Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | M8C | | Core Size | 8-Bit | | Speed | 24MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | POR, PWM, WDT | | Number of I/O | 16 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 256 x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.25V | | Data Converters | A/D 4x14b; D/A 4x9b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 20-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | 20-SOIC | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c27243-24sxit | # **Designing with PSoC Designer** The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps: - 1. Select User Modules. - 2. Configure user modules. - 3. Organize and connect. - 4. Generate, verify, and debug. #### Select User Modules PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple. #### **Configure User Modules** Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse width modulator (PWM) User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design. #### **Organize and Connect** You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources. #### Generate, Verify, and Debug When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed. A complete code development environment lets you to develop and customize your applications in either C, assembly language, or both. The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals. ### 44-pin Part Pinout ### Table 5. Pin Definitions - 44-pin TQFP | | <u> </u> | | piii - | | |-----|----------|--------|----------|---| | Pin | | pe | Pin Name | Description | | No. | Digital | Analog | | 2000 ii pii oii | | 1 | I/O | | P2[5] | | | 2 | I/O | I | P2[3] | Direct switched capacitor block input | | 3 | I/O | I | P2[1] | Direct switched capacitor block input | | 4 | I/O | | P4[7] | | | 5 | I/O | | P4[5] | | | 6 | I/O | | P4[3] | | | 7 | I/O | | P4[1] | | | 8 | Po | wer | SMP | SMP connection to external components required | | 9 | I/O | | P3[7] | | | 10 | I/O | | P3[5] | | | 11 | I/O | | P3[3] | | | 12 | I/O | | P3[1] | | | 13 | I/O | | P1[7] | I ² C SCL | | 14 | I/O | | P1[5] | I ² C SDA | | 15 | I/O | | P1[3] | | | 16 | I/O | | P1[1] | Crystal input (XTALin), I ² C SCL, ISSP-SCLK ^[8] | | 17 | Po | wer | Vss | Ground connection. | | 18 | I/O | | P1[0] | Crystal output (XTALout), I ² C SDA, ISSP-SDATA ^[8] | | 19 | I/O | | P1[2] | | | 20 | I/O | | P1[4] | Optional external clock input (EXTCLK) | | 21 | I/O | | P1[6] | | | 22 | I/O | | P3[0] | | | 23 | I/O | | P3[2] | | | 24 | I/O | | P3[4] | | | 25 | I/O | | P3[6] | | | 26 | Inj | put | XRES | Active high external reset with internal pull down | | 27 | I/O | | P4[0] | | | 28 | I/O | | P4[2] | | | 29 | I/O | | P4[4] | | | 30 | I/O | | P4[6] | | | 31 | I/O | I | P2[0] | Direct switched capacitor block input | | 32 | I/O | ı | P2[2] | Direct switched capacitor block input | | 33 | I/O | | P2[4] | External Analog Ground (AGND) | | 34 | I/O | | P2[6] | External Voltage Reference (VRef) | | 35 | I/O | Į | P0[0] | Analog column mux input | | 36 | I/O | I/O | P0[2] | Analog column mux input and column output | | 37 | I/O | I/O | P0[4] | Analog column mux input and column output | | 38 | I/O | ı | P0[6] | Analog column mux input | | 39 | Po | wer | V_{DD} | Supply voltage | | 40 | I/O | 1 | P0[7] | Analog column mux input | | 41 | I/O | I/O | P0[5] | Analog column mux input and column output | | 42 | I/O | I/O | P0[3] | Analog column mux input and column output | | 43 | I/O | 1 | P0[1] | Analog column mux input | | 44 | I/O | | P2[7] | | | | | | | | Figure 7. CY8C27543 44-pin PSoC Device **LEGEND**: A = Analog, I = Input, and O = Output. #### Note ^{8.} These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Programmable System-on-Chip Technical Reference Manual for details. Table 8. Pin Definitions – 56-pin Part Pinout (SSOP) (continued) | Pin | Ty | /pe | Pin | Description | |-----|---------|--------|----------|---| | No. | Digital | Analog | Name | Description | | 42 | OCD | | HCLK | OCD high-speed clock output | | 43 | OCD | | CCLK | OCD CPU clock output | | 44 | I/O | | P4[0] | | | 45 | I/O | | P4[2] | | | 46 | I/O | | P4[4] | | | 47 | I/O | | P4[6] | | | 48 | I/O | | P2[0] | Direct switched capacitor block input | | 49 | I/O | | P2[2] | Direct switched capacitor block input | | 50 | I/O | | P2[4] | External Analog Ground (AGND) | | 51 | I/O | | P2[6] | External Voltage Reference (VRef) | | 52 | I/O | | P0[0] | Analog column mux input | | 53 | I/O | I | P0[2] | Analog column mux input and column output | | 54 | I/O | I | P0[4] | Analog column mux input and column output | | 55 | I/O | l | P0[6] | Analog column mux input | | 56 | Power | | V_{DD} | Supply voltage | **LEGEND**: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug. Document Number: 38-12012 Rev. AB Page 15 of 69 # **Register Reference** This section lists the registers of the CY8C27x43 PSoC device. For detailed register information, see the PSoC Programmable System-on-Chip Technical Reference Manual. #### **Register Conventions** The register conventions specific to this section are listed in the following table. **Table 9. Register Conventions** | Convention | Description | |------------|------------------------------| | R | Read register or bit(s) | | W | Write register or bit(s) | | L | Logical register or bit(s) | | С | Clearable register or bit(s) | | # | Access is bit specific | #### **Register Mapping Tables** The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set, the user is in Bank 1. Note In the following register mapping tables, blank fields are reserved and must not be accessed. Table 10. Register Map Bank 0 Table: User Space | Name | Addr
(0,Hex) | Access | |------------------|-----------------|--------|---------|-----------------|--------|-------------------|-----------------|--------|----------|-----------------|--------| | PRT0DR | 00 | RW | | 40 | | ASC10CR0 | 80 | RW | | C0 | | | PRT0IE | 01 | RW | | 41 | | ASC10CR1 | 81 | RW | | C1 | | | PRT0GS | 02 | RW | | 42 | | ASC10CR2 | 82 | RW | | C2 | | | PRT0DM2 | 03 | RW | | 43 | | ASC10CR3 | 83 | RW | | C3 | | | PRT1DR | 04 | RW | | 44 | | ASD11CR0 | 84 | RW | | C4 | | |
PRT1IE | 05 | RW | | 45 | | ASD11CR1 | 85 | RW | | C5 | | | PRT1GS | 06 | RW | | 46 | | ASD11CR2 | 86 | RW | | C6 | | | PRT1DM2 | 07 | RW | | 47 | | ASD11CR3 | 87 | RW | | C7 | | | PRT2DR | 08 | RW | | 48 | | ASC12CR0 | 88 | RW | | C8 | | | PRT2IE | 09 | RW | | 49 | | ASC12CR1 | 89 | RW | | C9 | | | PRT2GS | 0A | RW | | 4A | | ASC12CR2 | 8A | RW | | CA | | | PRT2DM2 | 0B | RW | | 4B | | ASC12CR3 | 8B | RW | | СВ | 1 | | PRT3DR | 0C | RW | | 4C | | ASD13CR0 | 8C | RW | | CC | + | | PRT3IE | 0D | RW | | 4D | | ASD13CR1 | 8D | RW | | CD | + | | PRT3GS | 0E | RW | | 4E | | ASD13CR2 | 8E | RW | | CE | + | | PRT3DM2 | 0F | RW | | 4F | | ASD13CR3 | 8F | RW | | CF | + | | PRT4DR | 10 | RW | | 50 | | ASD20CR0 | 90 | RW | | D0 | + | | PRT4IE | 11 | RW | | 51 | | ASD20CR1 | 91 | RW | | D1 | + | | PRT4GS | 12 | RW | | 52 | | ASD20CR2 | 92 | RW | | D2 | + | | PRT4DM2 | 13 | RW | | 53 | | ASD20CR3 | 93 | RW | | D3 | + | | PRT5DR | 14 | RW | | 54 | | ASC21CR0 | 94 | RW | | D4 | | | PRT5IE | 15 | RW | | 55 | | ASC21CR1 | 95 | RW | | D5 | | | PRT5GS | 16 | RW | | 56 | | ASC21CR2 | 96 | RW | I2C CFG | D6 | RW | | PRT5DM2 | 17 | RW | | 57 | | ASC21CR3 | 97 | RW | I2C_SCR | D7 | # | | | 18 | | | 58 | | ASD22CR0 | 98 | RW | I2C_DR | D8 | RW | | | 19 | | | 59 | | ASD22CR1 | 99 | RW | I2C_MSCR | D9 | # | | | 1A | | | 5A | | ASD22CR2 | 9A | RW | INT_CLR0 | DA | RW | | | 1B | | | 5B | | ASD22CR3 | 9B | RW | INT_CLR1 | DB | RW | | | 1C | | | 5C | | ASC23CR0 | 9C | RW | | DC | 1 | | | 1D | | | 5D | | ASC23CR1 | 9D | RW | INT_CLR3 | DD | RW | | | 1E | | | 5E | | ASC23CR2 | 9E | RW | INT_MSK3 | DE | RW | | | 1F | | | 5F | | ASC23CR3 | 9F | RW | _ | DF | + | | DBB00DR0 | 20 | # | AMX_IN | 60 | RW | | A0 | | INT_MSK0 | E0 | RW | | DBB00DR1 | 21 | W | | 61 | | | A1 | | INT_MSK1 | E1 | RW | | DBB00DR2 | 22 | RW | | 62 | | | A2 | 1 | INT_VC | E2 | RC | | DBB00CR0 | 23 | # | ARF_CR | 63 | RW | 1 | A3 | 1 | RES_WDT | E3 | W | | DBB01DR0 | 24 | # | CMP_CR0 | 64 | # | 1 | A4 | 1 | DEC_DH | E4 | RC | | DBB01DR1 | 25 | W | ASY_CR | 65 | # | | A5 | 1 | DEC_DL | E5 | RC | | DBB01DR2 | 26 | RW | CMP CR1 | 66 | RW | | A6 | | DEC_CR0 | E6 | RW | | Blank fields are | <u></u> | | _ | | | # Access is hit s | | 1 | | | | Blank fields are Reserved and must not be accessed. # Access is bit specific. # **Electrical Specifications** This section presents the DC and AC electrical specifications of the CY8C27x43 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at http://www.cypress.com. Specifications are valid for –40 °C \leq T $_A$ \leq 85 °C and T $_J$ \leq 100 °C, except where noted. Specifications for devices running at greater than 12 MHz are valid for –40 °C \leq T $_A$ \leq 70 °C and T $_J$ \leq 82 °C. Figure 11. Voltage versus CPU Frequency # **Absolute Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Table 12. Absolute Maximum Ratings | Symbol | Description | Min | Тур | Max | Unit | Notes | |-----------------------|---|-------------------------|-----|-------------------------|-------|--| | T _{STG} | Storage temperature | - 55 | 25 | +100 | °C | Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability. | | T _{BAKETEMP} | Bake temperature | _ | 125 | See
package
label | °C | | | t _{BAKETIME} | Bake time | See
package
label | - | 72 | Hours | | | T _A | Ambient temperature with power applied | -40 | - | +85 | °C | | | V_{DD} | Supply voltage on V _{DD} relative to Vss | -0.5 | - | +6.0 | V | | | V_{IO} | DC input voltage | Vss - 0.5 | - | V _{DD} + 0.5 | V | | | V_{IOZ} | DC voltage applied to tristate | Vss - 0.5 | - | V _{DD} + 0.5 | V | | | I _{MIO} | Maximum current into any port pin | -25 | _ | +50 | mA | | | I _{MAIO} | Maximum current into any port pin configured as analog driver | -50 | _ | +50 | mA | | | ESD | Electrostatic discharge voltage | 2000 | _ | - | V | Human body model ESD. | | LU | Latch-up current | - | - | 200 | mA | | Document Number: 38-12012 Rev. AB Page 19 of 69 Table 16. 5-V DC Operational Amplifier Specifications | Symbol | Description | Min | Тур | Max | Units | Notes | |----------------------|--|---|---|---|----------------------------|--| | CMRR _{OA} | Common mode rejection ratio Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high | 60
60
60 | -
-
- | _
_
_ | dB
dB
dB | Specification is applicable at both High and Low opamp bias. | | G _{OLOA} | Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high | 60
60
80 | -
-
- | -
-
- | dB
dB
dB | Specification is applicable at High opamp bias. For Low opamp bias mode, minimum is 60 dB. | | V _{OHIGHOA} | High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high | V _{DD} - 0.2
V _{DD} - 0.2
V _{DD} - 0.5 | _
_
_ | -
-
- | V
V
V | | | V _{OLOWOA} | Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high | -
-
- | _
_
_ | 0.2
0.2
0.5 | V
V
V | | | Isoa | Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high | -
-
-
- | 150
300
600
1200
2400
4600 | 200
400
800
1600
3200
6400 | µА
µА
µА
µА
µА | | | PSRR _{OA} | Supply voltage rejection ratio | 60 | _ | - | dB | $Vss \leq V_{IN} \leq (V_{DD}-2.25)$ or $(V_{DD}-1.25~V) \leq V_{IN} \leq V_{DD}.$ | Table 17. 3.3-V DC Operational Amplifier Specifications | Symbol | Description | Min | Тур | Max | Unit | Notes | |---------------------|--|-----------------------|---------------------------------|----------------------------|----------------------------|---| | V _{OSOA} | Input offset voltage (absolute value) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high | -
-
-
-
- | 1.4
1.4
1.4
1.4
1.4 | 10
10
10
10
10 | mV
mV
mV
mV
mV | Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation. | | TCV _{OSOA} | Average input offset voltage drift | _ | 7 | 40 | μV/°C | | | I _{EBOA} | Input leakage current (port 0 analog pins) | _ | 20 | _ | pА | Gross tested to 1µA. | | C _{INOA} | Input capacitance (port 0 analog pins) | - | 4.5 | 9.5 | pF | Package and pin dependent.
Temp = 25 °C. | | V _{CMOA} | Common mode voltage range | 0.2 | - | V _{DD} – 0.2 | V | The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. | | CMRR _{OA} | Common mode rejection ratio Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low | 50
50
50 | _
_
_ | -
-
- | dB
dB
dB | Specification is applicable at Low opamp bias. For High bias mode (except High Power, High opamp bias), minimum is 60 dB. | | G _{OLOA} | Open loop gain Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low | 60
60
80 | _
_
_ | -
-
- | dB
dB
dB | Specification is applicable at Low opamp bias. For High opamp bias mode (except High Power, High opamp bias), minimum is 60 dB. | Document Number: 38-12012 Rev. AB Page 22 of 69 ### DC Switch Mode Pump Specifications Table 21 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only. Table 21. DC Switch Mode Pump (SMP) Specifications | Symbol | Description | Min | Тур | Max | Unit | Notes | |---------------------------|---|--------|--------|--------|-----------------|---| | V _{PUMP} 5 V | 5 V output
voltage | 4.75 | 5.0 | 5.25 | V | Configured as in Note 15. Average, neglecting ripple. SMP trip voltage is set to 5.0 V. | | V _{PUMP} 3 V | 3 V output voltage | 3.00 | 3.25 | 3.60 | ٧ | Configured as in Note 15. Average, neglecting ripple. SMP trip voltage is set to 3.25 V. | | I _{PUMP} | Available output current $V_{BAT} = 1.5 \text{ V}, V_{PUMP} = 3.25 \text{ V}$ $V_{BAT} = 1.8 \text{ V}, V_{PUMP} = 5.0 \text{ V}$ | 8
5 | _
_ | _
_ | mA
mA | Configured as in Note 15. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 5.0 V. | | V _{BAT} 5 V | Input voltage range from battery | 1.8 | - | 5.0 | V | Configured as in Note 15. SMP trip voltage is set to 5.0 V. | | V _{BAT} 3 V | Input voltage range from battery | 1.0 | - | 3.3 | V | Configured as in Note 15. SMP trip voltage is set to 3.25 V. | | V _{BATSTART} | Minimum input voltage from battery to start pump | 1.1 | - | _ | V | Configured as in Note 15. | | ΔV_{PUMP_Line} | Line regulation (over V _{BAT} range) | - | 5 | _ | %V _O | Configured as in Note 15. $V_{\rm O}$ is the " $V_{\rm DD}$ Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 25 on page 33. | | ΔV _{PUMP_Load} | Load regulation | - | 5 | _ | %V _O | Configured as in Note 15. $V_{\rm O}$ is the " $V_{\rm DD}$ Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 25 on page 33. | | ΔV_{PUMP_Ripple} | Output voltage ripple (depends on capacitor/load) | _ | 100 | _ | mVpp | Configured as in Note 15. Load is 5 mA. | | E ₃ | Efficiency | 35 | 50 | _ | % | Configured as in Note 15. Load is 5 mA. SMP trip voltage is set to 3.25 V. | | F _{PUMP} | Switching frequency | ı | 1.3 | _ | MHz | | | DC _{PUMP} | Switching duty cycle | _ | 50 | _ | % | | Figure 12. Basic Switch Mode Pump Circuit Note 15. L_1 = 2 mH inductor, C_1 = 10 mF capacitor, D_1 = Schottky diode. See Figure 12. Document Number: 38-12012 Rev. AB Table 23. 3.3-V DC Analog Reference Specifications | Reference
ARF_CR
[5:3] | Reference Power
Settings | Symbol | Reference | Description | Min | Тур | Max | Unit | |------------------------------|--|--------------------|-----------|---|----------------------------|----------------------------|----------------------------|------| | | | V _{REFHI} | Ref High | V _{DD} /2 + Bandgap | V _{DD} /2 + 1.225 | V _{DD} /2 + 1.292 | V _{DD} /2 + 1.361 | V | | | RefPower = high
Opamp bias = high | V _{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.067 | V _{DD} /2 – 0.002 | V _{DD} /2 + 0.063 | V | | | | V _{REFLO} | Ref Low | V _{DD} /2 – Bandgap | V _{DD} /2 – 1.35 | V _{DD} /2 – 1.293 | V _{DD} /2 – 1.210 | V | | | | V_{REFHI} | Ref High | V _{DD} /2 + Bandgap | V _{DD} /2 + 1.218 | V _{DD} /2 + 1.294 | V _{DD} /2 + 1.370 | V | | | RefPower = high
Opamp bias = low | V _{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.038 | V _{DD} /2 – 0.001 | V _{DD} /2 + 0.035 | V | | 05000 | | V _{REFLO} | Ref Low | V _{DD} /2 – Bandgap | V _{DD} /2 – 1.329 | V _{DD} /2 – 1.296 | V _{DD} /2 – 1.259 | V | | 00000 | | V_{REFHI} | Ref High | V _{DD} /2 + Bandgap | V _{DD} /2 + 1.221 | V _{DD} /2 + 1.294 | V _{DD} /2 + 1.366 | V | | | RefPower = medium
Opamp bias = high | V _{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.050 | V _{DD} /2 – 0.002 | V _{DD} /2 + 0.046 | V | | | | V _{REFLO} | Ref Low | V _{DD} /2 – Bandgap | V _{DD} /2 – 1.331 | V _{DD} /2 – 1.296 | V _{DD} /2 – 1.260 | V | | | RefPower = medium
Opamp bias = low | V_{REFHI} | Ref High | V _{DD} /2 + Bandgap | V _{DD} /2 + 1.226 | V _{DD} /2 + 1.295 | V _{DD} /2 + 1.365 | V | | 0b000 - | | V _{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.028 | V _{DD} /2 – 0.001 | V _{DD} /2 + 0.025 | V | | | | V _{REFLO} | Ref Low | V _{DD} /2 – Bandgap | V _{DD} /2 – 1.329 | V _{DD} /2 – 1.297 | V _{DD} /2 – 1.262 | V | | | RefPower = high
Opamp bias = high | V _{REFHI} | Ref High | P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] + P2[6] -
0.098 | P2[4] + P2[6]
- 0.018 | P2[4] + P2[6]
+ 0.055 | V | | | | V _{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | _ | | | | V _{REFLO} | Ref Low | P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] – P2[6] –
0.055 | P2[4] - P2[6]
+ 0.013 | P2[4] - P2[6]
+ 0.086 | V | | | | V _{REFHI} | Ref High | P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] + P2[6] –
0.082 | P2[4] + P2[6]
- 0.011 | P2[4] + P2[6]
+ 0.050 | V | | | RefPower = high
Opamp bias = low | V _{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | _ | | 0b001 | | V _{REFLO} | Ref Low | P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] – P2[6] –
0.037 | P2[4] - P2[6]
+ 0.006 | P2[4] - P2[6]
+ 0.054 | V | | 05001 | | V _{REFHI} | Ref High | P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] + P2[6] –
0.079 | P2[4] + P2[6]
- 0.012 | P2[4] + P2[6]
+ 0.047 | V | | | RefPower = medium
Opamp bias = high | V _{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | _ | | | | V _{REFLO} | Ref Low | P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] – P2[6] –
0.038 | P2[4] - P2[6]
+ 0.006 | P2[4] - P2[6]
+ 0.057 | V | | | | V _{REFHI} | Ref High | P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] + P2[6] -
0.080 | P2[4] + P2[6]
- 0.008 | P2[4] + P2[6]
+ 0.055 | V | | | RefPower = medium
Opamp bias = low | V _{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | _ | | | | V _{REFLO} | Ref Low | P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V) | P2[4] – P2[6] –
0.032 | P2[4] – P2[6]
+ 0.003 | P2[4] – P2[6]
+ 0.042 | V | Document Number: 38-12012 Rev. AB Page 30 of 69 Table 23. 3.3-V DC Analog Reference Specifications | Reference
ARF_CR
[5:3] | Reference Power
Settings | Symbol | Reference | Description | Min | Тур | Max | Unit | |---|--|--------------------|-----------|---|----------------------------|----------------------------|----------------------------|------| | | | V _{REFHI} | Ref High | V_{DD} | V _{DD} – 0.06 | V _{DD} - 0.010 | V _{DD} | V | | | RefPower = high
Opamp bias = high | V_{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.05 | V _{DD} /2 – 0.002 | V _{DD} /2 + 0.040 | V | | | | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.009 | Vss + 0.056 | V | | | | V_{REFHI} | Ref High | V_{DD} | V _{DD} – 0.060 | V _{DD} – 0.006 | V_{DD} | V | | | RefPower = high
Opamp bias = low | V_{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.028 | V _{DD} /2 – 0.001 | V _{DD} /2 + 0.025 | V | | 0b010 - 0b101 | | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.005 | Vss + 0.034 | V | | 00010 | | V_{REFHI} | Ref High | V_{DD} | V _{DD} – 0.058 | V _{DD} - 0.008 | V _{DD} | V | | | RefPower = medium
Opamp bias = high | V_{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.037 | V _{DD} /2 – 0.002 | V _{DD} /2 + 0.033 | V | | | | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.007 | Vss + 0.046 | V | | | | V_{REFHI} | Ref High | V_{DD} | V _{DD} – 0.057 | V _{DD} - 0.006 | V _{DD} | V | | | RefPower = medium
Opamp bias = low | V_{AGND} | AGND | V _{DD} /2 | V _{DD} /2 – 0.025 | V _{DD} /2 – 0.001 | V _{DD} /2 + 0.022 | V | | | | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.004 | Vss + 0.030 | V | | 0b011 | All power settings.
Not allowed for 3.3 V | _ | - | - | - | _ | _ | _ | | 0b100 | All power settings.
Not allowed for 3.3 V | _ | _ | - | - | _ | _ | _ | | | RefPower = high
Opamp bias = high | V _{REFHI} | Ref High | P2[4] + Bandgap
(P2[4] = V _{DD} /2) | P2[4] + 1.213 | P2[4] + 1.291 | P2[4] + 1.367 | V | | | | V_{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | V | | | | V _{REFLO} | Ref Low | P2[4] - Bandgap
($P2[4] = V_{DD}/2$) | P2[4] – 1.333 | P2[4] – 1.294 | P2[4] – 1.208 | V | | | | V _{REFHI} | Ref High |
P2[4] + Bandgap
(P2[4] = V _{DD} /2) | P2[4] + 1.217 | P2[4] + 1.294 | P2[4] + 1.368 | V | | | RefPower = high
Opamp bias = low | V_{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | V | | 0b101 | | V _{REFLO} | Ref Low | P2[4] – Bandgap
(P2[4] = V _{DD} /2) | P2[4] – 1.320 | P2[4] - 1.296 | P2[4] - 1.261 | V | | ODTOT | | V _{REFHI} | Ref High | P2[4] + Bandgap
(P2[4] = V _{DD} /2) | P2[4] + 1.217 | P2[4] + 1.294 | P2[4] + 1.369 | V | | | RefPower = medium
Opamp bias = high | V_{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | V | | | opanip ties ing. | V _{REFLO} | Ref Low | P2[4] – Bandgap
(P2[4] = V _{DD} /2) | P2[4] – 1.322 | P2[4] - 1.297 | P2[4] - 1.262 | V | | | | V _{REFHI} | Ref High | P2[4] + Bandgap
(P2[4] = $V_{DD}/2$) | P2[4] + 1.219 | P2[4] + 1.295 | P2[4] + 1.37 | V | | | RefPower = medium
Opamp bias = low | V _{AGND} | AGND | P2[4] | P2[4] | P2[4] | P2[4] | V | | | Opamp bias = low | V _{REFLO} | Ref Low | P2[4] - Bandgap
(P2[4] = $V_{DD}/2$) | P2[4] – 1.324 | P2[4] – 1.297 | P2[4] – 1.262 | V | Document Number: 38-12012 Rev. AB Page 31 of 69 Table 23. 3.3-V DC Analog Reference Specifications | Reference
ARF_CR
[5:3] | Reference Power
Settings | Symbol | Reference | Description | Min | Тур | Max | Unit | |------------------------------|--|--------------------|-----------|-------------|-------|-------------|-------------|------| | | | V _{REFHI} | Ref High | 2 × Bandgap | 2.507 | 2.598 | 2.698 | V | | | RefPower = high
Opamp bias = high | V_{AGND} | AGND | Bandgap | 1.203 | 1.307 | 1.424 | V | | | | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.012 | Vss + 0.067 | V | | | RefPower = high
Opamp bias = low | V _{REFHI} | Ref High | 2 × Bandgap | 2.516 | 2.598 | 2.683 | V | | | | V_{AGND} | AGND | Bandgap | 1.241 | 1.303 | 1.376 | V | | 0b110 | | V _{REFLO} | Ref Low | Vss | Vss | Vss + 0.007 | Vss + 0.040 | V | | 00110 | | V_{REFHI} | Ref High | 2 × Bandgap | 2.510 | 2.599 | 2.693 | V | | | RefPower = medium
Opamp bias = high | V_{AGND} | AGND | Bandgap | 1.240 | 1.305 | 1.374 | V | | | , , , , , , , , , , , , , , , , , , , | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.008 | Vss + 0.048 | V | | | | V_{REFHI} | Ref High | 2 × Bandgap | 2.515 | 2.598 | 2.683 | V | | | RefPower = medium
Opamp bias = low | V_{AGND} | AGND | Bandgap | 1.258 | 1.302 | 1.355 | V | | | C P S P S S TO 1011 | V_{REFLO} | Ref Low | Vss | Vss | Vss + 0.005 | Vss + 0.03 | V | | 0b111 | All power settings.
Not allowed for 3.3 V | _ | - | - | _ | _ | _ | - | # DC Analog PSoC Block Specifications Table 24 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only. Table 24. DC Analog PSoC Block Specifications | Symbol | Description | Min | Тур | Max | Unit | |-----------------|---------------------------------------|-----|------|-----|------| | R _{CT} | Resistor unit value (continuous time) | _ | 12.2 | - | kΩ | | C _{SC} | Capacitor unit value (switch cap) | _ | 80 | _ | fF | Document Number: 38-12012 Rev. AB Page 32 of 69 #### DC POR and LVD Specifications Table 25 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only. **Note** The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the *PSoC Programmable System-on-Chip Technical Reference Manual* for more information on the VLT_CR register. Table 25. DC POR and LVD Specifications | Symbol | Description | Min | Тур | Max | Unit | Notes | |---|---|--|--|---|-----------------------|---| | V _{PPOR0R}
V _{PPOR1R}
V _{PPOR2R} | V _{DD} value for PPOR trip (positive ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b | -
-
- | 2.91
4.39
4.55 | 111 | V
V
V | V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from watchdog. | | V _{PPOR0}
V _{PPOR1}
V _{PPOR2} | V _{DD} value for PPOR trip (negative ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b | -
-
- | 2.82
4.39
4.55 | 111 | V
V
V | | | V _{PH0}
V _{PH1}
V _{PH2} | PPOR hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b | -
-
- | 92
0
0 | 111 | mV
mV
mV | | | VLVD0
VLVD1
VLVD2
VLVD3
VLVD4
VLVD5
VLVD6
VLVD6
VLVD7 | V _{DD} value for LVD trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b | 2.86
2.96
3.07
3.92
4.39
4.55
4.63
4.72 | 2.92
3.02
3.13
4.00
4.48
4.64
4.73
4.81 | 2.98 ^[17] 3.08 3.20 4.08 4.57 4.74 ^[18] 4.82 4.91 | > | | | VPUMP0
VPUMP1
VPUMP2
VPUMP3
VPUMP4
VPUMP5
VPUMP6
VPUMP7 | V _{DD} value for PUMP trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b | 2.96
3.03
3.18
4.11
4.55
4.63
4.72
4.90 | 3.02
3.10
3.25
4.19
4.64
4.73
4.82
5.00 | 3.08
3.16
3.32
4.28
4.74
4.82
4.91
5.10 | V
V
V
V
V | | #### Notes ^{17.} Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply. ^{18.} Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply. ### **AC Electrical Characteristics** #### AC Chip-Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only. Table 28. AC Chip-Level Specifications | Symbol | Description | Min | Тур | Max | Unit | Notes | |--------------------------|---|--------|--------|--------------------------|------|---| | F _{IMO} | Internal main oscillator (IMO) frequency | 23.4 | 24 | 24.6 ^[22] | MHz | Trimmed. Utilizing factory trim values. | | F _{CPU1} | CPU frequency (5 V nominal) | 0.0914 | 24 | 24.6 ^[22] | MHz | Trimmed. Utilizing factory trim values. SLIMO mode = 0. | | F _{CPU2} | CPU frequency (3.3 V nominal) | 0.0914 | 12 | 12.3 ^[23] | MHz | Trimmed. Utilizing factory trim values. SLIMO mode = 0. | | F _{48M} | Digital PSoC block frequency | 0 | 48 | 49.2 ^[22, 24] | MHz | Refer to AC Digital Block
Specifications on page 40. | | F _{24M} | Digital PSoC block frequency | 0 | 24 | 24.6 ^[24] | MHz | | | F _{32K1} | Internal low speed oscillator (ILO) frequency | 15 | 32 | 64 | kHz | | | F _{32K2} | External crystal oscillator | _ | 32.768 | - | kHz | Accuracy is capacitor and crystal dependent. 50% duty cycle. | | F _{32K_U} | ILO untrimmed frequency | 5 | - | 100 | kHz | After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on timing this | | F _{PLL} | PLL frequency | _ | 23.986 | - | MHz | Multiple (x732) of crystal frequency. | | t _{PLLSLEW} | PLL lock time | 0.5 | - | 10 | ms | | | t _{PLLSLEWSLOW} | PLL lock time for low gain setting | 0.5 | - | 50 | ms | | | tos | External crystal oscillator startup to 1% | _ | 1700 | 2620 | ms | | | tosacc | External crystal oscillator startup to 100 ppm | _ | 2800 | 3800 | ms | The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 μ W maximum drive level 32.768 kHz crystal. 3.0 V \leq V _{DD} \leq 5.5 V, -40 °C \leq T _A \leq 85 °C. | | t _{XRST} | External reset pulse width | 10 | _ | _ | μs | | | DC _{24M} | 24 MHz duty cycle | 40 | 50 | 60 | % | | | DC _{ILO} | ILO duty cycle | 20 | 50 | 80 | % | | | Step _{24M} | 24 MHz trim step size | _ | 50 | _ | kHz | | | t _{POWERUP} | Time from end of POR to CPU executing code | _ | 16 | 100 | ms | wer-up from 0 V. See the System
Resets section of the PSoC
Technical Reference Manual. | | Fout _{48M} | 48 MHz output frequency | 46.8 | 48.0 | 49.2 ^[22, 23] | MHz | Trimmed. Utilizing factory trim values. | | F _{MAX} | Maximum frequency of signal on row input or row output. | _ | _ | 12.3 | MHz | | | SR _{POWER_UP} | Power supply slew rate | _ | - | 250 | V/ms | V _{DD} slew rate during power-up. | #### Notes ^{22.4.75} V < V_{DD} < 5.25 V. 23.3.0 V < V_{DD} < 3.6 V. See application
note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V. 24. See the individual user module datasheets for information on maximum frequencies for user modules. #### AC External Clock Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 36. 5-V AC External Clock Specifications | Symbol | Description | Min | Тур | Max | Unit | |---------------------|------------------------|-------|-----|------|------| | F _{OSCEXT} | Frequency | 0.093 | 1 | 24.6 | MHz | | _ | High period | 20.6 | - | 5300 | ns | | - | Low period | 20.6 | - | - | ns | | - | Power-up IMO to switch | 150 | _ | - | μS | Table 37. 3.3-V AC External Clock Specifications | Symbol | Description | Min | Тур | Max | Unit | |---------------------|---|-------|-----|------|------| | F _{OSCEXT} | Frequency with CPU clock divide by 1 ^[30] | | ı | 12.3 | MHz | | F _{OSCEXT} | Frequency with CPU clock divide by 2 or greater ^[31] | 0.186 | - | 24.6 | MHz | | _ | High period with CPU clock divide by 1 | 41.7 | - | 5300 | ns | | _ | Low period with CPU clock divide by 1 | 41.7 | - | _ | ns | | _ | Power-up IMO to switch | 150 | _ | - | μS | #### AC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 38. AC Programming Specifications | Symbol | Description | Min | Тур | Max | Unit | Notes | |---------------------------|--|-----|-----|---------------------|------|--| | t _{RSCLK} | Rise time of SCLK | 1 | _ | 20 | ns | | | t _{FSCLK} | Fall time of SCLK | 1 | _ | 20 | ns | | | t _{SSCLK} | Data setup time to falling edge of SCLK | 40 | _ | _ | ns | | | t _{HSCLK} | Data hold time from falling edge of SCLK | 40 | _ | - | ns | | | F _{SCLK} | Frequency of SCLK | 0 | _ | 8 | MHz | | | t _{ERASEB} | Flash erase time (Block) | _ | 30 | _ | ms | | | t _{WRITE} | Flash block write time | _ | 10 | - | ms | | | t _{DSCLK} | Data out delay from falling edge of SCLK | _ | _ | 45 | ns | $V_{DD} > 3.6$ | | t _{DSCLK3} | Data out delay from falling edge of SCLK | _ | _ | 50 | ns | $3.0 \leq V_{DD} \leq 3.6$ | | t _{ERASEALL} | Flash erase time (Bulk) | _ | 95 | _ | ms | Erase all Blocks and protection fields at once | | t _{PROGRAM_HOT} | Flash block erase + flash block write time | _ | - | 80 ^[32] | ms | 0 °C ≤ Tj ≤ 100 °C | | t _{PROGRAM} COLD | Flash block erase + flash block write time | _ | _ | 160 ^[32] | ms | -40 °C ≤ Tj ≤ 0 °C | #### Notes - 30. Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements. - 31. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met. 32. For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC® Flash – AN2015 for more information. Document Number: 38-12012 Rev. AB Page 42 of 69 Figure 22. 20-pin SOIC (0.513 × 0.300 × 0.0932 Inches) Package Outline, 51-85024 Figure 23. 28-pin (300-Mil) Molded DIP 51-85014 *G ### **Thermal Impedances** #### Table 40. Thermal Impedances per Package | Package | Typical θ _{JA} ^[34] | | | | |----------------------------|---|--|--|--| | 8-pin PDIP | 120 °C/W | | | | | 20-pin SSOP | 116 °C/W | | | | | 20-pin SOIC | 79 °C/W | | | | | 28-pin PDIP | 67 °C/W | | | | | 28-pin SSOP | 95 °C/W | | | | | 28-pin SOIC | 68 °C/W | | | | | 44-pin TQFP | 61 °C/W | | | | | 48-pin SSOP | 69 °C/W | | | | | 48-pin QFN ^[35] | 18 °C/W | | | | | 56-pin SSOP | 47 °C/W | | | | ### **Capacitance on Crystal Pins** Table 41. Typical Package Capacitance on Crystal Pins | Package | Package Capacitance | |-------------|---------------------| | 8-pin PDIP | 2.8 pF | | 20-pin SSOP | 2.6 pF | | 20-pin SOIC | 2.5 pF | | 28-pin PDIP | 3.5 pF | | 28-pin SSOP | 2.8 pF | | 28-pin SOIC | 2.7 pF | | 44-pin TQFP | 2.6 pF | | 48-pin SSOP | 3.3 pF | | 48-pin QFN | 2.3 pF | | 56-pin SSOP | 3.3 pF | ### **Solder Reflow Specifications** The following table shows the solder reflow temperature limits that must not be exceeded. Thermap ramp rate should 3 °C or lower. Table 42. Solder Reflow Specifications | Package | Maximum Peak Temperature (T _C) ^[36] | Maximum Time above T _C – 5 °C | |-------------|--|--| | 8-pin PDIP | 260 °C | 30 seconds | | 20-pin SSOP | 260 °C | 30 seconds | | 20-pin SOIC | 260 °C | 30 seconds | | 28-pin PDIP | 260 °C | 30 seconds | | 28-pin SSOP | 260 °C | 30 seconds | | 28-pin SOIC | 260 °C | 30 seconds | | 44-pin TQFP | 260 °C | 30 seconds | | 48-pin SSOP | 260 °C | 30 seconds | | 48-pin QFN | 260 °C | 30 seconds | | 56-pin SSOP | 260 °C | 30 seconds | #### Notes Document Number: 38-12012 Rev. AB ^{34.} T_J = T_A + POWER × θ_{JA}. 35. To achieve the thermal impedance specified for the QFN package, refer to *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com. 36. Refer to Table 44 on page 53. ### **Device Programmers** All device programmers can be purchased from the Cypress Online Store. #### CY3216 Modular Programmer The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes: - Modular Programmer Base - 3 Programming Module Cards - MiniProg Programming Unit - PSoC Designer Software CD - Getting Started Guide - USB 2.0 Cable #### CY3207ISSP In-System Serial Programmer (ISSP) The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes: - CY3207 Programmer Unit - PSoC ISSP Software CD - 110 ~ 240 V Power Supply, Euro-Plug Adapter - USB 2.0 Cable # **Accessories (Emulation and Programming)** Table 43. Emulation and Programming Accessories | Part # | Pin Package | Flex-Pod Kit ^[37] | Foot Kit ^[38] | Adapter ^[39] | |------------------|-------------|------------------------------|--------------------------|---------------------------| | CY8C27143-24PXI | 8-pin PDIP | CY3250-27XXX | CY3250-8PDIP-FK | Adapters can be found at | | CY8C27243-24PVXI | 20-pin SSOP | CY3250-27XXX | CY3250-20SSOP-FK | http://www.emulation.com. | | CY8C27243-24SXI | 20-pin SOIC | CY3250-27XXX | CY3250-20SOIC-FK | | | CY8C27443-24PXI | 28-pin PDIP | CY3250-27XXX | CY3250-28PDIP-FK | | | CY8C27443-24PVXI | 28-pin SSOP | CY3250-27XXX | CY3250-28SSOP-FK | | | CY8C27443-24SXI | 28-pin SOIC | CY3250-27XXX | CY3250-28SOIC-FK | | | CY8C27543-24AXI | 44-pin TQFP | CY3250-27XXX | CY3250-44TQFP-FK | | | CY8C27643-24PVXI | 48-pin SSOP | CY3250-27XXX | CY3250-48SSOP-FK | | | CY8C27643-24LTXI | 48-pin QFN | CY3250-27XXXQFN | CY3250-48QFN-FK | | #### Notes ^{37.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods. ^{38.} Foot kit includes surface mount feet that can be soldered to the target PCB. ^{39.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com. ### Glossary (continued) bias - 1. A systematic deviation of a value from a reference value. - The amount by which the average of a set of values departs from a reference value. - 3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device. block - 1. A functional unit that performs a single function, such as an oscillator. - A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block. buffer - 1. A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written. - 2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device. - 3. An amplifier used to lower the output impedance of a system. bus - 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns. - 2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0]. - 3. One or more conductors that serve as a common connection for a group of related devices. clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks. comparator An electronic circuit that produces an output voltage or current whenever two input levels simultaneously
satisfy predetermined amplitude requirements. compiler A program that translates a high level language, such as C, into machine language. configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU F register, is set to '1'. crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components. check (CRC) cyclic redundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression. data bus A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions. debugger A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory. dead band A period of time when neither of two or more signals are in their active state or in transition. digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI. digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation. Document Number: 38-12012 Rev. AB ### Glossary (continued) shift register A memory storage device that sequentially shifts a word either left or right to output a stream of serial data. slave device A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device. SRAM An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device. SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash. stop bit A signal following a character or block that prepares the receiving device to receive the next character or block. synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. 2. A system whose operation is synchronized by a clock signal. tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net. UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits. user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function. user space The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program. V_{DD} A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V. V_{SS} A name for a power net meaning "voltage source." The most negative power supply signal. watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time. Document Number: 38-12012 Rev. AB Page 60 of 69 # **Document History Page** | | Number: 38 | | | | |----------|------------|---------------------|--------------------|---| | Revision | ECN | Origin of
Change | Submission
Date | Description of Change | | ** | 127087 | New Silicon. | 7/01/2003 | New document (Revision **). | | *A | 128780 | Engineering and NWJ | 7/29/2003 | New electrical spec additions, fix of Core Architecture links, corrections to some text, tables, drawings, and format. | | *B | 128992 | NWJ | 8/14/2003 | Interrupt controller table fixed, refinements to Electrical Spec section and Register chapter. | | *C | 129283 | NWJ | 8/28/2003 | Significant changes to the Electrical Specifications section. | | *D | 129442 | NWJ | 9/09/2003 | Changes made to Electrical Spec section. Added 20/28-Lead SOIC packages and pinouts. | | *E | 130129 | NWJ | 10/13/2003 | Revised document for Silicon Revision A. | | *F | 130651 | NWJ | 10/28/2003 | Refinements to Electrical Specification section and I2C chapter. | | *G | 131298 | NWJ | 11/18/2003 | Revisions to GDI, RDI, and Digital Block chapters. Revisions to AC Digital Block Spec and miscellaneous register changes. | | *H | 229416 | SFV | See ECN | New data sheet format and organization. Reference the <i>PSoC Programmable System-on-Chip Technical Reference Manual</i> for additional information. Title change. | | * | 247529 | SFV | See ECN | Added Silicon B information to this data sheet. | | *J | 355555 | НМТ | See ECN | Add DS standards, update device table, swap 48-pin SSOP 45 and 46, add Reflow Peak Temp. table. Add new color and logo. Re-add pinout ISSP notation. Add URL to preferred dimensions for mounting MLF packages. Update Transmitter and Receiver AC Digital Block Electrical Specifications. | | *K | 523233 | НМТ | See ECN | Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add new Dev. Tool section. Add CY8C20x34 to PSoC Device Characteristics table. Add OCD pinout and package diagram. Add ISSP note to pinout tables. Update package diagram revisions. Update typical and recommended Storage Temperature per industrial specs. Update CY branding and QFN convention. Update copyright and trademarks. | | *L | 2545030 | YARA | 07/29/2008 | Added note to DC Analog Reference Specification table and Ordering Information. | | *M | 2696188 | DPT / PYRS | 04/22/2009 | Changed title from "CY8C27143, CY8C27243, CY8C27443, CY8C27543, and CY8C27643 PSoC Mixed Signal Array Final data sheet" to "CY8C27143, CY8C27243, CY8C27443, CY8C27543, CY8C27643 PSoC® Programmable System-on-Chip™". Updated data sheet template. Added 48-Pin QFN (Sawn) package outline diagram and Ordering information details for CY8C27643-24LTXI and CY8C27643-24LTXIT parts | | *N | 2762501 | MAXK | 09/11/2009 | Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified T _{WRITE} specification. Replaced T _{RAMP} (time) specification with SR _{POWER_UP} (slew rate) specification. Added note [9] to Flash Endurance specification. Added I _{OH} , I _{OL} , DCILO, F32K_U, T _{POWERUP} , T _{ERASEALL} , T _{PROGRAM_HOT} , and T _{PROGRAM_COLD} specifications. | | *0 | 2811860 | ECU | 11/20/2009 | Added Contents page. In the Ordering Information table, added 48 Sawn QFN (LTXI) to the Silicon B parts. Updated 28-Pin package drawing (51-85014) | Document Number: 38-12012 Rev. AB Page 66 of 69 # Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** Automotive Clocks & Buffers Interface Lighting & Power Control Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless # PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP ### **Cypress Developer Community** Community | Forums | Blogs | Video | Training ### **Technical Support** cypress.com/go/support © Cypress Semiconductor Corporation, 2003-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation
(Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 38-12012 Rev. AB Revised September 19, 2014 Page 69 of 69