duty cycle 40 50 60 % DCILO ILO duty cycle 20 50 80 % Step24M 24 MHz trim step size − 50 − kHz Fout48M 48 MHz output frequency 45.6 ^[13] 48.0 50.4 ^[13] MHz Fout48M 48 MHz output frequency 45.6 ^[13] 48.0 50.4 ^[13] MHz FMAX Maximum frequency of signal on row input or row output. − 12.6 ^[13] MHz FPOWERUP Time between end of POR state and CPU code execution 100 ms FNOWERUP Time between end of POR state and CPU code execution 24 MHz IMO cycle-to-cycle jitter (RMS) − 200 700 ps tJIT_INO [15] 24 MHz IMO period jitter (RMS) − 300 900 ps FL Lorge-to-cycle jitter (RMS) − 200 800 ps FLL lorge-to-cycle jitter (RMS) − 200 800 ps FLL lorge-ton-cycle jitter (RMS) − 200 800 ps	t _{PLLSLEW}	PLL lock time	0.5	-	10	ms	Refer to Figure 7 on page 28.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		PLL lock time for low gain setting	0.5	_	50	ms	Refer to Figure 8 on page 28.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	1700	2620	ms	Refer to Figure 9 on page 28.
DC24M 24 MHz duty cycle 40 50 60 % DC34M 24 MHz duty cycle 20 50 80 % Step24M 24 MHz trim step size - 50 - kHz Fout48M 48 MHz output frequency 45.6 ^[13] 48.0 50.4 ^[13] MHz Trimmed. Using factory trim values. FMAX Maximum frequency of signal on row input or row output. - 12.6 ^[13] MHz SRPOWERUP Power supply slew rate - - 250 V/ms V _{DD} slew rate during power up. tPOWERUP Time between end of POR state and CPU code execution - 16 100 ms Power up from 0 V. tJIT_IMO To 24 MHz IMO cycle-to-cycle jitter (RMS) - 300 900 ps 24 MHz IMO long term N - 300 900 ps cycle-to-cycle jitter (RMS) - 100 400 ps tJIT_PLL To PLL cycle-to-cycle jitter (RMS) - 200 800 ps PLL long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps	tosacc		-	2800	3800	ms	ppm of its final value by the end of the t _{OSACC} period. Correct operation assumes a properly loaded 1 µW maximum drive level 32.768 kHz
DC24M 24 MHz duty cycle 40 50 60 % DC1LO ILO duty cycle 20 50 80 % Step24M 24 MHz trim step size - 50 - kHz Fout48M 48 MHz output frequency 45.6 ^[13] 48.0 50.4 ^[13] MHz Trimmed. Using factory trim values. FMAX Maximum frequency of signal on row input or row output. - 12.6 ^[13] MHz SRPOWERUP Power supply slew rate - - 250 V/ms V _{DD} slew rate during power up. tpower up from 0 V. tylit_IMO 15 24 MHz IMO cycle-to-cycle jitter (RMS) - 300 900 ps 24 MHz IMO long term N - 300 900 ps cycle-to-cycle jitter (RMS) - 100 400 ps tylit_PLL 15 PLL cycle-to-cycle jitter (RMS) - 200 800 ps PLL long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300 1200 ps N = 32 Full long term N cycle-to-cycle - 300	t _{XRST}	External reset pulse width	10	_	_	μS	
Step24M		24 MHz duty cycle	40	50	60	%	
Step24M	DCILO	ILO duty cycle	20	50	80	%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step24M	24 MHz trim step size	_	50	_	kHz	
Tow input or row output. SRPOWERUP Power supply slew rate - - 250 V/ms VDD slew rate during power up.	Fout48M	48 MHz output frequency	45.6 ^[13]	48.0	50.4 ^[13]	MHz	Trimmed. Using factory trim values.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F _{MAX}		_	_	12.6 ^[13]	MHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SR _{POWERUP}	Power supply slew rate	-	_	250	V/ms	V _{DD} slew rate during power up.
CRMS 24 MHz IMO long term N - 300 900 ps N = 32	t _{POWERUP}		-	16	100	ms	Power up from 0 V.
cycle-to-cycle jitter (RMS) 100 400 ps 24 MHz IMO period jitter (RMS) - 100 400 ps t _{JIT_PLL} [15] PLL cycle-to-cycle jitter (RMS) - 200 800 ps PLL long term N cycle-to-cycle jitter (RMS) - 300 1200 ps N = 32	t _{JIT_IMO} [15]		-	200	700	ps	
t _{JIT_PLL} [15] PLL cycle-to-cycle jitter (RMS) - 200 800 ps PLL long term N cycle-to-cycle			-	300	900	ps	N = 32
PLL long term N cycle-to-cycle – 300 1200 ps N = 32 jitter (RMS)		24 MHz IMO period jitter (RMS)	_	100	400	ps	
PLL long term N cycle-to-cycle – 300 1200 ps N = 32 jitter (RMS)	t _{JIT PLL} [15]	PLL cycle-to-cycle jitter (RMS)	_	200	800	ps	
		PLL long term N cycle-to-cycle	_	300	1200		N = 32
		, ,	_	100	700	ps	

 ^{13.} Accuracy derived from IMO with appropriate trim for V_{DD} range.
 14. See the individual user module data sheets for information on maximum frequencies for user modules.

^{15.} Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

Figure 7. PLL Lock Timing Diagram

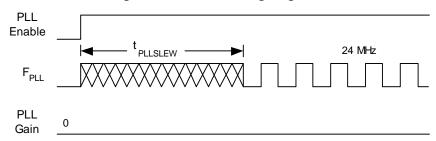


Figure 8. PLL Lock for Low Gain Setting Timing Diagram

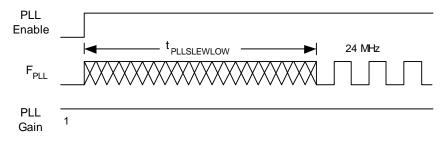
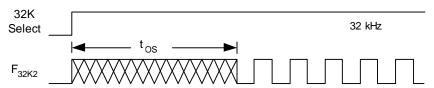



Figure 9. External Crystal Oscillator Startup Timing Diagram

AC GPIO Specifications

Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 22. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	_	12.6 ^[16]	MHz	Normal strong mode
t _{RISEF}	Rise time, normal strong mode, Cload = 50 pF	3	_	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
t _{FALLF}	Fall time, normal strong mode, Cload = 50 pF	2	_	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
t _{RISES}	Rise time, slow strong mode, Cload = 50 pF	10	27	_	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
t _{FALLS}	Fall time, slow strong mode, Cload = 50 pF	10	22	_	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

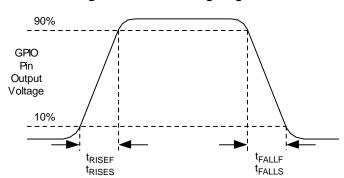


Figure 10. GPIO Timing Diagram

Note

16. Accuracy derived from IMO with appropriate trim for $V_{\mbox{\scriptsize DD}}$ range.

AC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog CT PSoC block.

Power = high and Opamp bias = high is not allowed at 3.3 V.

Table 23. 5-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	_	_	3.9	μS
	Power = medium, Opamp bias = high	_	_	0.72	μS
	Power = high, Opamp bias = high	_	_	0.62	μS
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	_	_	5.9	μS
	Power = medium, Opamp bias = high	_	_	0.92	μS
	Power = high, Opamp bias = high	_	_	0.72	μS
SR _{ROA}	Rising slew rate (20% to 80%) (10 pF load, unity gain)				
11071	Power = low, Opamp bias = low	0.15	_	_	V/μs
	Power = medium, Opamp bias = high	1.7	_	_	V/μs
	Power = high, Opamp bias = high	6.5	_	_	V/μs
SR _{FOA}	Falling slew rate (80% to 20%) (10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.01	_	_	V/μs
	Power = medium, Opamp bias = high	0.5	_	_	V/μs
	Power = high, Opamp bias = high	4.0	_	_	V/μs
BW _{OA}	Gain bandwidth product				
	Power = low, Opamp bias = low	0.75	_	_	MHz
	Power = medium, Opamp bias = high	3.1	_	_	MHz
	Power = high, Opamp bias = high	5.4	_	_	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	_	100	_	nV/rt-Hz

Table 24. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	_	_	3.92	μS
	Power = medium, Opamp bias = high	_	_	0.72	μS
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	_	_	5.41	μS
	Power = medium, Opamp bias = high	_	_	0.72	μS
SR _{ROA}	Rising slew rate (20% to 80%) (10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.31	_	_	V/μs
	Power = medium, Opamp bias = high	2.7	_	_	V/μs
SR _{FOA}	Falling slew rate (80% to 20%) (10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.24	_	_	V/μs
	Power = medium, Opamp bias = high	1.8	_	_	V/μs
BW _{OA}	Gain bandwidth product				
	Power = low, Opamp bias = low	0.67	_	_	MHz
	Power = medium, Opamp bias = high	2.8	_	_	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	_	100	_	nV/rt-Hz

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1 k Ω resistance and the external capacitor.

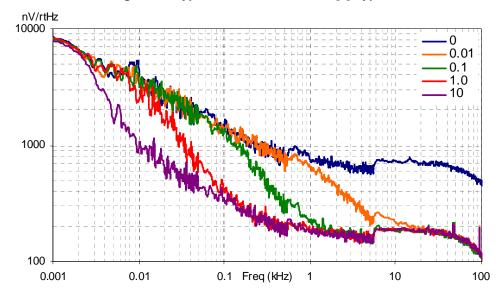


Figure 11. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

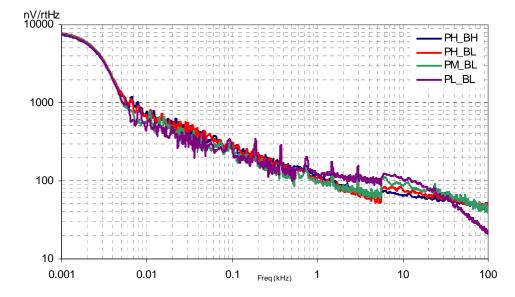


Figure 12. Typical Opamp Noise

AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 29. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
F _{OSCEXT}	Frequency	0.093	_	24.6	MHz
_	High period	20.6	_	5300	ns
_	Low period	20.6	_	_	ns
_	Power-up IMO to switch	150	_	_	μS

Table 30. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
F _{OSCEXT}	Frequency with CPU clock divide by 1 ^[19]	0.093	_	12.3	MHz
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater ^[20]	0.186	_	24.6	MHz
_	High period with CPU clock divide by 1	41.7	_	5300	ns
_	Low period with CPU clock divide by 1	41.7	_	_	ns
_	Power-up IMO to switch	150	1	_	μS

AC Programming Specifications

Table 31 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, 3.0 V to 3.6 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 31. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	_	20	ns	
t _{FSCLK}	Fall time of SCLK	1	_	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	_	_	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	_	_	ns	
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	
t _{ERASEB}	Flash erase time per block	_	20	80 ^[21]	ms	
t _{WRITE}	Flash block write time	_	80	320 ^[21]	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	_	_	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	_	_	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{ERASEALL}	Flash erase time (bulk)	-	20	_	ms	Erase all blocks and protection fields at once
t _{PRGH}	Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	_	_	200 ^[21]	ms	T _J ≥ 0 °C
t _{PRGC}	Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	_	_	400 ^[21]	ms	T _J < 0 °C

Notes

^{19.} Maximum CPU frequency is 12 MHz nominal at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

^{20.} If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

^{21.} For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

Glossary (continued)

microcontroller An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a

microcontroller typically includes memory, timing circuits, and I/O circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for

general-purpose computation as is a microprocessor.

mixed-signal The reference to a circuit containing both analog and digital techniques and components.

modulator A device that imposes a signal on a carrier.

1. A disturbance that affects a signal and that may distort the information carried by the signal. noise

2. The random variations of one or more characteristics of any entity such as voltage, current, or data.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

A technique for testing transmitted data. Typically, a binary digit is added to the data to make the sum of all the parity

digits of the binary data either always even (even parity) or always odd (odd parity).

phase-locked An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference loop (PLL) signal.

The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their pinouts

physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between

schematic and PCB design (both being computer generated files) and may also involve pin names.

port A group of pins, usually eight.

power-on reset

(POR)

A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware

PSoC[®] Cypress Semiconductor's PSoC[®] is a registered trademark and Programmable System-on-Chip™ is a trademark

of Cypress.

PSoC Designer™ The software for Cypress' Programmable System-on-Chip technology.

pulse width modulator (PWM)

An output in the form of duty cycle which varies as a function of the applied value.

RAM An acronym for random access memory. A data-storage device from which data can be read out and new data

can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a known state. See hardware reset and software reset.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot

be written in.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or

channel.

The time it takes for an output signal or value to stabilize after the input has changed from one value to another. settling time

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers

Interface

Lighting & Power Control

Memory PSoC

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

cypress.com/go/automotive

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2009-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-52469 Rev. *I

Revised March 18, 2015

Page 51 of 51